| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: glass.c,v 2.16 2005/04/19 01:15:06 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* glass.c - simpler shading function for thin glass surfaces.
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#include "ray.h"
|
| 11 |
#include "otypes.h"
|
| 12 |
#include "rtotypes.h"
|
| 13 |
|
| 14 |
/*
|
| 15 |
* This definition of glass provides for a quick calculation
|
| 16 |
* using a single surface where two closely spaced parallel
|
| 17 |
* dielectric surfaces would otherwise be used. The chief
|
| 18 |
* advantage to using this material is speed, since internal
|
| 19 |
* reflections are avoided.
|
| 20 |
*
|
| 21 |
* The specification for glass is as follows:
|
| 22 |
*
|
| 23 |
* modifier glass id
|
| 24 |
* 0
|
| 25 |
* 0
|
| 26 |
* 3+ red grn blu [refractive_index]
|
| 27 |
*
|
| 28 |
* The color is used for the transmission at normal incidence.
|
| 29 |
* To compute transmissivity (tn) from transmittance (Tn) use:
|
| 30 |
*
|
| 31 |
* tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
|
| 32 |
*
|
| 33 |
* The transmissivity of standard 88% transmittance glass is 0.96.
|
| 34 |
* A refractive index other than the default can be used by giving
|
| 35 |
* it as the fourth real argument. The above formula no longer applies.
|
| 36 |
*
|
| 37 |
* If we appear to hit the back side of the surface, then we
|
| 38 |
* turn the normal around.
|
| 39 |
*/
|
| 40 |
|
| 41 |
#define RINDEX 1.52 /* refractive index of glass */
|
| 42 |
|
| 43 |
|
| 44 |
extern int
|
| 45 |
m_glass( /* color a ray which hit a thin glass surface */
|
| 46 |
OBJREC *m,
|
| 47 |
register RAY *r
|
| 48 |
)
|
| 49 |
{
|
| 50 |
COLOR mcolor;
|
| 51 |
double pdot;
|
| 52 |
FVECT pnorm;
|
| 53 |
double rindex, cos2;
|
| 54 |
COLOR trans, refl;
|
| 55 |
int hastexture, hastrans;
|
| 56 |
double d, r1e, r1m;
|
| 57 |
double transtest, transdist;
|
| 58 |
double mirtest, mirdist;
|
| 59 |
RAY p;
|
| 60 |
register int i;
|
| 61 |
/* check arguments */
|
| 62 |
if (m->oargs.nfargs == 3)
|
| 63 |
rindex = RINDEX; /* default value of n */
|
| 64 |
else if (m->oargs.nfargs == 4)
|
| 65 |
rindex = m->oargs.farg[3]; /* use their value */
|
| 66 |
else
|
| 67 |
objerror(m, USER, "bad arguments");
|
| 68 |
/* check transmission */
|
| 69 |
setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
|
| 70 |
if ((hastrans = (intens(mcolor) > 1e-15))) {
|
| 71 |
for (i = 0; i < 3; i++)
|
| 72 |
if (colval(mcolor,i) < 1e-15)
|
| 73 |
colval(mcolor,i) = 1e-15;
|
| 74 |
} else if (r->crtype & SHADOW)
|
| 75 |
return(1);
|
| 76 |
/* get modifiers */
|
| 77 |
raytexture(r, m->omod);
|
| 78 |
if (r->rod < 0.0) /* reorient if necessary */
|
| 79 |
flipsurface(r);
|
| 80 |
mirtest = transtest = 0;
|
| 81 |
mirdist = transdist = r->rot;
|
| 82 |
/* perturb normal */
|
| 83 |
if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
|
| 84 |
pdot = raynormal(pnorm, r);
|
| 85 |
} else {
|
| 86 |
VCOPY(pnorm, r->ron);
|
| 87 |
pdot = r->rod;
|
| 88 |
}
|
| 89 |
/* angular transmission */
|
| 90 |
cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
|
| 91 |
pdot*pdot/(rindex*rindex) );
|
| 92 |
if (hastrans)
|
| 93 |
setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
|
| 94 |
pow(colval(mcolor,GRN), 1.0/cos2),
|
| 95 |
pow(colval(mcolor,BLU), 1.0/cos2));
|
| 96 |
|
| 97 |
/* compute reflection */
|
| 98 |
r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
|
| 99 |
r1e *= r1e;
|
| 100 |
r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
|
| 101 |
r1m *= r1m;
|
| 102 |
/* compute transmission */
|
| 103 |
if (hastrans) {
|
| 104 |
for (i = 0; i < 3; i++) {
|
| 105 |
d = colval(mcolor, i);
|
| 106 |
colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d /
|
| 107 |
(1.0-r1e*r1e*d*d);
|
| 108 |
colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d /
|
| 109 |
(1.0-r1m*r1m*d*d);
|
| 110 |
}
|
| 111 |
multcolor(trans, r->pcol); /* modify by pattern */
|
| 112 |
/* transmitted ray */
|
| 113 |
if (rayorigin(&p, TRANS, r, trans) == 0) {
|
| 114 |
if (!(r->crtype & SHADOW) && hastexture) {
|
| 115 |
for (i = 0; i < 3; i++) /* perturb direction */
|
| 116 |
p.rdir[i] = r->rdir[i] +
|
| 117 |
2.*(1.-rindex)*r->pert[i];
|
| 118 |
if (normalize(p.rdir) == 0.0) {
|
| 119 |
objerror(m, WARNING, "bad perturbation");
|
| 120 |
VCOPY(p.rdir, r->rdir);
|
| 121 |
}
|
| 122 |
} else {
|
| 123 |
VCOPY(p.rdir, r->rdir);
|
| 124 |
transtest = 2;
|
| 125 |
}
|
| 126 |
rayvalue(&p);
|
| 127 |
multcolor(p.rcol, p.rcoef);
|
| 128 |
addcolor(r->rcol, p.rcol);
|
| 129 |
transtest *= bright(p.rcol);
|
| 130 |
transdist = r->rot + p.rt;
|
| 131 |
}
|
| 132 |
}
|
| 133 |
if (r->crtype & SHADOW) { /* skip reflected ray */
|
| 134 |
r->rt = transdist;
|
| 135 |
return(1);
|
| 136 |
}
|
| 137 |
/* compute reflectance */
|
| 138 |
for (i = 0; i < 3; i++) {
|
| 139 |
d = colval(mcolor, i);
|
| 140 |
d *= d;
|
| 141 |
colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d);
|
| 142 |
colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
|
| 143 |
}
|
| 144 |
/* reflected ray */
|
| 145 |
if (rayorigin(&p, REFLECTED, r, refl) == 0) {
|
| 146 |
for (i = 0; i < 3; i++)
|
| 147 |
p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
|
| 148 |
rayvalue(&p);
|
| 149 |
multcolor(p.rcol, p.rcoef);
|
| 150 |
addcolor(r->rcol, p.rcol);
|
| 151 |
if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
|
| 152 |
mirtest = 2.0*bright(p.rcol);
|
| 153 |
mirdist = r->rot + p.rt;
|
| 154 |
}
|
| 155 |
}
|
| 156 |
/* check distance */
|
| 157 |
d = bright(r->rcol);
|
| 158 |
if (transtest > d)
|
| 159 |
r->rt = transdist;
|
| 160 |
else if (mirtest > d)
|
| 161 |
r->rt = mirdist;
|
| 162 |
return(1);
|
| 163 |
}
|