| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.61 |
static const char RCSid[] = "$Id: m_bsdf.c,v 2.60 2020/06/10 16:00:32 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Shading for materials with BSDFs taken from XML data files
|
| 6 |
|
|
*/
|
| 7 |
|
|
|
| 8 |
|
|
#include "copyright.h"
|
| 9 |
|
|
|
| 10 |
|
|
#include "ray.h"
|
| 11 |
greg |
2.50 |
#include "otypes.h"
|
| 12 |
greg |
2.1 |
#include "ambient.h"
|
| 13 |
|
|
#include "source.h"
|
| 14 |
|
|
#include "func.h"
|
| 15 |
|
|
#include "bsdf.h"
|
| 16 |
|
|
#include "random.h"
|
| 17 |
greg |
2.30 |
#include "pmapmat.h"
|
| 18 |
greg |
2.1 |
|
| 19 |
|
|
/*
|
| 20 |
greg |
2.50 |
* Arguments to this material include optional diffuse colors.
|
| 21 |
greg |
2.1 |
* String arguments include the BSDF and function files.
|
| 22 |
greg |
2.50 |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior
|
| 23 |
greg |
2.5 |
* of translating transmitted rays this distance beneath the surface
|
| 24 |
|
|
* (opposite the surface normal) to bypass any intervening geometry.
|
| 25 |
|
|
* Translation only affects scattered, non-source-directed samples.
|
| 26 |
|
|
* A non-zero thickness has the further side-effect that an unscattered
|
| 27 |
greg |
2.35 |
* (view) ray will pass right through our material, making the BSDF
|
| 28 |
|
|
* surface invisible and showing the proxied geometry instead. Thickness
|
| 29 |
|
|
* has the further effect of turning off reflection on the reverse side so
|
| 30 |
|
|
* rays heading in the opposite direction pass unimpeded through the BSDF
|
| 31 |
greg |
2.5 |
* surface. A paired surface may be placed on the opposide side of
|
| 32 |
|
|
* the detail geometry, less than this thickness away, if a two-way
|
| 33 |
|
|
* proxy is desired. Note that the sign of the thickness is important.
|
| 34 |
|
|
* A positive thickness hides geometry behind the BSDF surface and uses
|
| 35 |
|
|
* front reflectance and transmission properties. A negative thickness
|
| 36 |
|
|
* hides geometry in front of the surface when rays hit from behind,
|
| 37 |
|
|
* and applies only the transmission and backside reflectance properties.
|
| 38 |
|
|
* Reflection is ignored on the hidden side, as those rays pass through.
|
| 39 |
greg |
2.52 |
* For the MAT_ABSDF type, we check for a strong "through" component.
|
| 40 |
greg |
2.50 |
* Such a component will cause direct rays to pass through unscattered.
|
| 41 |
greg |
2.40 |
* A separate test prevents over-counting by dropping samples that are
|
| 42 |
|
|
* too close to this "through" direction. BSDFs with such a through direction
|
| 43 |
|
|
* will also have a view component, meaning they are somewhat see-through.
|
| 44 |
greg |
2.52 |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
|
| 45 |
greg |
2.50 |
* type with no strong through component.
|
| 46 |
greg |
2.1 |
* The "up" vector for the BSDF is given by three variables, defined
|
| 47 |
|
|
* (along with the thickness) by the named function file, or '.' if none.
|
| 48 |
|
|
* Together with the surface normal, this defines the local coordinate
|
| 49 |
|
|
* system for the BSDF.
|
| 50 |
|
|
* We do not reorient the surface, so if the BSDF has no back-side
|
| 51 |
greg |
2.5 |
* reflectance and none is given in the real arguments, a BSDF surface
|
| 52 |
|
|
* with zero thickness will appear black when viewed from behind
|
| 53 |
greg |
2.35 |
* unless backface visibility is on, when it becomes invisible.
|
| 54 |
greg |
2.5 |
* The diffuse arguments are added to components in the BSDF file,
|
| 55 |
greg |
2.1 |
* not multiplied. However, patterns affect this material as a multiplier
|
| 56 |
|
|
* on everything except non-diffuse reflection.
|
| 57 |
|
|
*
|
| 58 |
greg |
2.52 |
* Arguments for MAT_ABSDF are:
|
| 59 |
greg |
2.50 |
* 5+ BSDFfile ux uy uz funcfile transform
|
| 60 |
|
|
* 0
|
| 61 |
|
|
* 0|3|6|9 rdf gdf bdf
|
| 62 |
|
|
* rdb gdb bdb
|
| 63 |
|
|
* rdt gdt bdt
|
| 64 |
|
|
*
|
| 65 |
greg |
2.1 |
* Arguments for MAT_BSDF are:
|
| 66 |
|
|
* 6+ thick BSDFfile ux uy uz funcfile transform
|
| 67 |
|
|
* 0
|
| 68 |
greg |
2.8 |
* 0|3|6|9 rdf gdf bdf
|
| 69 |
greg |
2.1 |
* rdb gdb bdb
|
| 70 |
|
|
* rdt gdt bdt
|
| 71 |
|
|
*/
|
| 72 |
|
|
|
| 73 |
greg |
2.4 |
/*
|
| 74 |
|
|
* Note that our reverse ray-tracing process means that the positions
|
| 75 |
|
|
* of incoming and outgoing vectors may be reversed in our calls
|
| 76 |
greg |
2.35 |
* to the BSDF library. This is usually fine, since the bidirectional nature
|
| 77 |
greg |
2.4 |
* of the BSDF (that's what the 'B' stands for) means it all works out.
|
| 78 |
|
|
*/
|
| 79 |
|
|
|
| 80 |
greg |
2.1 |
typedef struct {
|
| 81 |
|
|
OBJREC *mp; /* material pointer */
|
| 82 |
|
|
RAY *pr; /* intersected ray */
|
| 83 |
|
|
FVECT pnorm; /* perturbed surface normal */
|
| 84 |
greg |
2.4 |
FVECT vray; /* local outgoing (return) vector */
|
| 85 |
greg |
2.9 |
double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
|
| 86 |
greg |
2.1 |
RREAL toloc[3][3]; /* world to local BSDF coords */
|
| 87 |
|
|
RREAL fromloc[3][3]; /* local BSDF coords to world */
|
| 88 |
|
|
double thick; /* surface thickness */
|
| 89 |
greg |
2.52 |
COLOR cthru; /* "through" component for MAT_ABSDF */
|
| 90 |
greg |
2.61 |
COLOR cthru_surr; /* surround for "through" component */
|
| 91 |
greg |
2.1 |
SDData *sd; /* loaded BSDF data */
|
| 92 |
greg |
2.31 |
COLOR rdiff; /* diffuse reflection */
|
| 93 |
greg |
2.39 |
COLOR runsamp; /* BSDF hemispherical reflection */
|
| 94 |
greg |
2.31 |
COLOR tdiff; /* diffuse transmission */
|
| 95 |
greg |
2.39 |
COLOR tunsamp; /* BSDF hemispherical transmission */
|
| 96 |
greg |
2.1 |
} BSDFDAT; /* BSDF material data */
|
| 97 |
|
|
|
| 98 |
|
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
|
| 99 |
|
|
|
| 100 |
greg |
2.58 |
typedef struct {
|
| 101 |
|
|
double vy; /* brightness (for sorting) */
|
| 102 |
|
|
FVECT tdir; /* through sample direction (normalized) */
|
| 103 |
|
|
COLOR vcol; /* BTDF color */
|
| 104 |
|
|
} PEAKSAMP; /* BTDF peak sample */
|
| 105 |
|
|
|
| 106 |
|
|
/* Comparison function to put near-peak values in descending order */
|
| 107 |
|
|
static int
|
| 108 |
|
|
cmp_psamp(const void *p1, const void *p2)
|
| 109 |
|
|
{
|
| 110 |
|
|
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
|
| 111 |
|
|
if (diff > 0) return(-1);
|
| 112 |
|
|
if (diff < 0) return(1);
|
| 113 |
|
|
return(0);
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
greg |
2.52 |
/* Compute "through" component color for MAT_ABSDF */
|
| 117 |
greg |
2.34 |
static void
|
| 118 |
|
|
compute_through(BSDFDAT *ndp)
|
| 119 |
|
|
{
|
| 120 |
greg |
2.60 |
#define NDIR2CHECK 29
|
| 121 |
greg |
2.34 |
static const float dir2check[NDIR2CHECK][2] = {
|
| 122 |
greg |
2.60 |
{0, 0}, {-0.6, 0}, {0, 0.6},
|
| 123 |
|
|
{0, -0.6}, {0.6, 0}, {-0.6, 0.6},
|
| 124 |
|
|
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
|
| 125 |
|
|
{-1.2, 0}, {0, 1.2}, {0, -1.2},
|
| 126 |
|
|
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
|
| 127 |
|
|
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
|
| 128 |
|
|
{0, 1.8}, {0, -1.8}, {1.8, 0},
|
| 129 |
|
|
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
|
| 130 |
|
|
{1.8, -1.8}, {-2.4, 0}, {0, 2.4},
|
| 131 |
|
|
{0, -2.4}, {2.4, 0},
|
| 132 |
greg |
2.34 |
};
|
| 133 |
greg |
2.58 |
const double peak_over = 1.5;
|
| 134 |
|
|
PEAKSAMP psamp[NDIR2CHECK];
|
| 135 |
greg |
2.34 |
SDSpectralDF *dfp;
|
| 136 |
|
|
FVECT pdir;
|
| 137 |
|
|
double tomega, srchrad;
|
| 138 |
greg |
2.61 |
double tomsum, tomsurr;
|
| 139 |
|
|
COLOR vpeak, vsurr;
|
| 140 |
|
|
double vypeak;
|
| 141 |
|
|
int i, ns;
|
| 142 |
greg |
2.34 |
SDError ec;
|
| 143 |
|
|
|
| 144 |
|
|
if (ndp->pr->rod > 0)
|
| 145 |
|
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
|
| 146 |
|
|
else
|
| 147 |
|
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
|
| 148 |
|
|
|
| 149 |
|
|
if (dfp == NULL)
|
| 150 |
|
|
return; /* no specular transmission */
|
| 151 |
|
|
if (bright(ndp->pr->pcol) <= FTINY)
|
| 152 |
|
|
return; /* pattern is black, here */
|
| 153 |
greg |
2.58 |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
|
| 154 |
|
|
for (i = 0; i < NDIR2CHECK; i++) {
|
| 155 |
|
|
SDValue sv;
|
| 156 |
|
|
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
|
| 157 |
|
|
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
|
| 158 |
|
|
psamp[i].tdir[2] = -ndp->vray[2];
|
| 159 |
|
|
normalize(psamp[i].tdir);
|
| 160 |
|
|
ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
|
| 161 |
|
|
if (ec)
|
| 162 |
|
|
goto baderror;
|
| 163 |
|
|
cvt_sdcolor(psamp[i].vcol, &sv);
|
| 164 |
greg |
2.61 |
psamp[i].vy = sv.cieY;
|
| 165 |
greg |
2.58 |
}
|
| 166 |
|
|
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
|
| 167 |
greg |
2.61 |
if (psamp[0].vy <= FTINY)
|
| 168 |
|
|
return; /* zero area */
|
| 169 |
greg |
2.40 |
setcolor(vpeak, 0, 0, 0);
|
| 170 |
greg |
2.61 |
setcolor(vsurr, 0, 0, 0);
|
| 171 |
|
|
vypeak = tomsum = tomsurr = 0; /* combine top unique values */
|
| 172 |
|
|
ns = 0;
|
| 173 |
greg |
2.34 |
for (i = 0; i < NDIR2CHECK; i++) {
|
| 174 |
greg |
2.61 |
if (i && psamp[i].vy == psamp[i-1].vy)
|
| 175 |
|
|
continue; /* assume duplicate sample */
|
| 176 |
|
|
|
| 177 |
greg |
2.58 |
ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
|
| 178 |
|
|
SDqueryMin, ndp->sd);
|
| 179 |
greg |
2.34 |
if (ec)
|
| 180 |
|
|
goto baderror;
|
| 181 |
greg |
2.61 |
/* not really a peak? */
|
| 182 |
|
|
if (tomega > 1.5*dfp->minProjSA ||
|
| 183 |
|
|
vypeak > 8.*psamp[i].vy*ns) {
|
| 184 |
|
|
if (!i) return; /* abort */
|
| 185 |
|
|
scalecolor(psamp[i].vcol, tomega);
|
| 186 |
|
|
addcolor(vsurr, psamp[i].vcol);
|
| 187 |
|
|
tomsurr += tomega;
|
| 188 |
greg |
2.58 |
continue;
|
| 189 |
greg |
2.34 |
}
|
| 190 |
greg |
2.58 |
scalecolor(psamp[i].vcol, tomega);
|
| 191 |
|
|
addcolor(vpeak, psamp[i].vcol);
|
| 192 |
|
|
tomsum += tomega;
|
| 193 |
|
|
vypeak += psamp[i].vy;
|
| 194 |
|
|
++ns;
|
| 195 |
|
|
}
|
| 196 |
greg |
2.61 |
if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
|
| 197 |
greg |
2.58 |
return; /* peak not peaky enough */
|
| 198 |
|
|
if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
|
| 199 |
greg |
2.40 |
return; /* < 0.1% transmission */
|
| 200 |
greg |
2.58 |
copycolor(ndp->cthru, vpeak); /* already scaled by omega */
|
| 201 |
greg |
2.34 |
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
|
| 202 |
greg |
2.61 |
if (tomsurr > FTINY) { /* surround contribution? */
|
| 203 |
|
|
scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
|
| 204 |
|
|
copycolor(ndp->cthru_surr, vsurr);
|
| 205 |
|
|
multcolor(ndp->cthru_surr, ndp->pr->pcol);
|
| 206 |
|
|
}
|
| 207 |
greg |
2.34 |
return;
|
| 208 |
|
|
baderror:
|
| 209 |
|
|
objerror(ndp->mp, USER, transSDError(ec));
|
| 210 |
|
|
#undef NDIR2CHECK
|
| 211 |
|
|
}
|
| 212 |
|
|
|
| 213 |
greg |
2.4 |
/* Jitter ray sample according to projected solid angle and specjitter */
|
| 214 |
|
|
static void
|
| 215 |
greg |
2.15 |
bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
|
| 216 |
greg |
2.4 |
{
|
| 217 |
|
|
VCOPY(vres, ndp->vray);
|
| 218 |
|
|
if (specjitter < 1.)
|
| 219 |
|
|
sr_psa *= specjitter;
|
| 220 |
|
|
if (sr_psa <= FTINY)
|
| 221 |
|
|
return;
|
| 222 |
|
|
vres[0] += sr_psa*(.5 - frandom());
|
| 223 |
|
|
vres[1] += sr_psa*(.5 - frandom());
|
| 224 |
|
|
normalize(vres);
|
| 225 |
|
|
}
|
| 226 |
|
|
|
| 227 |
greg |
2.33 |
/* Get BSDF specular for direct component, returning true if OK to proceed */
|
| 228 |
greg |
2.7 |
static int
|
| 229 |
greg |
2.33 |
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
|
| 230 |
greg |
2.7 |
{
|
| 231 |
greg |
2.43 |
int nsamp;
|
| 232 |
|
|
double wtot = 0;
|
| 233 |
greg |
2.13 |
FVECT vsrc, vsmp, vjit;
|
| 234 |
greg |
2.36 |
double tomega, tomega2;
|
| 235 |
greg |
2.15 |
double sf, tsr, sd[2];
|
| 236 |
greg |
2.32 |
COLOR csmp, cdiff;
|
| 237 |
|
|
double diffY;
|
| 238 |
greg |
2.7 |
SDValue sv;
|
| 239 |
|
|
SDError ec;
|
| 240 |
greg |
2.13 |
int i;
|
| 241 |
greg |
2.37 |
/* in case we fail */
|
| 242 |
greg |
2.40 |
setcolor(cval, 0, 0, 0);
|
| 243 |
greg |
2.7 |
/* transform source direction */
|
| 244 |
|
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
|
| 245 |
|
|
return(0);
|
| 246 |
greg |
2.32 |
/* will discount diffuse portion */
|
| 247 |
|
|
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
|
| 248 |
|
|
case 3:
|
| 249 |
|
|
if (ndp->sd->rf == NULL)
|
| 250 |
|
|
return(0); /* all diffuse */
|
| 251 |
|
|
sv = ndp->sd->rLambFront;
|
| 252 |
|
|
break;
|
| 253 |
|
|
case 0:
|
| 254 |
|
|
if (ndp->sd->rb == NULL)
|
| 255 |
|
|
return(0); /* all diffuse */
|
| 256 |
|
|
sv = ndp->sd->rLambBack;
|
| 257 |
|
|
break;
|
| 258 |
|
|
default:
|
| 259 |
|
|
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
|
| 260 |
|
|
return(0); /* all diffuse */
|
| 261 |
|
|
sv = ndp->sd->tLamb;
|
| 262 |
|
|
break;
|
| 263 |
|
|
}
|
| 264 |
greg |
2.33 |
if (sv.cieY > FTINY) {
|
| 265 |
|
|
diffY = sv.cieY *= 1./PI;
|
| 266 |
greg |
2.32 |
cvt_sdcolor(cdiff, &sv);
|
| 267 |
|
|
} else {
|
| 268 |
greg |
2.40 |
diffY = 0;
|
| 269 |
|
|
setcolor(cdiff, 0, 0, 0);
|
| 270 |
greg |
2.32 |
}
|
| 271 |
greg |
2.53 |
/* need projected solid angle */
|
| 272 |
greg |
2.37 |
omega *= fabs(vsrc[2]);
|
| 273 |
greg |
2.13 |
/* check indirect over-counting */
|
| 274 |
greg |
2.40 |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
|
| 275 |
greg |
2.53 |
double dx = vsrc[0] + ndp->vray[0];
|
| 276 |
|
|
double dy = vsrc[1] + ndp->vray[1];
|
| 277 |
|
|
SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
|
| 278 |
|
|
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
|
| 279 |
|
|
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
|
| 280 |
|
|
|
| 281 |
|
|
if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
|
| 282 |
greg |
2.61 |
2.*sqrt(omega*dfp->minProjSA))) {
|
| 283 |
|
|
if (bright(ndp->cthru_surr) <= FTINY)
|
| 284 |
|
|
return(0);
|
| 285 |
|
|
copycolor(cval, ndp->cthru_surr);
|
| 286 |
|
|
return(1); /* return non-zero surround BTDF */
|
| 287 |
|
|
}
|
| 288 |
greg |
2.7 |
}
|
| 289 |
greg |
2.53 |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
|
| 290 |
|
|
if (ec)
|
| 291 |
|
|
goto baderror;
|
| 292 |
greg |
2.37 |
/* assign number of samples */
|
| 293 |
greg |
2.15 |
sf = specjitter * ndp->pr->rweight;
|
| 294 |
greg |
2.40 |
if (tomega <= 0)
|
| 295 |
greg |
2.24 |
nsamp = 1;
|
| 296 |
|
|
else if (25.*tomega <= omega)
|
| 297 |
greg |
2.15 |
nsamp = 100.*sf + .5;
|
| 298 |
|
|
else
|
| 299 |
|
|
nsamp = 4.*sf*omega/tomega + .5;
|
| 300 |
|
|
nsamp += !nsamp;
|
| 301 |
greg |
2.37 |
sf = sqrt(omega); /* sample our source area */
|
| 302 |
greg |
2.15 |
tsr = sqrt(tomega);
|
| 303 |
greg |
2.13 |
for (i = nsamp; i--; ) {
|
| 304 |
|
|
VCOPY(vsmp, vsrc); /* jitter query directions */
|
| 305 |
|
|
if (nsamp > 1) {
|
| 306 |
|
|
multisamp(sd, 2, (i + frandom())/(double)nsamp);
|
| 307 |
|
|
vsmp[0] += (sd[0] - .5)*sf;
|
| 308 |
|
|
vsmp[1] += (sd[1] - .5)*sf;
|
| 309 |
greg |
2.36 |
normalize(vsmp);
|
| 310 |
greg |
2.13 |
}
|
| 311 |
greg |
2.15 |
bsdf_jitter(vjit, ndp, tsr);
|
| 312 |
greg |
2.37 |
/* compute BSDF */
|
| 313 |
|
|
ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
|
| 314 |
|
|
if (ec)
|
| 315 |
|
|
goto baderror;
|
| 316 |
|
|
if (sv.cieY - diffY <= FTINY)
|
| 317 |
|
|
continue; /* no specular part */
|
| 318 |
greg |
2.36 |
/* check for variable resolution */
|
| 319 |
|
|
ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
|
| 320 |
|
|
if (ec)
|
| 321 |
|
|
goto baderror;
|
| 322 |
|
|
if (tomega2 < .12*tomega)
|
| 323 |
|
|
continue; /* not safe to include */
|
| 324 |
greg |
2.13 |
cvt_sdcolor(csmp, &sv);
|
| 325 |
greg |
2.59 |
#if 0
|
| 326 |
|
|
if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
|
| 327 |
greg |
2.44 |
scalecolor(csmp, sv.cieY);
|
| 328 |
|
|
wtot += sv.cieY;
|
| 329 |
|
|
} else
|
| 330 |
greg |
2.59 |
#endif
|
| 331 |
|
|
wtot += 1.;
|
| 332 |
greg |
2.43 |
addcolor(cval, csmp);
|
| 333 |
greg |
2.13 |
}
|
| 334 |
greg |
2.43 |
if (wtot <= FTINY) /* no valid specular samples? */
|
| 335 |
greg |
2.37 |
return(0);
|
| 336 |
|
|
|
| 337 |
greg |
2.43 |
sf = 1./wtot; /* weighted average BSDF */
|
| 338 |
greg |
2.13 |
scalecolor(cval, sf);
|
| 339 |
greg |
2.32 |
/* subtract diffuse contribution */
|
| 340 |
|
|
for (i = 3*(diffY > FTINY); i--; )
|
| 341 |
greg |
2.40 |
if ((colval(cval,i) -= colval(cdiff,i)) < 0)
|
| 342 |
|
|
colval(cval,i) = 0;
|
| 343 |
greg |
2.32 |
return(1);
|
| 344 |
greg |
2.13 |
baderror:
|
| 345 |
|
|
objerror(ndp->mp, USER, transSDError(ec));
|
| 346 |
greg |
2.17 |
return(0); /* gratis return */
|
| 347 |
greg |
2.7 |
}
|
| 348 |
|
|
|
| 349 |
greg |
2.5 |
/* Compute source contribution for BSDF (reflected & transmitted) */
|
| 350 |
greg |
2.1 |
static void
|
| 351 |
greg |
2.5 |
dir_bsdf(
|
| 352 |
greg |
2.1 |
COLOR cval, /* returned coefficient */
|
| 353 |
|
|
void *nnp, /* material data */
|
| 354 |
|
|
FVECT ldir, /* light source direction */
|
| 355 |
|
|
double omega /* light source size */
|
| 356 |
|
|
)
|
| 357 |
|
|
{
|
| 358 |
greg |
2.3 |
BSDFDAT *np = (BSDFDAT *)nnp;
|
| 359 |
greg |
2.1 |
double ldot;
|
| 360 |
|
|
double dtmp;
|
| 361 |
|
|
COLOR ctmp;
|
| 362 |
|
|
|
| 363 |
greg |
2.40 |
setcolor(cval, 0, 0, 0);
|
| 364 |
greg |
2.1 |
|
| 365 |
|
|
ldot = DOT(np->pnorm, ldir);
|
| 366 |
|
|
if ((-FTINY <= ldot) & (ldot <= FTINY))
|
| 367 |
|
|
return;
|
| 368 |
|
|
|
| 369 |
greg |
2.9 |
if (ldot > 0 && bright(np->rdiff) > FTINY) {
|
| 370 |
greg |
2.1 |
/*
|
| 371 |
greg |
2.39 |
* Compute diffuse reflected component
|
| 372 |
greg |
2.1 |
*/
|
| 373 |
|
|
copycolor(ctmp, np->rdiff);
|
| 374 |
|
|
dtmp = ldot * omega * (1./PI);
|
| 375 |
|
|
scalecolor(ctmp, dtmp);
|
| 376 |
|
|
addcolor(cval, ctmp);
|
| 377 |
|
|
}
|
| 378 |
greg |
2.9 |
if (ldot < 0 && bright(np->tdiff) > FTINY) {
|
| 379 |
greg |
2.1 |
/*
|
| 380 |
greg |
2.39 |
* Compute diffuse transmission
|
| 381 |
greg |
2.1 |
*/
|
| 382 |
|
|
copycolor(ctmp, np->tdiff);
|
| 383 |
|
|
dtmp = -ldot * omega * (1.0/PI);
|
| 384 |
|
|
scalecolor(ctmp, dtmp);
|
| 385 |
|
|
addcolor(cval, ctmp);
|
| 386 |
|
|
}
|
| 387 |
greg |
2.30 |
if (ambRayInPmap(np->pr))
|
| 388 |
|
|
return; /* specular already in photon map */
|
| 389 |
greg |
2.1 |
/*
|
| 390 |
greg |
2.39 |
* Compute specular scattering coefficient using BSDF
|
| 391 |
greg |
2.1 |
*/
|
| 392 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np))
|
| 393 |
greg |
2.1 |
return;
|
| 394 |
greg |
2.31 |
if (ldot < 0) { /* pattern for specular transmission */
|
| 395 |
greg |
2.1 |
multcolor(ctmp, np->pr->pcol);
|
| 396 |
|
|
dtmp = -ldot * omega;
|
| 397 |
greg |
2.31 |
} else
|
| 398 |
|
|
dtmp = ldot * omega;
|
| 399 |
greg |
2.1 |
scalecolor(ctmp, dtmp);
|
| 400 |
|
|
addcolor(cval, ctmp);
|
| 401 |
|
|
}
|
| 402 |
|
|
|
| 403 |
greg |
2.5 |
/* Compute source contribution for BSDF (reflected only) */
|
| 404 |
|
|
static void
|
| 405 |
|
|
dir_brdf(
|
| 406 |
|
|
COLOR cval, /* returned coefficient */
|
| 407 |
|
|
void *nnp, /* material data */
|
| 408 |
|
|
FVECT ldir, /* light source direction */
|
| 409 |
|
|
double omega /* light source size */
|
| 410 |
|
|
)
|
| 411 |
|
|
{
|
| 412 |
|
|
BSDFDAT *np = (BSDFDAT *)nnp;
|
| 413 |
|
|
double ldot;
|
| 414 |
|
|
double dtmp;
|
| 415 |
|
|
COLOR ctmp, ctmp1, ctmp2;
|
| 416 |
|
|
|
| 417 |
greg |
2.40 |
setcolor(cval, 0, 0, 0);
|
| 418 |
greg |
2.5 |
|
| 419 |
|
|
ldot = DOT(np->pnorm, ldir);
|
| 420 |
|
|
|
| 421 |
|
|
if (ldot <= FTINY)
|
| 422 |
|
|
return;
|
| 423 |
|
|
|
| 424 |
|
|
if (bright(np->rdiff) > FTINY) {
|
| 425 |
|
|
/*
|
| 426 |
greg |
2.39 |
* Compute diffuse reflected component
|
| 427 |
greg |
2.5 |
*/
|
| 428 |
|
|
copycolor(ctmp, np->rdiff);
|
| 429 |
|
|
dtmp = ldot * omega * (1./PI);
|
| 430 |
|
|
scalecolor(ctmp, dtmp);
|
| 431 |
|
|
addcolor(cval, ctmp);
|
| 432 |
|
|
}
|
| 433 |
greg |
2.30 |
if (ambRayInPmap(np->pr))
|
| 434 |
|
|
return; /* specular already in photon map */
|
| 435 |
greg |
2.5 |
/*
|
| 436 |
greg |
2.39 |
* Compute specular reflection coefficient using BSDF
|
| 437 |
greg |
2.5 |
*/
|
| 438 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np))
|
| 439 |
greg |
2.5 |
return;
|
| 440 |
|
|
dtmp = ldot * omega;
|
| 441 |
|
|
scalecolor(ctmp, dtmp);
|
| 442 |
|
|
addcolor(cval, ctmp);
|
| 443 |
|
|
}
|
| 444 |
|
|
|
| 445 |
|
|
/* Compute source contribution for BSDF (transmitted only) */
|
| 446 |
|
|
static void
|
| 447 |
|
|
dir_btdf(
|
| 448 |
|
|
COLOR cval, /* returned coefficient */
|
| 449 |
|
|
void *nnp, /* material data */
|
| 450 |
|
|
FVECT ldir, /* light source direction */
|
| 451 |
|
|
double omega /* light source size */
|
| 452 |
|
|
)
|
| 453 |
|
|
{
|
| 454 |
|
|
BSDFDAT *np = (BSDFDAT *)nnp;
|
| 455 |
|
|
double ldot;
|
| 456 |
|
|
double dtmp;
|
| 457 |
|
|
COLOR ctmp;
|
| 458 |
|
|
|
| 459 |
greg |
2.40 |
setcolor(cval, 0, 0, 0);
|
| 460 |
greg |
2.5 |
|
| 461 |
|
|
ldot = DOT(np->pnorm, ldir);
|
| 462 |
|
|
|
| 463 |
|
|
if (ldot >= -FTINY)
|
| 464 |
|
|
return;
|
| 465 |
|
|
|
| 466 |
|
|
if (bright(np->tdiff) > FTINY) {
|
| 467 |
|
|
/*
|
| 468 |
greg |
2.39 |
* Compute diffuse transmission
|
| 469 |
greg |
2.5 |
*/
|
| 470 |
|
|
copycolor(ctmp, np->tdiff);
|
| 471 |
|
|
dtmp = -ldot * omega * (1.0/PI);
|
| 472 |
|
|
scalecolor(ctmp, dtmp);
|
| 473 |
|
|
addcolor(cval, ctmp);
|
| 474 |
|
|
}
|
| 475 |
greg |
2.30 |
if (ambRayInPmap(np->pr))
|
| 476 |
|
|
return; /* specular already in photon map */
|
| 477 |
greg |
2.5 |
/*
|
| 478 |
greg |
2.39 |
* Compute specular scattering coefficient using BSDF
|
| 479 |
greg |
2.5 |
*/
|
| 480 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np))
|
| 481 |
greg |
2.5 |
return;
|
| 482 |
|
|
/* full pattern on transmission */
|
| 483 |
|
|
multcolor(ctmp, np->pr->pcol);
|
| 484 |
|
|
dtmp = -ldot * omega;
|
| 485 |
|
|
scalecolor(ctmp, dtmp);
|
| 486 |
|
|
addcolor(cval, ctmp);
|
| 487 |
|
|
}
|
| 488 |
|
|
|
| 489 |
greg |
2.1 |
/* Sample separate BSDF component */
|
| 490 |
|
|
static int
|
| 491 |
greg |
2.40 |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
|
| 492 |
greg |
2.1 |
{
|
| 493 |
greg |
2.47 |
const int hasthru = (xmit &&
|
| 494 |
|
|
!(ndp->pr->crtype & (SPECULAR|AMBIENT))
|
| 495 |
|
|
&& bright(ndp->cthru) > FTINY);
|
| 496 |
greg |
2.41 |
int nstarget = 1;
|
| 497 |
|
|
int nsent = 0;
|
| 498 |
|
|
int n;
|
| 499 |
|
|
SDError ec;
|
| 500 |
|
|
SDValue bsv;
|
| 501 |
|
|
double xrand;
|
| 502 |
|
|
FVECT vsmp, vinc;
|
| 503 |
|
|
RAY sr;
|
| 504 |
greg |
2.1 |
/* multiple samples? */
|
| 505 |
|
|
if (specjitter > 1.5) {
|
| 506 |
|
|
nstarget = specjitter*ndp->pr->rweight + .5;
|
| 507 |
greg |
2.14 |
nstarget += !nstarget;
|
| 508 |
greg |
2.1 |
}
|
| 509 |
greg |
2.11 |
/* run through our samples */
|
| 510 |
greg |
2.40 |
for (n = 0; n < nstarget; n++) {
|
| 511 |
greg |
2.15 |
if (nstarget == 1) { /* stratify random variable */
|
| 512 |
greg |
2.11 |
xrand = urand(ilhash(dimlist,ndims)+samplendx);
|
| 513 |
greg |
2.15 |
if (specjitter < 1.)
|
| 514 |
|
|
xrand = .5 + specjitter*(xrand-.5);
|
| 515 |
|
|
} else {
|
| 516 |
greg |
2.40 |
xrand = (n + frandom())/(double)nstarget;
|
| 517 |
greg |
2.15 |
}
|
| 518 |
greg |
2.11 |
SDerrorDetail[0] = '\0'; /* sample direction & coef. */
|
| 519 |
greg |
2.15 |
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
|
| 520 |
greg |
2.40 |
VCOPY(vinc, vsmp); /* to compare after */
|
| 521 |
greg |
2.11 |
ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
|
| 522 |
greg |
2.1 |
if (ec)
|
| 523 |
greg |
2.2 |
objerror(ndp->mp, USER, transSDError(ec));
|
| 524 |
greg |
2.11 |
if (bsv.cieY <= FTINY) /* zero component? */
|
| 525 |
greg |
2.1 |
break;
|
| 526 |
greg |
2.40 |
if (hasthru) { /* check for view ray */
|
| 527 |
|
|
double dx = vinc[0] + vsmp[0];
|
| 528 |
|
|
double dy = vinc[1] + vsmp[1];
|
| 529 |
|
|
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
|
| 530 |
|
|
continue; /* exclude view sample */
|
| 531 |
|
|
}
|
| 532 |
|
|
/* map non-view sample->world */
|
| 533 |
greg |
2.4 |
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
|
| 534 |
greg |
2.1 |
break;
|
| 535 |
|
|
/* spawn a specular ray */
|
| 536 |
|
|
if (nstarget > 1)
|
| 537 |
|
|
bsv.cieY /= (double)nstarget;
|
| 538 |
greg |
2.11 |
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
|
| 539 |
greg |
2.40 |
if (xmit) /* apply pattern on transmit */
|
| 540 |
greg |
2.1 |
multcolor(sr.rcoef, ndp->pr->pcol);
|
| 541 |
|
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
|
| 542 |
greg |
2.48 |
if (!n & (nstarget > 1)) {
|
| 543 |
greg |
2.49 |
n = nstarget; /* avoid infinitue loop */
|
| 544 |
greg |
2.48 |
nstarget = nstarget*sr.rweight/minweight;
|
| 545 |
greg |
2.49 |
if (n == nstarget) break;
|
| 546 |
greg |
2.48 |
n = -1; /* moved target */
|
| 547 |
|
|
}
|
| 548 |
|
|
continue; /* try again */
|
| 549 |
greg |
2.1 |
}
|
| 550 |
greg |
2.40 |
if (xmit && ndp->thick != 0) /* need to offset origin? */
|
| 551 |
greg |
2.5 |
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
|
| 552 |
greg |
2.1 |
rayvalue(&sr); /* send & evaluate sample */
|
| 553 |
|
|
multcolor(sr.rcol, sr.rcoef);
|
| 554 |
|
|
addcolor(ndp->pr->rcol, sr.rcol);
|
| 555 |
greg |
2.40 |
++nsent;
|
| 556 |
greg |
2.1 |
}
|
| 557 |
|
|
return(nsent);
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
/* Sample non-diffuse components of BSDF */
|
| 561 |
|
|
static int
|
| 562 |
|
|
sample_sdf(BSDFDAT *ndp, int sflags)
|
| 563 |
|
|
{
|
| 564 |
greg |
2.46 |
int hasthru = (sflags == SDsampSpT &&
|
| 565 |
greg |
2.47 |
!(ndp->pr->crtype & (SPECULAR|AMBIENT))
|
| 566 |
|
|
&& bright(ndp->cthru) > FTINY);
|
| 567 |
greg |
2.1 |
int n, ntotal = 0;
|
| 568 |
greg |
2.40 |
double b = 0;
|
| 569 |
greg |
2.1 |
SDSpectralDF *dfp;
|
| 570 |
|
|
COLORV *unsc;
|
| 571 |
|
|
|
| 572 |
|
|
if (sflags == SDsampSpT) {
|
| 573 |
greg |
2.39 |
unsc = ndp->tunsamp;
|
| 574 |
greg |
2.22 |
if (ndp->pr->rod > 0)
|
| 575 |
|
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
|
| 576 |
|
|
else
|
| 577 |
|
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
|
| 578 |
greg |
2.1 |
} else /* sflags == SDsampSpR */ {
|
| 579 |
greg |
2.39 |
unsc = ndp->runsamp;
|
| 580 |
greg |
2.31 |
if (ndp->pr->rod > 0)
|
| 581 |
greg |
2.1 |
dfp = ndp->sd->rf;
|
| 582 |
greg |
2.31 |
else
|
| 583 |
greg |
2.1 |
dfp = ndp->sd->rb;
|
| 584 |
|
|
}
|
| 585 |
greg |
2.40 |
setcolor(unsc, 0, 0, 0);
|
| 586 |
greg |
2.1 |
if (dfp == NULL) /* no specular component? */
|
| 587 |
|
|
return(0);
|
| 588 |
greg |
2.40 |
|
| 589 |
|
|
if (hasthru) { /* separate view sample? */
|
| 590 |
|
|
RAY tr;
|
| 591 |
|
|
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
|
| 592 |
|
|
VCOPY(tr.rdir, ndp->pr->rdir);
|
| 593 |
|
|
rayvalue(&tr);
|
| 594 |
|
|
multcolor(tr.rcol, tr.rcoef);
|
| 595 |
|
|
addcolor(ndp->pr->rcol, tr.rcol);
|
| 596 |
greg |
2.56 |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
|
| 597 |
greg |
2.40 |
++ntotal;
|
| 598 |
|
|
b = bright(ndp->cthru);
|
| 599 |
|
|
} else
|
| 600 |
|
|
hasthru = 0;
|
| 601 |
|
|
}
|
| 602 |
greg |
2.43 |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
|
| 603 |
greg |
2.40 |
b = 0;
|
| 604 |
|
|
} else {
|
| 605 |
|
|
FVECT vjit;
|
| 606 |
|
|
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
|
| 607 |
|
|
b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
|
| 608 |
|
|
if (b < 0) b = 0;
|
| 609 |
|
|
}
|
| 610 |
|
|
if (b <= specthresh+FTINY) { /* below sampling threshold? */
|
| 611 |
|
|
if (b > FTINY) { /* XXX no color from BSDF */
|
| 612 |
greg |
2.1 |
if (sflags == SDsampSpT) {
|
| 613 |
greg |
2.39 |
copycolor(unsc, ndp->pr->pcol);
|
| 614 |
greg |
2.40 |
scalecolor(unsc, b);
|
| 615 |
greg |
2.1 |
} else /* no pattern on reflection */
|
| 616 |
greg |
2.40 |
setcolor(unsc, b, b, b);
|
| 617 |
greg |
2.1 |
}
|
| 618 |
greg |
2.40 |
return(ntotal);
|
| 619 |
greg |
2.1 |
}
|
| 620 |
greg |
2.41 |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
|
| 621 |
|
|
ndims += 2;
|
| 622 |
greg |
2.1 |
for (n = dfp->ncomp; n--; ) { /* loop over components */
|
| 623 |
|
|
dimlist[ndims-1] = n + 9438;
|
| 624 |
|
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
|
| 625 |
|
|
}
|
| 626 |
|
|
ndims -= 2;
|
| 627 |
|
|
return(ntotal);
|
| 628 |
|
|
}
|
| 629 |
|
|
|
| 630 |
|
|
/* Color a ray that hit a BSDF material */
|
| 631 |
|
|
int
|
| 632 |
|
|
m_bsdf(OBJREC *m, RAY *r)
|
| 633 |
|
|
{
|
| 634 |
greg |
2.50 |
int hasthick = (m->otype == MAT_BSDF);
|
| 635 |
greg |
2.6 |
int hitfront;
|
| 636 |
greg |
2.1 |
COLOR ctmp;
|
| 637 |
|
|
SDError ec;
|
| 638 |
greg |
2.5 |
FVECT upvec, vtmp;
|
| 639 |
greg |
2.1 |
MFUNC *mf;
|
| 640 |
|
|
BSDFDAT nd;
|
| 641 |
|
|
/* check arguments */
|
| 642 |
greg |
2.50 |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
|
| 643 |
greg |
2.1 |
(m->oargs.nfargs % 3))
|
| 644 |
|
|
objerror(m, USER, "bad # arguments");
|
| 645 |
greg |
2.6 |
/* record surface struck */
|
| 646 |
greg |
2.9 |
hitfront = (r->rod > 0);
|
| 647 |
greg |
2.1 |
/* load cal file */
|
| 648 |
greg |
2.50 |
mf = hasthick ? getfunc(m, 5, 0x1d, 1)
|
| 649 |
|
|
: getfunc(m, 4, 0xe, 1) ;
|
| 650 |
greg |
2.25 |
setfunc(m, r);
|
| 651 |
greg |
2.50 |
nd.thick = 0; /* set thickness */
|
| 652 |
|
|
if (hasthick) {
|
| 653 |
|
|
nd.thick = evalue(mf->ep[0]);
|
| 654 |
|
|
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
|
| 655 |
|
|
nd.thick = 0;
|
| 656 |
|
|
}
|
| 657 |
greg |
2.26 |
/* check backface visibility */
|
| 658 |
|
|
if (!hitfront & !backvis) {
|
| 659 |
|
|
raytrans(r);
|
| 660 |
|
|
return(1);
|
| 661 |
|
|
}
|
| 662 |
greg |
2.5 |
/* check other rays to pass */
|
| 663 |
greg |
2.34 |
if (nd.thick != 0 && (r->crtype & SHADOW ||
|
| 664 |
|
|
!(r->crtype & (SPECULAR|AMBIENT)) ||
|
| 665 |
greg |
2.29 |
(nd.thick > 0) ^ hitfront)) {
|
| 666 |
greg |
2.5 |
raytrans(r); /* hide our proxy */
|
| 667 |
greg |
2.1 |
return(1);
|
| 668 |
|
|
}
|
| 669 |
greg |
2.51 |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
|
| 670 |
|
|
return(1);
|
| 671 |
greg |
2.31 |
nd.mp = m;
|
| 672 |
|
|
nd.pr = r;
|
| 673 |
greg |
2.5 |
/* get BSDF data */
|
| 674 |
greg |
2.50 |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
|
| 675 |
greg |
2.51 |
/* early shadow check #2 */
|
| 676 |
greg |
2.55 |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
|
| 677 |
|
|
SDfreeCache(nd.sd);
|
| 678 |
greg |
2.34 |
return(1);
|
| 679 |
greg |
2.55 |
}
|
| 680 |
greg |
2.1 |
/* diffuse reflectance */
|
| 681 |
greg |
2.6 |
if (hitfront) {
|
| 682 |
greg |
2.31 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
|
| 683 |
|
|
if (m->oargs.nfargs >= 3) {
|
| 684 |
|
|
setcolor(ctmp, m->oargs.farg[0],
|
| 685 |
greg |
2.1 |
m->oargs.farg[1],
|
| 686 |
|
|
m->oargs.farg[2]);
|
| 687 |
greg |
2.31 |
addcolor(nd.rdiff, ctmp);
|
| 688 |
|
|
}
|
| 689 |
greg |
2.1 |
} else {
|
| 690 |
greg |
2.31 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
|
| 691 |
|
|
if (m->oargs.nfargs >= 6) {
|
| 692 |
|
|
setcolor(ctmp, m->oargs.farg[3],
|
| 693 |
greg |
2.1 |
m->oargs.farg[4],
|
| 694 |
|
|
m->oargs.farg[5]);
|
| 695 |
greg |
2.31 |
addcolor(nd.rdiff, ctmp);
|
| 696 |
|
|
}
|
| 697 |
greg |
2.1 |
}
|
| 698 |
|
|
/* diffuse transmittance */
|
| 699 |
greg |
2.31 |
cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
|
| 700 |
|
|
if (m->oargs.nfargs >= 9) {
|
| 701 |
|
|
setcolor(ctmp, m->oargs.farg[6],
|
| 702 |
greg |
2.1 |
m->oargs.farg[7],
|
| 703 |
|
|
m->oargs.farg[8]);
|
| 704 |
greg |
2.31 |
addcolor(nd.tdiff, ctmp);
|
| 705 |
|
|
}
|
| 706 |
greg |
2.1 |
/* get modifiers */
|
| 707 |
|
|
raytexture(r, m->omod);
|
| 708 |
|
|
/* modify diffuse values */
|
| 709 |
|
|
multcolor(nd.rdiff, r->pcol);
|
| 710 |
|
|
multcolor(nd.tdiff, r->pcol);
|
| 711 |
|
|
/* get up vector */
|
| 712 |
greg |
2.50 |
upvec[0] = evalue(mf->ep[hasthick+0]);
|
| 713 |
|
|
upvec[1] = evalue(mf->ep[hasthick+1]);
|
| 714 |
|
|
upvec[2] = evalue(mf->ep[hasthick+2]);
|
| 715 |
greg |
2.1 |
/* return to world coords */
|
| 716 |
greg |
2.21 |
if (mf->fxp != &unitxf) {
|
| 717 |
|
|
multv3(upvec, upvec, mf->fxp->xfm);
|
| 718 |
|
|
nd.thick *= mf->fxp->sca;
|
| 719 |
greg |
2.1 |
}
|
| 720 |
greg |
2.23 |
if (r->rox != NULL) {
|
| 721 |
|
|
multv3(upvec, upvec, r->rox->f.xfm);
|
| 722 |
|
|
nd.thick *= r->rox->f.sca;
|
| 723 |
|
|
}
|
| 724 |
greg |
2.1 |
raynormal(nd.pnorm, r);
|
| 725 |
|
|
/* compute local BSDF xform */
|
| 726 |
|
|
ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
|
| 727 |
|
|
if (!ec) {
|
| 728 |
greg |
2.4 |
nd.vray[0] = -r->rdir[0];
|
| 729 |
|
|
nd.vray[1] = -r->rdir[1];
|
| 730 |
|
|
nd.vray[2] = -r->rdir[2];
|
| 731 |
|
|
ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
|
| 732 |
greg |
2.20 |
}
|
| 733 |
greg |
2.19 |
if (ec) {
|
| 734 |
|
|
objerror(m, WARNING, "Illegal orientation vector");
|
| 735 |
greg |
2.55 |
SDfreeCache(nd.sd);
|
| 736 |
greg |
2.19 |
return(1);
|
| 737 |
greg |
2.1 |
}
|
| 738 |
greg |
2.50 |
setcolor(nd.cthru, 0, 0, 0); /* consider through component */
|
| 739 |
greg |
2.61 |
setcolor(nd.cthru_surr, 0, 0, 0);
|
| 740 |
greg |
2.52 |
if (m->otype == MAT_ABSDF) {
|
| 741 |
greg |
2.50 |
compute_through(&nd);
|
| 742 |
|
|
if (r->crtype & SHADOW) {
|
| 743 |
|
|
RAY tr; /* attempt to pass shadow ray */
|
| 744 |
greg |
2.55 |
SDfreeCache(nd.sd);
|
| 745 |
greg |
2.50 |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
|
| 746 |
|
|
return(1); /* no through component */
|
| 747 |
|
|
VCOPY(tr.rdir, r->rdir);
|
| 748 |
|
|
rayvalue(&tr); /* transmit with scaling */
|
| 749 |
|
|
multcolor(tr.rcol, tr.rcoef);
|
| 750 |
|
|
copycolor(r->rcol, tr.rcol);
|
| 751 |
|
|
return(1); /* we're done */
|
| 752 |
|
|
}
|
| 753 |
greg |
2.34 |
}
|
| 754 |
|
|
ec = SDinvXform(nd.fromloc, nd.toloc);
|
| 755 |
|
|
if (!ec) /* determine BSDF resolution */
|
| 756 |
|
|
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
|
| 757 |
|
|
SDqueryMin+SDqueryMax, nd.sd);
|
| 758 |
greg |
2.20 |
if (ec)
|
| 759 |
|
|
objerror(m, USER, transSDError(ec));
|
| 760 |
|
|
|
| 761 |
greg |
2.9 |
nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
|
| 762 |
|
|
nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
|
| 763 |
greg |
2.6 |
if (!hitfront) { /* perturb normal towards hit */
|
| 764 |
greg |
2.1 |
nd.pnorm[0] = -nd.pnorm[0];
|
| 765 |
|
|
nd.pnorm[1] = -nd.pnorm[1];
|
| 766 |
|
|
nd.pnorm[2] = -nd.pnorm[2];
|
| 767 |
|
|
}
|
| 768 |
|
|
/* sample reflection */
|
| 769 |
|
|
sample_sdf(&nd, SDsampSpR);
|
| 770 |
|
|
/* sample transmission */
|
| 771 |
|
|
sample_sdf(&nd, SDsampSpT);
|
| 772 |
|
|
/* compute indirect diffuse */
|
| 773 |
greg |
2.39 |
copycolor(ctmp, nd.rdiff);
|
| 774 |
|
|
addcolor(ctmp, nd.runsamp);
|
| 775 |
|
|
if (bright(ctmp) > FTINY) { /* ambient from reflection */
|
| 776 |
greg |
2.6 |
if (!hitfront)
|
| 777 |
greg |
2.1 |
flipsurface(r);
|
| 778 |
|
|
multambient(ctmp, r, nd.pnorm);
|
| 779 |
|
|
addcolor(r->rcol, ctmp);
|
| 780 |
greg |
2.6 |
if (!hitfront)
|
| 781 |
greg |
2.1 |
flipsurface(r);
|
| 782 |
|
|
}
|
| 783 |
greg |
2.39 |
copycolor(ctmp, nd.tdiff);
|
| 784 |
|
|
addcolor(ctmp, nd.tunsamp);
|
| 785 |
|
|
if (bright(ctmp) > FTINY) { /* ambient from other side */
|
| 786 |
greg |
2.1 |
FVECT bnorm;
|
| 787 |
greg |
2.6 |
if (hitfront)
|
| 788 |
greg |
2.1 |
flipsurface(r);
|
| 789 |
|
|
bnorm[0] = -nd.pnorm[0];
|
| 790 |
|
|
bnorm[1] = -nd.pnorm[1];
|
| 791 |
|
|
bnorm[2] = -nd.pnorm[2];
|
| 792 |
greg |
2.9 |
if (nd.thick != 0) { /* proxy with offset? */
|
| 793 |
greg |
2.5 |
VCOPY(vtmp, r->rop);
|
| 794 |
greg |
2.18 |
VSUM(r->rop, vtmp, r->ron, nd.thick);
|
| 795 |
greg |
2.5 |
multambient(ctmp, r, bnorm);
|
| 796 |
|
|
VCOPY(r->rop, vtmp);
|
| 797 |
|
|
} else
|
| 798 |
|
|
multambient(ctmp, r, bnorm);
|
| 799 |
greg |
2.1 |
addcolor(r->rcol, ctmp);
|
| 800 |
greg |
2.6 |
if (hitfront)
|
| 801 |
greg |
2.1 |
flipsurface(r);
|
| 802 |
|
|
}
|
| 803 |
|
|
/* add direct component */
|
| 804 |
greg |
2.22 |
if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
|
| 805 |
|
|
(nd.sd->tb == NULL)) {
|
| 806 |
greg |
2.5 |
direct(r, dir_brdf, &nd); /* reflection only */
|
| 807 |
greg |
2.9 |
} else if (nd.thick == 0) {
|
| 808 |
greg |
2.5 |
direct(r, dir_bsdf, &nd); /* thin surface scattering */
|
| 809 |
|
|
} else {
|
| 810 |
|
|
direct(r, dir_brdf, &nd); /* reflection first */
|
| 811 |
|
|
VCOPY(vtmp, r->rop); /* offset for transmitted */
|
| 812 |
|
|
VSUM(r->rop, vtmp, r->ron, -nd.thick);
|
| 813 |
greg |
2.6 |
direct(r, dir_btdf, &nd); /* separate transmission */
|
| 814 |
greg |
2.5 |
VCOPY(r->rop, vtmp);
|
| 815 |
|
|
}
|
| 816 |
greg |
2.1 |
/* clean up */
|
| 817 |
|
|
SDfreeCache(nd.sd);
|
| 818 |
|
|
return(1);
|
| 819 |
|
|
}
|