| 1 | greg | 2.1 | #ifndef lint | 
| 2 | greg | 2.26 | static const char RCSid[] = "$Id: m_bsdf.c,v 2.25 2014/01/22 16:39:57 greg Exp $"; | 
| 3 | greg | 2.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | *  Shading for materials with BSDFs taken from XML data files | 
| 6 |  |  | */ | 
| 7 |  |  |  | 
| 8 |  |  | #include "copyright.h" | 
| 9 |  |  |  | 
| 10 |  |  | #include  "ray.h" | 
| 11 |  |  | #include  "ambient.h" | 
| 12 |  |  | #include  "source.h" | 
| 13 |  |  | #include  "func.h" | 
| 14 |  |  | #include  "bsdf.h" | 
| 15 |  |  | #include  "random.h" | 
| 16 |  |  |  | 
| 17 |  |  | /* | 
| 18 |  |  | *      Arguments to this material include optional diffuse colors. | 
| 19 |  |  | *  String arguments include the BSDF and function files. | 
| 20 | greg | 2.5 | *      A non-zero thickness causes the strange but useful behavior | 
| 21 |  |  | *  of translating transmitted rays this distance beneath the surface | 
| 22 |  |  | *  (opposite the surface normal) to bypass any intervening geometry. | 
| 23 |  |  | *  Translation only affects scattered, non-source-directed samples. | 
| 24 |  |  | *  A non-zero thickness has the further side-effect that an unscattered | 
| 25 | greg | 2.1 | *  (view) ray will pass right through our material if it has any | 
| 26 | greg | 2.5 | *  non-diffuse transmission, making the BSDF surface invisible.  This | 
| 27 |  |  | *  shows the proxied geometry instead. Thickness has the further | 
| 28 |  |  | *  effect of turning off reflection on the hidden side so that rays | 
| 29 |  |  | *  heading in the opposite direction pass unimpeded through the BSDF | 
| 30 |  |  | *  surface.  A paired surface may be placed on the opposide side of | 
| 31 |  |  | *  the detail geometry, less than this thickness away, if a two-way | 
| 32 |  |  | *  proxy is desired.  Note that the sign of the thickness is important. | 
| 33 |  |  | *  A positive thickness hides geometry behind the BSDF surface and uses | 
| 34 |  |  | *  front reflectance and transmission properties.  A negative thickness | 
| 35 |  |  | *  hides geometry in front of the surface when rays hit from behind, | 
| 36 |  |  | *  and applies only the transmission and backside reflectance properties. | 
| 37 |  |  | *  Reflection is ignored on the hidden side, as those rays pass through. | 
| 38 | greg | 2.1 | *      The "up" vector for the BSDF is given by three variables, defined | 
| 39 |  |  | *  (along with the thickness) by the named function file, or '.' if none. | 
| 40 |  |  | *  Together with the surface normal, this defines the local coordinate | 
| 41 |  |  | *  system for the BSDF. | 
| 42 |  |  | *      We do not reorient the surface, so if the BSDF has no back-side | 
| 43 | greg | 2.5 | *  reflectance and none is given in the real arguments, a BSDF surface | 
| 44 |  |  | *  with zero thickness will appear black when viewed from behind | 
| 45 |  |  | *  unless backface visibility is off. | 
| 46 |  |  | *      The diffuse arguments are added to components in the BSDF file, | 
| 47 | greg | 2.1 | *  not multiplied.  However, patterns affect this material as a multiplier | 
| 48 |  |  | *  on everything except non-diffuse reflection. | 
| 49 |  |  | * | 
| 50 |  |  | *  Arguments for MAT_BSDF are: | 
| 51 |  |  | *      6+      thick   BSDFfile        ux uy uz        funcfile        transform | 
| 52 |  |  | *      0 | 
| 53 | greg | 2.8 | *      0|3|6|9 rdf     gdf     bdf | 
| 54 | greg | 2.1 | *              rdb     gdb     bdb | 
| 55 |  |  | *              rdt     gdt     bdt | 
| 56 |  |  | */ | 
| 57 |  |  |  | 
| 58 | greg | 2.4 | /* | 
| 59 |  |  | * Note that our reverse ray-tracing process means that the positions | 
| 60 |  |  | * of incoming and outgoing vectors may be reversed in our calls | 
| 61 |  |  | * to the BSDF library.  This is fine, since the bidirectional nature | 
| 62 |  |  | * of the BSDF (that's what the 'B' stands for) means it all works out. | 
| 63 |  |  | */ | 
| 64 |  |  |  | 
| 65 | greg | 2.1 | typedef struct { | 
| 66 |  |  | OBJREC  *mp;            /* material pointer */ | 
| 67 |  |  | RAY     *pr;            /* intersected ray */ | 
| 68 |  |  | FVECT   pnorm;          /* perturbed surface normal */ | 
| 69 | greg | 2.4 | FVECT   vray;           /* local outgoing (return) vector */ | 
| 70 | greg | 2.9 | double  sr_vpsa[2];     /* sqrt of BSDF projected solid angle extrema */ | 
| 71 | greg | 2.1 | RREAL   toloc[3][3];    /* world to local BSDF coords */ | 
| 72 |  |  | RREAL   fromloc[3][3];  /* local BSDF coords to world */ | 
| 73 |  |  | double  thick;          /* surface thickness */ | 
| 74 |  |  | SDData  *sd;            /* loaded BSDF data */ | 
| 75 |  |  | COLOR   runsamp;        /* BSDF hemispherical reflection */ | 
| 76 |  |  | COLOR   rdiff;          /* added diffuse reflection */ | 
| 77 |  |  | COLOR   tunsamp;        /* BSDF hemispherical transmission */ | 
| 78 |  |  | COLOR   tdiff;          /* added diffuse transmission */ | 
| 79 |  |  | }  BSDFDAT;             /* BSDF material data */ | 
| 80 |  |  |  | 
| 81 |  |  | #define cvt_sdcolor(cv, svp)    ccy2rgb(&(svp)->spec, (svp)->cieY, cv) | 
| 82 |  |  |  | 
| 83 | greg | 2.4 | /* Jitter ray sample according to projected solid angle and specjitter */ | 
| 84 |  |  | static void | 
| 85 | greg | 2.15 | bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) | 
| 86 | greg | 2.4 | { | 
| 87 |  |  | VCOPY(vres, ndp->vray); | 
| 88 |  |  | if (specjitter < 1.) | 
| 89 |  |  | sr_psa *= specjitter; | 
| 90 |  |  | if (sr_psa <= FTINY) | 
| 91 |  |  | return; | 
| 92 |  |  | vres[0] += sr_psa*(.5 - frandom()); | 
| 93 |  |  | vres[1] += sr_psa*(.5 - frandom()); | 
| 94 |  |  | normalize(vres); | 
| 95 |  |  | } | 
| 96 |  |  |  | 
| 97 | greg | 2.7 | /* Evaluate BSDF for direct component, returning true if OK to proceed */ | 
| 98 |  |  | static int | 
| 99 | greg | 2.13 | direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) | 
| 100 | greg | 2.7 | { | 
| 101 | greg | 2.15 | int     nsamp, ok = 0; | 
| 102 | greg | 2.13 | FVECT   vsrc, vsmp, vjit; | 
| 103 |  |  | double  tomega; | 
| 104 | greg | 2.15 | double  sf, tsr, sd[2]; | 
| 105 | greg | 2.13 | COLOR   csmp; | 
| 106 | greg | 2.7 | SDValue sv; | 
| 107 |  |  | SDError ec; | 
| 108 | greg | 2.13 | int     i; | 
| 109 | greg | 2.7 | /* transform source direction */ | 
| 110 |  |  | if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) | 
| 111 |  |  | return(0); | 
| 112 | greg | 2.16 | /* assign number of samples */ | 
| 113 |  |  | ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); | 
| 114 |  |  | if (ec) | 
| 115 |  |  | goto baderror; | 
| 116 | greg | 2.13 | /* check indirect over-counting */ | 
| 117 |  |  | if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) | 
| 118 |  |  | && vsrc[2] > 0 ^ ndp->vray[2] > 0) { | 
| 119 |  |  | double  dx = vsrc[0] + ndp->vray[0]; | 
| 120 |  |  | double  dy = vsrc[1] + ndp->vray[1]; | 
| 121 | greg | 2.16 | if (dx*dx + dy*dy <= omega+tomega) | 
| 122 | greg | 2.7 | return(0); | 
| 123 |  |  | } | 
| 124 | greg | 2.15 | sf = specjitter * ndp->pr->rweight; | 
| 125 | greg | 2.24 | if (tomega <= .0) | 
| 126 |  |  | nsamp = 1; | 
| 127 |  |  | else if (25.*tomega <= omega) | 
| 128 | greg | 2.15 | nsamp = 100.*sf + .5; | 
| 129 |  |  | else | 
| 130 |  |  | nsamp = 4.*sf*omega/tomega + .5; | 
| 131 |  |  | nsamp += !nsamp; | 
| 132 |  |  | setcolor(cval, .0, .0, .0);     /* sample our source area */ | 
| 133 | greg | 2.13 | sf = sqrt(omega); | 
| 134 | greg | 2.15 | tsr = sqrt(tomega); | 
| 135 | greg | 2.13 | for (i = nsamp; i--; ) { | 
| 136 |  |  | VCOPY(vsmp, vsrc);      /* jitter query directions */ | 
| 137 |  |  | if (nsamp > 1) { | 
| 138 |  |  | multisamp(sd, 2, (i + frandom())/(double)nsamp); | 
| 139 |  |  | vsmp[0] += (sd[0] - .5)*sf; | 
| 140 |  |  | vsmp[1] += (sd[1] - .5)*sf; | 
| 141 |  |  | if (normalize(vsmp) == 0) { | 
| 142 |  |  | --nsamp; | 
| 143 |  |  | continue; | 
| 144 |  |  | } | 
| 145 |  |  | } | 
| 146 | greg | 2.15 | bsdf_jitter(vjit, ndp, tsr); | 
| 147 | greg | 2.13 | /* compute BSDF */ | 
| 148 |  |  | ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); | 
| 149 |  |  | if (ec) | 
| 150 |  |  | goto baderror; | 
| 151 |  |  | if (sv.cieY <= FTINY)   /* worth using? */ | 
| 152 |  |  | continue; | 
| 153 |  |  | cvt_sdcolor(csmp, &sv); | 
| 154 |  |  | addcolor(cval, csmp);   /* average it in */ | 
| 155 |  |  | ++ok; | 
| 156 |  |  | } | 
| 157 |  |  | sf = 1./(double)nsamp; | 
| 158 |  |  | scalecolor(cval, sf); | 
| 159 |  |  | return(ok); | 
| 160 |  |  | baderror: | 
| 161 |  |  | objerror(ndp->mp, USER, transSDError(ec)); | 
| 162 | greg | 2.17 | return(0);                      /* gratis return */ | 
| 163 | greg | 2.7 | } | 
| 164 |  |  |  | 
| 165 | greg | 2.5 | /* Compute source contribution for BSDF (reflected & transmitted) */ | 
| 166 | greg | 2.1 | static void | 
| 167 | greg | 2.5 | dir_bsdf( | 
| 168 | greg | 2.1 | COLOR  cval,                    /* returned coefficient */ | 
| 169 |  |  | void  *nnp,                     /* material data */ | 
| 170 |  |  | FVECT  ldir,                    /* light source direction */ | 
| 171 |  |  | double  omega                   /* light source size */ | 
| 172 |  |  | ) | 
| 173 |  |  | { | 
| 174 | greg | 2.3 | BSDFDAT         *np = (BSDFDAT *)nnp; | 
| 175 | greg | 2.1 | double          ldot; | 
| 176 |  |  | double          dtmp; | 
| 177 |  |  | COLOR           ctmp; | 
| 178 |  |  |  | 
| 179 |  |  | setcolor(cval, .0, .0, .0); | 
| 180 |  |  |  | 
| 181 |  |  | ldot = DOT(np->pnorm, ldir); | 
| 182 |  |  | if ((-FTINY <= ldot) & (ldot <= FTINY)) | 
| 183 |  |  | return; | 
| 184 |  |  |  | 
| 185 | greg | 2.9 | if (ldot > 0 && bright(np->rdiff) > FTINY) { | 
| 186 | greg | 2.1 | /* | 
| 187 |  |  | *  Compute added diffuse reflected component. | 
| 188 |  |  | */ | 
| 189 |  |  | copycolor(ctmp, np->rdiff); | 
| 190 |  |  | dtmp = ldot * omega * (1./PI); | 
| 191 |  |  | scalecolor(ctmp, dtmp); | 
| 192 |  |  | addcolor(cval, ctmp); | 
| 193 |  |  | } | 
| 194 | greg | 2.9 | if (ldot < 0 && bright(np->tdiff) > FTINY) { | 
| 195 | greg | 2.1 | /* | 
| 196 |  |  | *  Compute added diffuse transmission. | 
| 197 |  |  | */ | 
| 198 |  |  | copycolor(ctmp, np->tdiff); | 
| 199 |  |  | dtmp = -ldot * omega * (1.0/PI); | 
| 200 |  |  | scalecolor(ctmp, dtmp); | 
| 201 |  |  | addcolor(cval, ctmp); | 
| 202 |  |  | } | 
| 203 |  |  | /* | 
| 204 |  |  | *  Compute scattering coefficient using BSDF. | 
| 205 |  |  | */ | 
| 206 | greg | 2.13 | if (!direct_bsdf_OK(ctmp, ldir, omega, np)) | 
| 207 | greg | 2.1 | return; | 
| 208 | greg | 2.9 | if (ldot > 0) {         /* pattern only diffuse reflection */ | 
| 209 | greg | 2.1 | COLOR   ctmp1, ctmp2; | 
| 210 | greg | 2.9 | dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY | 
| 211 | greg | 2.1 | : np->sd->rLambBack.cieY; | 
| 212 | greg | 2.7 | /* diffuse fraction */ | 
| 213 |  |  | dtmp /= PI * bright(ctmp); | 
| 214 | greg | 2.1 | copycolor(ctmp2, np->pr->pcol); | 
| 215 |  |  | scalecolor(ctmp2, dtmp); | 
| 216 |  |  | setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); | 
| 217 |  |  | addcolor(ctmp1, ctmp2); | 
| 218 | greg | 2.3 | multcolor(ctmp, ctmp1); /* apply derated pattern */ | 
| 219 | greg | 2.1 | dtmp = ldot * omega; | 
| 220 |  |  | } else {                        /* full pattern on transmission */ | 
| 221 |  |  | multcolor(ctmp, np->pr->pcol); | 
| 222 |  |  | dtmp = -ldot * omega; | 
| 223 |  |  | } | 
| 224 |  |  | scalecolor(ctmp, dtmp); | 
| 225 |  |  | addcolor(cval, ctmp); | 
| 226 |  |  | } | 
| 227 |  |  |  | 
| 228 | greg | 2.5 | /* Compute source contribution for BSDF (reflected only) */ | 
| 229 |  |  | static void | 
| 230 |  |  | dir_brdf( | 
| 231 |  |  | COLOR  cval,                    /* returned coefficient */ | 
| 232 |  |  | void  *nnp,                     /* material data */ | 
| 233 |  |  | FVECT  ldir,                    /* light source direction */ | 
| 234 |  |  | double  omega                   /* light source size */ | 
| 235 |  |  | ) | 
| 236 |  |  | { | 
| 237 |  |  | BSDFDAT         *np = (BSDFDAT *)nnp; | 
| 238 |  |  | double          ldot; | 
| 239 |  |  | double          dtmp; | 
| 240 |  |  | COLOR           ctmp, ctmp1, ctmp2; | 
| 241 |  |  |  | 
| 242 |  |  | setcolor(cval, .0, .0, .0); | 
| 243 |  |  |  | 
| 244 |  |  | ldot = DOT(np->pnorm, ldir); | 
| 245 |  |  |  | 
| 246 |  |  | if (ldot <= FTINY) | 
| 247 |  |  | return; | 
| 248 |  |  |  | 
| 249 |  |  | if (bright(np->rdiff) > FTINY) { | 
| 250 |  |  | /* | 
| 251 |  |  | *  Compute added diffuse reflected component. | 
| 252 |  |  | */ | 
| 253 |  |  | copycolor(ctmp, np->rdiff); | 
| 254 |  |  | dtmp = ldot * omega * (1./PI); | 
| 255 |  |  | scalecolor(ctmp, dtmp); | 
| 256 |  |  | addcolor(cval, ctmp); | 
| 257 |  |  | } | 
| 258 |  |  | /* | 
| 259 |  |  | *  Compute reflection coefficient using BSDF. | 
| 260 |  |  | */ | 
| 261 | greg | 2.13 | if (!direct_bsdf_OK(ctmp, ldir, omega, np)) | 
| 262 | greg | 2.5 | return; | 
| 263 |  |  | /* pattern only diffuse reflection */ | 
| 264 | greg | 2.9 | dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY | 
| 265 | greg | 2.5 | : np->sd->rLambBack.cieY; | 
| 266 | greg | 2.7 | dtmp /= PI * bright(ctmp);      /* diffuse fraction */ | 
| 267 | greg | 2.5 | copycolor(ctmp2, np->pr->pcol); | 
| 268 |  |  | scalecolor(ctmp2, dtmp); | 
| 269 |  |  | setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); | 
| 270 |  |  | addcolor(ctmp1, ctmp2); | 
| 271 |  |  | multcolor(ctmp, ctmp1);         /* apply derated pattern */ | 
| 272 |  |  | dtmp = ldot * omega; | 
| 273 |  |  | scalecolor(ctmp, dtmp); | 
| 274 |  |  | addcolor(cval, ctmp); | 
| 275 |  |  | } | 
| 276 |  |  |  | 
| 277 |  |  | /* Compute source contribution for BSDF (transmitted only) */ | 
| 278 |  |  | static void | 
| 279 |  |  | dir_btdf( | 
| 280 |  |  | COLOR  cval,                    /* returned coefficient */ | 
| 281 |  |  | void  *nnp,                     /* material data */ | 
| 282 |  |  | FVECT  ldir,                    /* light source direction */ | 
| 283 |  |  | double  omega                   /* light source size */ | 
| 284 |  |  | ) | 
| 285 |  |  | { | 
| 286 |  |  | BSDFDAT         *np = (BSDFDAT *)nnp; | 
| 287 |  |  | double          ldot; | 
| 288 |  |  | double          dtmp; | 
| 289 |  |  | COLOR           ctmp; | 
| 290 |  |  |  | 
| 291 |  |  | setcolor(cval, .0, .0, .0); | 
| 292 |  |  |  | 
| 293 |  |  | ldot = DOT(np->pnorm, ldir); | 
| 294 |  |  |  | 
| 295 |  |  | if (ldot >= -FTINY) | 
| 296 |  |  | return; | 
| 297 |  |  |  | 
| 298 |  |  | if (bright(np->tdiff) > FTINY) { | 
| 299 |  |  | /* | 
| 300 |  |  | *  Compute added diffuse transmission. | 
| 301 |  |  | */ | 
| 302 |  |  | copycolor(ctmp, np->tdiff); | 
| 303 |  |  | dtmp = -ldot * omega * (1.0/PI); | 
| 304 |  |  | scalecolor(ctmp, dtmp); | 
| 305 |  |  | addcolor(cval, ctmp); | 
| 306 |  |  | } | 
| 307 |  |  | /* | 
| 308 |  |  | *  Compute scattering coefficient using BSDF. | 
| 309 |  |  | */ | 
| 310 | greg | 2.13 | if (!direct_bsdf_OK(ctmp, ldir, omega, np)) | 
| 311 | greg | 2.5 | return; | 
| 312 |  |  | /* full pattern on transmission */ | 
| 313 |  |  | multcolor(ctmp, np->pr->pcol); | 
| 314 |  |  | dtmp = -ldot * omega; | 
| 315 |  |  | scalecolor(ctmp, dtmp); | 
| 316 |  |  | addcolor(cval, ctmp); | 
| 317 |  |  | } | 
| 318 |  |  |  | 
| 319 | greg | 2.1 | /* Sample separate BSDF component */ | 
| 320 |  |  | static int | 
| 321 |  |  | sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat) | 
| 322 |  |  | { | 
| 323 |  |  | int     nstarget = 1; | 
| 324 | greg | 2.11 | int     nsent; | 
| 325 | greg | 2.1 | SDError ec; | 
| 326 |  |  | SDValue bsv; | 
| 327 | greg | 2.11 | double  xrand; | 
| 328 | greg | 2.10 | FVECT   vsmp; | 
| 329 | greg | 2.1 | RAY     sr; | 
| 330 |  |  | /* multiple samples? */ | 
| 331 |  |  | if (specjitter > 1.5) { | 
| 332 |  |  | nstarget = specjitter*ndp->pr->rweight + .5; | 
| 333 | greg | 2.14 | nstarget += !nstarget; | 
| 334 | greg | 2.1 | } | 
| 335 | greg | 2.11 | /* run through our samples */ | 
| 336 |  |  | for (nsent = 0; nsent < nstarget; nsent++) { | 
| 337 | greg | 2.15 | if (nstarget == 1) {            /* stratify random variable */ | 
| 338 | greg | 2.11 | xrand = urand(ilhash(dimlist,ndims)+samplendx); | 
| 339 | greg | 2.15 | if (specjitter < 1.) | 
| 340 |  |  | xrand = .5 + specjitter*(xrand-.5); | 
| 341 |  |  | } else { | 
| 342 | greg | 2.11 | xrand = (nsent + frandom())/(double)nstarget; | 
| 343 | greg | 2.15 | } | 
| 344 | greg | 2.11 | SDerrorDetail[0] = '\0';        /* sample direction & coef. */ | 
| 345 | greg | 2.15 | bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); | 
| 346 | greg | 2.11 | ec = SDsampComponent(&bsv, vsmp, xrand, dcp); | 
| 347 | greg | 2.1 | if (ec) | 
| 348 | greg | 2.2 | objerror(ndp->mp, USER, transSDError(ec)); | 
| 349 | greg | 2.11 | if (bsv.cieY <= FTINY)          /* zero component? */ | 
| 350 | greg | 2.1 | break; | 
| 351 |  |  | /* map vector to world */ | 
| 352 | greg | 2.4 | if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) | 
| 353 | greg | 2.1 | break; | 
| 354 |  |  | /* spawn a specular ray */ | 
| 355 |  |  | if (nstarget > 1) | 
| 356 |  |  | bsv.cieY /= (double)nstarget; | 
| 357 | greg | 2.11 | cvt_sdcolor(sr.rcoef, &bsv);    /* use sample color */ | 
| 358 |  |  | if (usepat)                     /* apply pattern? */ | 
| 359 | greg | 2.1 | multcolor(sr.rcoef, ndp->pr->pcol); | 
| 360 |  |  | if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { | 
| 361 | greg | 2.11 | if (maxdepth > 0) | 
| 362 | greg | 2.1 | break; | 
| 363 | greg | 2.11 | continue;               /* Russian roulette victim */ | 
| 364 | greg | 2.1 | } | 
| 365 | greg | 2.5 | /* need to offset origin? */ | 
| 366 | greg | 2.9 | if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0) | 
| 367 | greg | 2.5 | VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); | 
| 368 | greg | 2.1 | rayvalue(&sr);                  /* send & evaluate sample */ | 
| 369 |  |  | multcolor(sr.rcol, sr.rcoef); | 
| 370 |  |  | addcolor(ndp->pr->rcol, sr.rcol); | 
| 371 |  |  | } | 
| 372 |  |  | return(nsent); | 
| 373 |  |  | } | 
| 374 |  |  |  | 
| 375 |  |  | /* Sample non-diffuse components of BSDF */ | 
| 376 |  |  | static int | 
| 377 |  |  | sample_sdf(BSDFDAT *ndp, int sflags) | 
| 378 |  |  | { | 
| 379 |  |  | int             n, ntotal = 0; | 
| 380 |  |  | SDSpectralDF    *dfp; | 
| 381 |  |  | COLORV          *unsc; | 
| 382 |  |  |  | 
| 383 |  |  | if (sflags == SDsampSpT) { | 
| 384 |  |  | unsc = ndp->tunsamp; | 
| 385 | greg | 2.22 | if (ndp->pr->rod > 0) | 
| 386 |  |  | dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; | 
| 387 |  |  | else | 
| 388 |  |  | dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; | 
| 389 | greg | 2.1 | cvt_sdcolor(unsc, &ndp->sd->tLamb); | 
| 390 |  |  | } else /* sflags == SDsampSpR */ { | 
| 391 |  |  | unsc = ndp->runsamp; | 
| 392 | greg | 2.9 | if (ndp->pr->rod > 0) { | 
| 393 | greg | 2.1 | dfp = ndp->sd->rf; | 
| 394 |  |  | cvt_sdcolor(unsc, &ndp->sd->rLambFront); | 
| 395 |  |  | } else { | 
| 396 |  |  | dfp = ndp->sd->rb; | 
| 397 |  |  | cvt_sdcolor(unsc, &ndp->sd->rLambBack); | 
| 398 |  |  | } | 
| 399 |  |  | } | 
| 400 |  |  | multcolor(unsc, ndp->pr->pcol); | 
| 401 |  |  | if (dfp == NULL)                        /* no specular component? */ | 
| 402 |  |  | return(0); | 
| 403 |  |  | /* below sampling threshold? */ | 
| 404 |  |  | if (dfp->maxHemi <= specthresh+FTINY) { | 
| 405 | greg | 2.3 | if (dfp->maxHemi > FTINY) {     /* XXX no color from BSDF */ | 
| 406 | greg | 2.4 | FVECT   vjit; | 
| 407 |  |  | double  d; | 
| 408 | greg | 2.1 | COLOR   ctmp; | 
| 409 | greg | 2.15 | bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); | 
| 410 | greg | 2.4 | d = SDdirectHemi(vjit, sflags, ndp->sd); | 
| 411 | greg | 2.1 | if (sflags == SDsampSpT) { | 
| 412 |  |  | copycolor(ctmp, ndp->pr->pcol); | 
| 413 |  |  | scalecolor(ctmp, d); | 
| 414 |  |  | } else                  /* no pattern on reflection */ | 
| 415 |  |  | setcolor(ctmp, d, d, d); | 
| 416 |  |  | addcolor(unsc, ctmp); | 
| 417 |  |  | } | 
| 418 |  |  | return(0); | 
| 419 |  |  | } | 
| 420 |  |  | /* else need to sample */ | 
| 421 |  |  | dimlist[ndims++] = (int)(size_t)ndp->mp; | 
| 422 |  |  | ndims++; | 
| 423 |  |  | for (n = dfp->ncomp; n--; ) {           /* loop over components */ | 
| 424 |  |  | dimlist[ndims-1] = n + 9438; | 
| 425 |  |  | ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); | 
| 426 |  |  | } | 
| 427 |  |  | ndims -= 2; | 
| 428 |  |  | return(ntotal); | 
| 429 |  |  | } | 
| 430 |  |  |  | 
| 431 |  |  | /* Color a ray that hit a BSDF material */ | 
| 432 |  |  | int | 
| 433 |  |  | m_bsdf(OBJREC *m, RAY *r) | 
| 434 |  |  | { | 
| 435 | greg | 2.6 | int     hitfront; | 
| 436 | greg | 2.1 | COLOR   ctmp; | 
| 437 |  |  | SDError ec; | 
| 438 | greg | 2.5 | FVECT   upvec, vtmp; | 
| 439 | greg | 2.1 | MFUNC   *mf; | 
| 440 |  |  | BSDFDAT nd; | 
| 441 |  |  | /* check arguments */ | 
| 442 |  |  | if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) | | 
| 443 |  |  | (m->oargs.nfargs % 3)) | 
| 444 |  |  | objerror(m, USER, "bad # arguments"); | 
| 445 | greg | 2.6 | /* record surface struck */ | 
| 446 | greg | 2.9 | hitfront = (r->rod > 0); | 
| 447 | greg | 2.1 | /* load cal file */ | 
| 448 |  |  | mf = getfunc(m, 5, 0x1d, 1); | 
| 449 | greg | 2.25 | setfunc(m, r); | 
| 450 | greg | 2.1 | /* get thickness */ | 
| 451 |  |  | nd.thick = evalue(mf->ep[0]); | 
| 452 | greg | 2.5 | if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) | 
| 453 | greg | 2.1 | nd.thick = .0; | 
| 454 |  |  | /* check shadow */ | 
| 455 |  |  | if (r->crtype & SHADOW) { | 
| 456 | greg | 2.9 | if (nd.thick != 0) | 
| 457 | greg | 2.3 | raytrans(r);            /* pass-through */ | 
| 458 | greg | 2.5 | return(1);                      /* or shadow */ | 
| 459 | greg | 2.1 | } | 
| 460 | greg | 2.26 | /* check backface visibility */ | 
| 461 |  |  | if (!hitfront & !backvis) { | 
| 462 |  |  | raytrans(r); | 
| 463 |  |  | return(1); | 
| 464 |  |  | } | 
| 465 | greg | 2.5 | /* check other rays to pass */ | 
| 466 | greg | 2.9 | if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) || | 
| 467 |  |  | nd.thick > 0 ^ hitfront)) { | 
| 468 | greg | 2.5 | raytrans(r);                    /* hide our proxy */ | 
| 469 | greg | 2.1 | return(1); | 
| 470 |  |  | } | 
| 471 | greg | 2.5 | /* get BSDF data */ | 
| 472 |  |  | nd.sd = loadBSDF(m->oargs.sarg[1]); | 
| 473 | greg | 2.1 | /* diffuse reflectance */ | 
| 474 | greg | 2.6 | if (hitfront) { | 
| 475 | greg | 2.1 | if (m->oargs.nfargs < 3) | 
| 476 |  |  | setcolor(nd.rdiff, .0, .0, .0); | 
| 477 |  |  | else | 
| 478 |  |  | setcolor(nd.rdiff, m->oargs.farg[0], | 
| 479 |  |  | m->oargs.farg[1], | 
| 480 |  |  | m->oargs.farg[2]); | 
| 481 |  |  | } else { | 
| 482 | greg | 2.26 | if (m->oargs.nfargs < 6) | 
| 483 | greg | 2.1 | setcolor(nd.rdiff, .0, .0, .0); | 
| 484 | greg | 2.26 | else | 
| 485 | greg | 2.1 | setcolor(nd.rdiff, m->oargs.farg[3], | 
| 486 |  |  | m->oargs.farg[4], | 
| 487 |  |  | m->oargs.farg[5]); | 
| 488 |  |  | } | 
| 489 |  |  | /* diffuse transmittance */ | 
| 490 |  |  | if (m->oargs.nfargs < 9) | 
| 491 |  |  | setcolor(nd.tdiff, .0, .0, .0); | 
| 492 |  |  | else | 
| 493 |  |  | setcolor(nd.tdiff, m->oargs.farg[6], | 
| 494 |  |  | m->oargs.farg[7], | 
| 495 |  |  | m->oargs.farg[8]); | 
| 496 |  |  | nd.mp = m; | 
| 497 |  |  | nd.pr = r; | 
| 498 |  |  | /* get modifiers */ | 
| 499 |  |  | raytexture(r, m->omod); | 
| 500 |  |  | /* modify diffuse values */ | 
| 501 |  |  | multcolor(nd.rdiff, r->pcol); | 
| 502 |  |  | multcolor(nd.tdiff, r->pcol); | 
| 503 |  |  | /* get up vector */ | 
| 504 |  |  | upvec[0] = evalue(mf->ep[1]); | 
| 505 |  |  | upvec[1] = evalue(mf->ep[2]); | 
| 506 |  |  | upvec[2] = evalue(mf->ep[3]); | 
| 507 |  |  | /* return to world coords */ | 
| 508 | greg | 2.21 | if (mf->fxp != &unitxf) { | 
| 509 |  |  | multv3(upvec, upvec, mf->fxp->xfm); | 
| 510 |  |  | nd.thick *= mf->fxp->sca; | 
| 511 | greg | 2.1 | } | 
| 512 | greg | 2.23 | if (r->rox != NULL) { | 
| 513 |  |  | multv3(upvec, upvec, r->rox->f.xfm); | 
| 514 |  |  | nd.thick *= r->rox->f.sca; | 
| 515 |  |  | } | 
| 516 | greg | 2.1 | raynormal(nd.pnorm, r); | 
| 517 |  |  | /* compute local BSDF xform */ | 
| 518 |  |  | ec = SDcompXform(nd.toloc, nd.pnorm, upvec); | 
| 519 |  |  | if (!ec) { | 
| 520 | greg | 2.4 | nd.vray[0] = -r->rdir[0]; | 
| 521 |  |  | nd.vray[1] = -r->rdir[1]; | 
| 522 |  |  | nd.vray[2] = -r->rdir[2]; | 
| 523 |  |  | ec = SDmapDir(nd.vray, nd.toloc, nd.vray); | 
| 524 | greg | 2.20 | } | 
| 525 |  |  | if (!ec) | 
| 526 |  |  | ec = SDinvXform(nd.fromloc, nd.toloc); | 
| 527 | greg | 2.19 | if (ec) { | 
| 528 |  |  | objerror(m, WARNING, "Illegal orientation vector"); | 
| 529 |  |  | return(1); | 
| 530 | greg | 2.1 | } | 
| 531 | greg | 2.4 | /* determine BSDF resolution */ | 
| 532 | greg | 2.20 | ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd); | 
| 533 |  |  | if (ec) | 
| 534 |  |  | objerror(m, USER, transSDError(ec)); | 
| 535 |  |  |  | 
| 536 | greg | 2.9 | nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]); | 
| 537 |  |  | nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]); | 
| 538 | greg | 2.6 | if (!hitfront) {                        /* perturb normal towards hit */ | 
| 539 | greg | 2.1 | nd.pnorm[0] = -nd.pnorm[0]; | 
| 540 |  |  | nd.pnorm[1] = -nd.pnorm[1]; | 
| 541 |  |  | nd.pnorm[2] = -nd.pnorm[2]; | 
| 542 |  |  | } | 
| 543 |  |  | /* sample reflection */ | 
| 544 |  |  | sample_sdf(&nd, SDsampSpR); | 
| 545 |  |  | /* sample transmission */ | 
| 546 |  |  | sample_sdf(&nd, SDsampSpT); | 
| 547 |  |  | /* compute indirect diffuse */ | 
| 548 |  |  | copycolor(ctmp, nd.rdiff); | 
| 549 |  |  | addcolor(ctmp, nd.runsamp); | 
| 550 | greg | 2.5 | if (bright(ctmp) > FTINY) {             /* ambient from reflection */ | 
| 551 | greg | 2.6 | if (!hitfront) | 
| 552 | greg | 2.1 | flipsurface(r); | 
| 553 |  |  | multambient(ctmp, r, nd.pnorm); | 
| 554 |  |  | addcolor(r->rcol, ctmp); | 
| 555 | greg | 2.6 | if (!hitfront) | 
| 556 | greg | 2.1 | flipsurface(r); | 
| 557 |  |  | } | 
| 558 |  |  | copycolor(ctmp, nd.tdiff); | 
| 559 |  |  | addcolor(ctmp, nd.tunsamp); | 
| 560 |  |  | if (bright(ctmp) > FTINY) {             /* ambient from other side */ | 
| 561 |  |  | FVECT  bnorm; | 
| 562 | greg | 2.6 | if (hitfront) | 
| 563 | greg | 2.1 | flipsurface(r); | 
| 564 |  |  | bnorm[0] = -nd.pnorm[0]; | 
| 565 |  |  | bnorm[1] = -nd.pnorm[1]; | 
| 566 |  |  | bnorm[2] = -nd.pnorm[2]; | 
| 567 | greg | 2.9 | if (nd.thick != 0) {            /* proxy with offset? */ | 
| 568 | greg | 2.5 | VCOPY(vtmp, r->rop); | 
| 569 | greg | 2.18 | VSUM(r->rop, vtmp, r->ron, nd.thick); | 
| 570 | greg | 2.5 | multambient(ctmp, r, bnorm); | 
| 571 |  |  | VCOPY(r->rop, vtmp); | 
| 572 |  |  | } else | 
| 573 |  |  | multambient(ctmp, r, bnorm); | 
| 574 | greg | 2.1 | addcolor(r->rcol, ctmp); | 
| 575 | greg | 2.6 | if (hitfront) | 
| 576 | greg | 2.1 | flipsurface(r); | 
| 577 |  |  | } | 
| 578 |  |  | /* add direct component */ | 
| 579 | greg | 2.22 | if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) & | 
| 580 |  |  | (nd.sd->tb == NULL)) { | 
| 581 | greg | 2.5 | direct(r, dir_brdf, &nd);       /* reflection only */ | 
| 582 | greg | 2.9 | } else if (nd.thick == 0) { | 
| 583 | greg | 2.5 | direct(r, dir_bsdf, &nd);       /* thin surface scattering */ | 
| 584 |  |  | } else { | 
| 585 |  |  | direct(r, dir_brdf, &nd);       /* reflection first */ | 
| 586 |  |  | VCOPY(vtmp, r->rop);            /* offset for transmitted */ | 
| 587 |  |  | VSUM(r->rop, vtmp, r->ron, -nd.thick); | 
| 588 | greg | 2.6 | direct(r, dir_btdf, &nd);       /* separate transmission */ | 
| 589 | greg | 2.5 | VCOPY(r->rop, vtmp); | 
| 590 |  |  | } | 
| 591 | greg | 2.1 | /* clean up */ | 
| 592 |  |  | SDfreeCache(nd.sd); | 
| 593 |  |  | return(1); | 
| 594 |  |  | } |