| 1 |
greg |
1.1 |
#ifndef lint |
| 2 |
greg |
2.13 |
static const char RCSid[] = "$Id: noise3.c,v 2.12 2011/02/22 16:45:12 greg Exp $"; |
| 3 |
greg |
1.1 |
#endif |
| 4 |
|
|
/* |
| 5 |
|
|
* noise3.c - noise functions for random textures. |
| 6 |
|
|
* |
| 7 |
greg |
2.13 |
* Credit for the smooth algorithm goes to Ken Perlin, and code |
| 8 |
|
|
* translation/implementation to Rahul Narain. |
| 9 |
|
|
* (ref. Improving Noise, Computer Graphics; Vol. 35 No. 3., 2002) |
| 10 |
greg |
2.6 |
*/ |
| 11 |
|
|
|
| 12 |
greg |
2.7 |
#include "copyright.h" |
| 13 |
greg |
1.1 |
|
| 14 |
greg |
2.12 |
#include "ray.h" |
| 15 |
schorsch |
2.9 |
#include "func.h" |
| 16 |
greg |
1.1 |
|
| 17 |
greg |
2.5 |
static char noise_name[4][8] = {"noise3x", "noise3y", "noise3z", "noise3"}; |
| 18 |
greg |
1.5 |
static char fnoise_name[] = "fnoise3"; |
| 19 |
greg |
1.1 |
|
| 20 |
greg |
2.13 |
#define EPSILON .0005 /* error allowed in fractal */ |
| 21 |
greg |
1.1 |
|
| 22 |
greg |
1.3 |
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) |
| 23 |
greg |
1.1 |
|
| 24 |
greg |
2.13 |
static double l_noise3(char *nam); |
| 25 |
|
|
static double noise3(double xnew[3], int i); |
| 26 |
|
|
static double noise3partial(double f3, double x[3], int i); |
| 27 |
|
|
static double perlin_noise (double x, double y, double z); |
| 28 |
|
|
static double frand(long s); |
| 29 |
|
|
static double fnoise3(double x[3]); |
| 30 |
schorsch |
2.9 |
|
| 31 |
greg |
1.1 |
|
| 32 |
greg |
1.5 |
static double |
| 33 |
schorsch |
2.9 |
l_noise3( /* compute a noise function */ |
| 34 |
greg |
2.13 |
char *nam |
| 35 |
schorsch |
2.9 |
) |
| 36 |
greg |
1.1 |
{ |
| 37 |
greg |
2.13 |
int i; |
| 38 |
greg |
1.5 |
double x[3]; |
| 39 |
|
|
/* get point */ |
| 40 |
|
|
x[0] = argument(1); |
| 41 |
|
|
x[1] = argument(2); |
| 42 |
|
|
x[2] = argument(3); |
| 43 |
|
|
/* make appropriate call */ |
| 44 |
|
|
if (nam == fnoise_name) |
| 45 |
|
|
return(fnoise3(x)); |
| 46 |
|
|
i = 4; |
| 47 |
|
|
while (i--) |
| 48 |
|
|
if (nam == noise_name[i]) |
| 49 |
greg |
2.13 |
return(noise3(x,i)); |
| 50 |
greg |
1.6 |
eputs(nam); |
| 51 |
|
|
eputs(": called l_noise3!\n"); |
| 52 |
greg |
1.5 |
quit(1); |
| 53 |
schorsch |
2.9 |
return 1; /* pro forma return */ |
| 54 |
greg |
1.1 |
} |
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
greg |
2.13 |
void |
| 58 |
schorsch |
2.9 |
setnoisefuncs(void) /* add noise functions to library */ |
| 59 |
greg |
1.1 |
{ |
| 60 |
greg |
2.13 |
int i; |
| 61 |
greg |
1.1 |
|
| 62 |
greg |
1.5 |
funset(fnoise_name, 3, ':', l_noise3); |
| 63 |
|
|
i = 4; |
| 64 |
|
|
while (i--) |
| 65 |
|
|
funset(noise_name[i], 3, ':', l_noise3); |
| 66 |
greg |
1.1 |
} |
| 67 |
|
|
|
| 68 |
|
|
|
| 69 |
schorsch |
2.9 |
static double |
| 70 |
|
|
frand( /* get random number from seed */ |
| 71 |
greg |
2.13 |
long s |
| 72 |
schorsch |
2.9 |
) |
| 73 |
greg |
1.1 |
{ |
| 74 |
|
|
s = s<<13 ^ s; |
| 75 |
|
|
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0); |
| 76 |
|
|
} |
| 77 |
|
|
|
| 78 |
|
|
|
| 79 |
schorsch |
2.9 |
static double |
| 80 |
|
|
fnoise3( /* compute fractal noise function */ |
| 81 |
greg |
2.13 |
double x[3] |
| 82 |
schorsch |
2.9 |
) |
| 83 |
greg |
1.1 |
{ |
| 84 |
greg |
1.4 |
long t[3], v[3], beg[3]; |
| 85 |
greg |
1.3 |
double fval[8], fc; |
| 86 |
|
|
int branch; |
| 87 |
greg |
2.13 |
long s; |
| 88 |
|
|
int i, j; |
| 89 |
greg |
1.1 |
/* get starting cube */ |
| 90 |
greg |
1.3 |
s = (long)(1.0/EPSILON); |
| 91 |
|
|
for (i = 0; i < 3; i++) { |
| 92 |
greg |
2.13 |
t[i] = s*x[i]; |
| 93 |
|
|
beg[i] = s*floor(x[i]); |
| 94 |
greg |
1.3 |
} |
| 95 |
greg |
1.1 |
for (j = 0; j < 8; j++) { |
| 96 |
|
|
for (i = 0; i < 3; i++) { |
| 97 |
|
|
v[i] = beg[i]; |
| 98 |
|
|
if (j & 1<<i) |
| 99 |
greg |
1.3 |
v[i] += s; |
| 100 |
greg |
1.1 |
} |
| 101 |
|
|
fval[j] = frand3(v[0],v[1],v[2]); |
| 102 |
|
|
} |
| 103 |
|
|
/* compute fractal */ |
| 104 |
|
|
for ( ; ; ) { |
| 105 |
greg |
1.4 |
fc = 0.0; |
| 106 |
|
|
for (j = 0; j < 8; j++) |
| 107 |
|
|
fc += fval[j]; |
| 108 |
|
|
fc *= 0.125; |
| 109 |
|
|
if ((s >>= 1) == 0) |
| 110 |
|
|
return(fc); /* close enough */ |
| 111 |
greg |
1.1 |
branch = 0; |
| 112 |
|
|
for (i = 0; i < 3; i++) { /* do center */ |
| 113 |
|
|
v[i] = beg[i] + s; |
| 114 |
greg |
1.3 |
if (t[i] > v[i]) { |
| 115 |
greg |
1.1 |
branch |= 1<<i; |
| 116 |
greg |
1.3 |
} |
| 117 |
greg |
1.1 |
} |
| 118 |
greg |
1.3 |
fc += s*EPSILON*frand3(v[0],v[1],v[2]); |
| 119 |
greg |
1.1 |
fval[~branch & 7] = fc; |
| 120 |
|
|
for (i = 0; i < 3; i++) { /* do faces */ |
| 121 |
|
|
if (branch & 1<<i) |
| 122 |
|
|
v[i] += s; |
| 123 |
|
|
else |
| 124 |
|
|
v[i] -= s; |
| 125 |
|
|
fc = 0.0; |
| 126 |
|
|
for (j = 0; j < 8; j++) |
| 127 |
|
|
if (~(j^branch) & 1<<i) |
| 128 |
|
|
fc += fval[j]; |
| 129 |
greg |
1.3 |
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 130 |
greg |
1.1 |
fval[~(branch^1<<i) & 7] = fc; |
| 131 |
|
|
v[i] = beg[i] + s; |
| 132 |
|
|
} |
| 133 |
|
|
for (i = 0; i < 3; i++) { /* do edges */ |
| 134 |
greg |
2.10 |
if ((j = i+1) == 3) j = 0; |
| 135 |
greg |
1.1 |
if (branch & 1<<j) |
| 136 |
|
|
v[j] += s; |
| 137 |
|
|
else |
| 138 |
|
|
v[j] -= s; |
| 139 |
greg |
2.10 |
if (++j == 3) j = 0; |
| 140 |
greg |
1.1 |
if (branch & 1<<j) |
| 141 |
|
|
v[j] += s; |
| 142 |
|
|
else |
| 143 |
|
|
v[j] -= s; |
| 144 |
|
|
fc = fval[branch & ~(1<<i)]; |
| 145 |
|
|
fc += fval[branch | 1<<i]; |
| 146 |
greg |
1.3 |
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
| 147 |
greg |
1.1 |
fval[branch^1<<i] = fc; |
| 148 |
greg |
2.10 |
if ((j = i+1) == 3) j = 0; |
| 149 |
greg |
1.1 |
v[j] = beg[j] + s; |
| 150 |
greg |
2.10 |
if (++j == 3) j = 0; |
| 151 |
greg |
1.1 |
v[j] = beg[j] + s; |
| 152 |
|
|
} |
| 153 |
|
|
for (i = 0; i < 3; i++) /* new cube */ |
| 154 |
|
|
if (branch & 1<<i) |
| 155 |
|
|
beg[i] += s; |
| 156 |
|
|
} |
| 157 |
|
|
} |
| 158 |
greg |
2.13 |
|
| 159 |
|
|
|
| 160 |
|
|
static double |
| 161 |
|
|
noise3( /* compute the revised Perlin noise function */ |
| 162 |
|
|
double xnew[3], int i |
| 163 |
|
|
) |
| 164 |
|
|
{ |
| 165 |
|
|
static int gotV; |
| 166 |
|
|
static double x[3]; |
| 167 |
|
|
static double f[4]; |
| 168 |
|
|
|
| 169 |
|
|
if (gotV && x[0]==xnew[0] && (x[1]==xnew[1]) & (x[2]==xnew[2])) { |
| 170 |
|
|
if (!(gotV>>i & 1)) { |
| 171 |
|
|
f[i] = noise3partial(f[3], x, i); |
| 172 |
|
|
gotV |= 1<<i; |
| 173 |
|
|
} |
| 174 |
|
|
return(f[i]); |
| 175 |
|
|
} |
| 176 |
|
|
gotV = 0x8; |
| 177 |
|
|
return(f[3] = perlin_noise(x[0]=xnew[0], x[1]=xnew[1], x[2]=xnew[2])); |
| 178 |
|
|
} |
| 179 |
|
|
|
| 180 |
|
|
static double |
| 181 |
|
|
noise3partial( /* compute partial derivative for ith coordinate */ |
| 182 |
|
|
double f3, double x[3], int i |
| 183 |
|
|
) |
| 184 |
|
|
{ |
| 185 |
|
|
double fc; |
| 186 |
|
|
|
| 187 |
|
|
switch (i) { |
| 188 |
|
|
case 0: |
| 189 |
|
|
fc = perlin_noise(x[0]-EPSILON, x[1], x[2]); |
| 190 |
|
|
break; |
| 191 |
|
|
case 1: |
| 192 |
|
|
fc = perlin_noise(x[0], x[1]-EPSILON, x[2]); |
| 193 |
|
|
break; |
| 194 |
|
|
case 2: |
| 195 |
|
|
fc = perlin_noise(x[0], x[1], x[2]-EPSILON); |
| 196 |
|
|
break; |
| 197 |
|
|
default: |
| 198 |
|
|
return(.0); |
| 199 |
|
|
} |
| 200 |
|
|
return((f3 - fc)/EPSILON); |
| 201 |
|
|
} |
| 202 |
|
|
|
| 203 |
|
|
#define fade(t) ((t)*(t)*(t)*((t)*((t)*6. - 15.) + 10.)) |
| 204 |
|
|
|
| 205 |
|
|
static double lerp(double t, double a, double b) {return a + t*(b - a);} |
| 206 |
|
|
|
| 207 |
|
|
static double |
| 208 |
|
|
grad(int hash, double x, double y, double z) |
| 209 |
|
|
{ |
| 210 |
|
|
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE |
| 211 |
|
|
double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS. |
| 212 |
|
|
v = h<4 ? y : h==12|h==14 ? x : z; |
| 213 |
|
|
return (!(h&1) ? u : -u) + (!(h&2) ? v : -v); |
| 214 |
|
|
} |
| 215 |
|
|
|
| 216 |
|
|
static const int permutation[256] = {151,160,137,91,90,15, |
| 217 |
|
|
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, |
| 218 |
|
|
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, |
| 219 |
|
|
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, |
| 220 |
|
|
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, |
| 221 |
|
|
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, |
| 222 |
|
|
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, |
| 223 |
|
|
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, |
| 224 |
|
|
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, |
| 225 |
|
|
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, |
| 226 |
|
|
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, |
| 227 |
|
|
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, |
| 228 |
|
|
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 |
| 229 |
|
|
}; |
| 230 |
|
|
|
| 231 |
|
|
#define p(i) permutation[(i)&0xff] |
| 232 |
|
|
|
| 233 |
|
|
static double |
| 234 |
|
|
perlin_noise(double x, double y, double z) |
| 235 |
|
|
{ |
| 236 |
|
|
int X, Y, Z; |
| 237 |
|
|
double u, v, w; |
| 238 |
|
|
int A, AA, AB, B, BA, BB; |
| 239 |
|
|
|
| 240 |
|
|
X = (int)x-(x<0); // FIND UNIT CUBE THAT |
| 241 |
|
|
Y = (int)y-(y<0); // CONTAINS POINT. |
| 242 |
|
|
Z = (int)z-(z<0); |
| 243 |
|
|
x -= (double)X; // FIND RELATIVE X,Y,Z |
| 244 |
|
|
y -= (double)Y; // OF POINT IN CUBE. |
| 245 |
|
|
z -= (double)Z; |
| 246 |
|
|
X &= 0xff; Y &= 0xff; Z &= 0xff; |
| 247 |
|
|
|
| 248 |
|
|
u = fade(x); // COMPUTE FADE CURVES |
| 249 |
|
|
v = fade(y); // FOR EACH OF X,Y,Z. |
| 250 |
|
|
w = fade(z); |
| 251 |
|
|
|
| 252 |
|
|
A = p(X )+Y; AA = p(A)+Z; AB = p(A+1)+Z; // HASH COORDINATES OF |
| 253 |
|
|
B = p(X+1)+Y; BA = p(B)+Z; BB = p(B+1)+Z; // THE 8 CUBE CORNERS, |
| 254 |
|
|
|
| 255 |
|
|
return lerp(w, lerp(v, lerp(u, grad(p(AA ), x , y , z ), // AND ADD |
| 256 |
|
|
grad(p(BA ), x-1, y , z )), // BLENDED |
| 257 |
|
|
lerp(u, grad(p(AB ), x , y-1, z ), // RESULTS |
| 258 |
|
|
grad(p(BB ), x-1, y-1, z ))),// FROM 8 |
| 259 |
|
|
lerp(v, lerp(u, grad(p(AA+1), x , y , z-1), // CORNERS |
| 260 |
|
|
grad(p(BA+1), x-1, y , z-1)), // OF CUBE |
| 261 |
|
|
lerp(u, grad(p(AB+1), x , y-1, z-1), |
| 262 |
|
|
grad(p(BB+1), x-1, y-1, z-1)))); |
| 263 |
|
|
} |