| 1 | #ifndef lint | 
| 2 | static const char RCSid[] = "$Id: aniso.c,v 2.42 2004/09/20 17:32:04 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | *  Shading functions for anisotropic materials. | 
| 6 | */ | 
| 7 |  | 
| 8 | #include "copyright.h" | 
| 9 |  | 
| 10 | #include  "ray.h" | 
| 11 | #include  "ambient.h" | 
| 12 | #include  "otypes.h" | 
| 13 | #include  "rtotypes.h" | 
| 14 | #include  "source.h" | 
| 15 | #include  "func.h" | 
| 16 | #include  "random.h" | 
| 17 |  | 
| 18 | #ifndef  MAXITER | 
| 19 | #define  MAXITER        10              /* maximum # specular ray attempts */ | 
| 20 | #endif | 
| 21 |  | 
| 22 | /* | 
| 23 | *      This routine implements the anisotropic Gaussian | 
| 24 | *  model described by Ward in Siggraph `92 article. | 
| 25 | *      We orient the surface towards the incoming ray, so a single | 
| 26 | *  surface can be used to represent an infinitely thin object. | 
| 27 | * | 
| 28 | *  Arguments for MAT_PLASTIC2 and MAT_METAL2 are: | 
| 29 | *  4+ ux       uy      uz      funcfile        [transform...] | 
| 30 | *  0 | 
| 31 | *  6  red      grn     blu     specular-frac.  u-facet-slope v-facet-slope | 
| 32 | * | 
| 33 | *  Real arguments for MAT_TRANS2 are: | 
| 34 | *  8  red      grn     blu     rspec   u-rough v-rough trans   tspec | 
| 35 | */ | 
| 36 |  | 
| 37 | /* specularity flags */ | 
| 38 | #define  SP_REFL        01              /* has reflected specular component */ | 
| 39 | #define  SP_TRAN        02              /* has transmitted specular */ | 
| 40 | #define  SP_FLAT        04              /* reflecting surface is flat */ | 
| 41 | #define  SP_RBLT        010             /* reflection below sample threshold */ | 
| 42 | #define  SP_TBLT        020             /* transmission below threshold */ | 
| 43 | #define  SP_BADU        040             /* bad u direction calculation */ | 
| 44 |  | 
| 45 | typedef struct { | 
| 46 | OBJREC  *mp;            /* material pointer */ | 
| 47 | RAY  *rp;               /* ray pointer */ | 
| 48 | short  specfl;          /* specularity flags, defined above */ | 
| 49 | COLOR  mcolor;          /* color of this material */ | 
| 50 | COLOR  scolor;          /* color of specular component */ | 
| 51 | FVECT  vrefl;           /* vector in reflected direction */ | 
| 52 | FVECT  prdir;           /* vector in transmitted direction */ | 
| 53 | FVECT  u, v;            /* u and v vectors orienting anisotropy */ | 
| 54 | double  u_alpha;        /* u roughness */ | 
| 55 | double  v_alpha;        /* v roughness */ | 
| 56 | double  rdiff, rspec;   /* reflected specular, diffuse */ | 
| 57 | double  trans;          /* transmissivity */ | 
| 58 | double  tdiff, tspec;   /* transmitted specular, diffuse */ | 
| 59 | FVECT  pnorm;           /* perturbed surface normal */ | 
| 60 | double  pdot;           /* perturbed dot product */ | 
| 61 | }  ANISODAT;            /* anisotropic material data */ | 
| 62 |  | 
| 63 | static srcdirf_t diraniso; | 
| 64 | static void getacoords(RAY  *r, ANISODAT  *np); | 
| 65 | static void agaussamp(RAY  *r, ANISODAT  *np); | 
| 66 |  | 
| 67 |  | 
| 68 | static void | 
| 69 | diraniso(               /* compute source contribution */ | 
| 70 | COLOR  cval,                    /* returned coefficient */ | 
| 71 | void  *nnp,             /* material data */ | 
| 72 | FVECT  ldir,                    /* light source direction */ | 
| 73 | double  omega                   /* light source size */ | 
| 74 | ) | 
| 75 | { | 
| 76 | register ANISODAT *np = nnp; | 
| 77 | double  ldot; | 
| 78 | double  dtmp, dtmp1, dtmp2; | 
| 79 | FVECT  h; | 
| 80 | double  au2, av2; | 
| 81 | COLOR  ctmp; | 
| 82 |  | 
| 83 | setcolor(cval, 0.0, 0.0, 0.0); | 
| 84 |  | 
| 85 | ldot = DOT(np->pnorm, ldir); | 
| 86 |  | 
| 87 | if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) | 
| 88 | return;         /* wrong side */ | 
| 89 |  | 
| 90 | if (ldot > FTINY && np->rdiff > FTINY) { | 
| 91 | /* | 
| 92 | *  Compute and add diffuse reflected component to returned | 
| 93 | *  color.  The diffuse reflected component will always be | 
| 94 | *  modified by the color of the material. | 
| 95 | */ | 
| 96 | copycolor(ctmp, np->mcolor); | 
| 97 | dtmp = ldot * omega * np->rdiff * (1.0/PI); | 
| 98 | scalecolor(ctmp, dtmp); | 
| 99 | addcolor(cval, ctmp); | 
| 100 | } | 
| 101 | if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { | 
| 102 | /* | 
| 103 | *  Compute specular reflection coefficient using | 
| 104 | *  anisotropic gaussian distribution model. | 
| 105 | */ | 
| 106 | /* add source width if flat */ | 
| 107 | if (np->specfl & SP_FLAT) | 
| 108 | au2 = av2 = omega * (0.25/PI); | 
| 109 | else | 
| 110 | au2 = av2 = 0.0; | 
| 111 | au2 += np->u_alpha*np->u_alpha; | 
| 112 | av2 += np->v_alpha*np->v_alpha; | 
| 113 | /* half vector */ | 
| 114 | h[0] = ldir[0] - np->rp->rdir[0]; | 
| 115 | h[1] = ldir[1] - np->rp->rdir[1]; | 
| 116 | h[2] = ldir[2] - np->rp->rdir[2]; | 
| 117 | /* ellipse */ | 
| 118 | dtmp1 = DOT(np->u, h); | 
| 119 | dtmp1 *= dtmp1 / au2; | 
| 120 | dtmp2 = DOT(np->v, h); | 
| 121 | dtmp2 *= dtmp2 / av2; | 
| 122 | /* gaussian */ | 
| 123 | dtmp = DOT(np->pnorm, h); | 
| 124 | dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); | 
| 125 | dtmp = exp(-dtmp) / (4.0*PI * np->pdot * sqrt(au2*av2)); | 
| 126 | /* worth using? */ | 
| 127 | if (dtmp > FTINY) { | 
| 128 | copycolor(ctmp, np->scolor); | 
| 129 | dtmp *= omega; | 
| 130 | scalecolor(ctmp, dtmp); | 
| 131 | addcolor(cval, ctmp); | 
| 132 | } | 
| 133 | } | 
| 134 | if (ldot < -FTINY && np->tdiff > FTINY) { | 
| 135 | /* | 
| 136 | *  Compute diffuse transmission. | 
| 137 | */ | 
| 138 | copycolor(ctmp, np->mcolor); | 
| 139 | dtmp = -ldot * omega * np->tdiff * (1.0/PI); | 
| 140 | scalecolor(ctmp, dtmp); | 
| 141 | addcolor(cval, ctmp); | 
| 142 | } | 
| 143 | if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { | 
| 144 | /* | 
| 145 | *  Compute specular transmission.  Specular transmission | 
| 146 | *  is always modified by material color. | 
| 147 | */ | 
| 148 | /* roughness + source */ | 
| 149 | au2 = av2 = omega * (1.0/PI); | 
| 150 | au2 += np->u_alpha*np->u_alpha; | 
| 151 | av2 += np->v_alpha*np->v_alpha; | 
| 152 | /* "half vector" */ | 
| 153 | h[0] = ldir[0] - np->prdir[0]; | 
| 154 | h[1] = ldir[1] - np->prdir[1]; | 
| 155 | h[2] = ldir[2] - np->prdir[2]; | 
| 156 | dtmp = DOT(h,h); | 
| 157 | if (dtmp > FTINY*FTINY) { | 
| 158 | dtmp1 = DOT(h,np->pnorm); | 
| 159 | dtmp = 1.0 - dtmp1*dtmp1/dtmp; | 
| 160 | if (dtmp > FTINY*FTINY) { | 
| 161 | dtmp1 = DOT(h,np->u); | 
| 162 | dtmp1 *= dtmp1 / au2; | 
| 163 | dtmp2 = DOT(h,np->v); | 
| 164 | dtmp2 *= dtmp2 / av2; | 
| 165 | dtmp = (dtmp1 + dtmp2) / dtmp; | 
| 166 | } | 
| 167 | } else | 
| 168 | dtmp = 0.0; | 
| 169 | /* gaussian */ | 
| 170 | dtmp = exp(-dtmp) / (PI * np->pdot * sqrt(au2*av2)); | 
| 171 | /* worth using? */ | 
| 172 | if (dtmp > FTINY) { | 
| 173 | copycolor(ctmp, np->mcolor); | 
| 174 | dtmp *= np->tspec * omega; | 
| 175 | scalecolor(ctmp, dtmp); | 
| 176 | addcolor(cval, ctmp); | 
| 177 | } | 
| 178 | } | 
| 179 | } | 
| 180 |  | 
| 181 |  | 
| 182 | extern int | 
| 183 | m_aniso(                        /* shade ray that hit something anisotropic */ | 
| 184 | register OBJREC  *m, | 
| 185 | register RAY  *r | 
| 186 | ) | 
| 187 | { | 
| 188 | ANISODAT  nd; | 
| 189 | COLOR  ctmp; | 
| 190 | register int  i; | 
| 191 | /* easy shadow test */ | 
| 192 | if (r->crtype & SHADOW) | 
| 193 | return(1); | 
| 194 |  | 
| 195 | if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) | 
| 196 | objerror(m, USER, "bad number of real arguments"); | 
| 197 | /* check for back side */ | 
| 198 | if (r->rod < 0.0) { | 
| 199 | if (!backvis && m->otype != MAT_TRANS2) { | 
| 200 | raytrans(r); | 
| 201 | return(1); | 
| 202 | } | 
| 203 | raytexture(r, m->omod); | 
| 204 | flipsurface(r);                 /* reorient if backvis */ | 
| 205 | } else | 
| 206 | raytexture(r, m->omod); | 
| 207 | /* get material color */ | 
| 208 | nd.mp = m; | 
| 209 | nd.rp = r; | 
| 210 | setcolor(nd.mcolor, m->oargs.farg[0], | 
| 211 | m->oargs.farg[1], | 
| 212 | m->oargs.farg[2]); | 
| 213 | /* get roughness */ | 
| 214 | nd.specfl = 0; | 
| 215 | nd.u_alpha = m->oargs.farg[4]; | 
| 216 | nd.v_alpha = m->oargs.farg[5]; | 
| 217 | if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) | 
| 218 | objerror(m, USER, "roughness too small"); | 
| 219 |  | 
| 220 | nd.pdot = raynormal(nd.pnorm, r);       /* perturb normal */ | 
| 221 | if (nd.pdot < .001) | 
| 222 | nd.pdot = .001;                 /* non-zero for diraniso() */ | 
| 223 | multcolor(nd.mcolor, r->pcol);          /* modify material color */ | 
| 224 | /* get specular component */ | 
| 225 | if ((nd.rspec = m->oargs.farg[3]) > FTINY) { | 
| 226 | nd.specfl |= SP_REFL; | 
| 227 | /* compute specular color */ | 
| 228 | if (m->otype == MAT_METAL2) | 
| 229 | copycolor(nd.scolor, nd.mcolor); | 
| 230 | else | 
| 231 | setcolor(nd.scolor, 1.0, 1.0, 1.0); | 
| 232 | scalecolor(nd.scolor, nd.rspec); | 
| 233 | /* check threshold */ | 
| 234 | if (specthresh >= nd.rspec-FTINY) | 
| 235 | nd.specfl |= SP_RBLT; | 
| 236 | /* compute refl. direction */ | 
| 237 | for (i = 0; i < 3; i++) | 
| 238 | nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; | 
| 239 | if (DOT(nd.vrefl, r->ron) <= FTINY)     /* penetration? */ | 
| 240 | for (i = 0; i < 3; i++)         /* safety measure */ | 
| 241 | nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; | 
| 242 | } | 
| 243 | /* compute transmission */ | 
| 244 | if (m->otype == MAT_TRANS2) { | 
| 245 | nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); | 
| 246 | nd.tspec = nd.trans * m->oargs.farg[7]; | 
| 247 | nd.tdiff = nd.trans - nd.tspec; | 
| 248 | if (nd.tspec > FTINY) { | 
| 249 | nd.specfl |= SP_TRAN; | 
| 250 | /* check threshold */ | 
| 251 | if (specthresh >= nd.tspec-FTINY) | 
| 252 | nd.specfl |= SP_TBLT; | 
| 253 | if (DOT(r->pert,r->pert) <= FTINY*FTINY) { | 
| 254 | VCOPY(nd.prdir, r->rdir); | 
| 255 | } else { | 
| 256 | for (i = 0; i < 3; i++)         /* perturb */ | 
| 257 | nd.prdir[i] = r->rdir[i] - r->pert[i]; | 
| 258 | if (DOT(nd.prdir, r->ron) < -FTINY) | 
| 259 | normalize(nd.prdir);    /* OK */ | 
| 260 | else | 
| 261 | VCOPY(nd.prdir, r->rdir); | 
| 262 | } | 
| 263 | } | 
| 264 | } else | 
| 265 | nd.tdiff = nd.tspec = nd.trans = 0.0; | 
| 266 |  | 
| 267 | /* diffuse reflection */ | 
| 268 | nd.rdiff = 1.0 - nd.trans - nd.rspec; | 
| 269 |  | 
| 270 | if (r->ro != NULL && isflat(r->ro->otype)) | 
| 271 | nd.specfl |= SP_FLAT; | 
| 272 |  | 
| 273 | getacoords(r, &nd);                     /* set up coordinates */ | 
| 274 |  | 
| 275 | if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) | 
| 276 | agaussamp(r, &nd); | 
| 277 |  | 
| 278 | if (nd.rdiff > FTINY) {         /* ambient from this side */ | 
| 279 | copycolor(ctmp, nd.mcolor);     /* modified by material color */ | 
| 280 | if (nd.specfl & SP_RBLT) | 
| 281 | scalecolor(ctmp, 1.0-nd.trans); | 
| 282 | else | 
| 283 | scalecolor(ctmp, nd.rdiff); | 
| 284 | multambient(ctmp, r, nd.pnorm); | 
| 285 | addcolor(r->rcol, ctmp);        /* add to returned color */ | 
| 286 | } | 
| 287 | if (nd.tdiff > FTINY) {         /* ambient from other side */ | 
| 288 | FVECT  bnorm; | 
| 289 |  | 
| 290 | flipsurface(r); | 
| 291 | bnorm[0] = -nd.pnorm[0]; | 
| 292 | bnorm[1] = -nd.pnorm[1]; | 
| 293 | bnorm[2] = -nd.pnorm[2]; | 
| 294 | copycolor(ctmp, nd.mcolor);     /* modified by color */ | 
| 295 | if (nd.specfl & SP_TBLT) | 
| 296 | scalecolor(ctmp, nd.trans); | 
| 297 | else | 
| 298 | scalecolor(ctmp, nd.tdiff); | 
| 299 | multambient(ctmp, r, bnorm); | 
| 300 | addcolor(r->rcol, ctmp); | 
| 301 | flipsurface(r); | 
| 302 | } | 
| 303 | /* add direct component */ | 
| 304 | direct(r, diraniso, &nd); | 
| 305 |  | 
| 306 | return(1); | 
| 307 | } | 
| 308 |  | 
| 309 |  | 
| 310 | static void | 
| 311 | getacoords(             /* set up coordinate system */ | 
| 312 | RAY  *r, | 
| 313 | register ANISODAT  *np | 
| 314 | ) | 
| 315 | { | 
| 316 | register MFUNC  *mf; | 
| 317 | register int  i; | 
| 318 |  | 
| 319 | mf = getfunc(np->mp, 3, 0x7, 1); | 
| 320 | setfunc(np->mp, r); | 
| 321 | errno = 0; | 
| 322 | for (i = 0; i < 3; i++) | 
| 323 | np->u[i] = evalue(mf->ep[i]); | 
| 324 | if (errno == EDOM || errno == ERANGE) { | 
| 325 | objerror(np->mp, WARNING, "compute error"); | 
| 326 | np->specfl |= SP_BADU; | 
| 327 | return; | 
| 328 | } | 
| 329 | if (mf->f != &unitxf) | 
| 330 | multv3(np->u, np->u, mf->f->xfm); | 
| 331 | fcross(np->v, np->pnorm, np->u); | 
| 332 | if (normalize(np->v) == 0.0) { | 
| 333 | objerror(np->mp, WARNING, "illegal orientation vector"); | 
| 334 | np->specfl |= SP_BADU; | 
| 335 | return; | 
| 336 | } | 
| 337 | fcross(np->u, np->v, np->pnorm); | 
| 338 | } | 
| 339 |  | 
| 340 |  | 
| 341 | static void | 
| 342 | agaussamp(              /* sample anisotropic gaussian specular */ | 
| 343 | RAY  *r, | 
| 344 | register ANISODAT  *np | 
| 345 | ) | 
| 346 | { | 
| 347 | RAY  sr; | 
| 348 | FVECT  h; | 
| 349 | double  rv[2]; | 
| 350 | double  d, sinp, cosp; | 
| 351 | int  niter; | 
| 352 | register int  i; | 
| 353 | /* compute reflection */ | 
| 354 | if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && | 
| 355 | rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { | 
| 356 | dimlist[ndims++] = (int)np->mp; | 
| 357 | for (niter = 0; niter < MAXITER; niter++) { | 
| 358 | if (niter) | 
| 359 | d = frandom(); | 
| 360 | else | 
| 361 | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 362 | multisamp(rv, 2, d); | 
| 363 | d = 2.0*PI * rv[0]; | 
| 364 | cosp = tcos(d) * np->u_alpha; | 
| 365 | sinp = tsin(d) * np->v_alpha; | 
| 366 | d = sqrt(cosp*cosp + sinp*sinp); | 
| 367 | cosp /= d; | 
| 368 | sinp /= d; | 
| 369 | rv[1] = 1.0 - specjitter*rv[1]; | 
| 370 | if (rv[1] <= FTINY) | 
| 371 | d = 1.0; | 
| 372 | else | 
| 373 | d = sqrt(-log(rv[1]) / | 
| 374 | (cosp*cosp/(np->u_alpha*np->u_alpha) + | 
| 375 | sinp*sinp/(np->v_alpha*np->v_alpha))); | 
| 376 | for (i = 0; i < 3; i++) | 
| 377 | h[i] = np->pnorm[i] + | 
| 378 | d*(cosp*np->u[i] + sinp*np->v[i]); | 
| 379 | d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); | 
| 380 | for (i = 0; i < 3; i++) | 
| 381 | sr.rdir[i] = r->rdir[i] + d*h[i]; | 
| 382 | if (DOT(sr.rdir, r->ron) > FTINY) { | 
| 383 | rayvalue(&sr); | 
| 384 | multcolor(sr.rcol, sr.rcoef); | 
| 385 | addcolor(r->rcol, sr.rcol); | 
| 386 | break; | 
| 387 | } | 
| 388 | } | 
| 389 | ndims--; | 
| 390 | } | 
| 391 | /* compute transmission */ | 
| 392 | copycolor(sr.rcoef, np->mcolor);                /* modify by material color */ | 
| 393 | scalecolor(sr.rcoef, np->tspec); | 
| 394 | if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && | 
| 395 | rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { | 
| 396 | dimlist[ndims++] = (int)np->mp; | 
| 397 | for (niter = 0; niter < MAXITER; niter++) { | 
| 398 | if (niter) | 
| 399 | d = frandom(); | 
| 400 | else | 
| 401 | d = urand(ilhash(dimlist,ndims)+1823+samplendx); | 
| 402 | multisamp(rv, 2, d); | 
| 403 | d = 2.0*PI * rv[0]; | 
| 404 | cosp = tcos(d) * np->u_alpha; | 
| 405 | sinp = tsin(d) * np->v_alpha; | 
| 406 | d = sqrt(cosp*cosp + sinp*sinp); | 
| 407 | cosp /= d; | 
| 408 | sinp /= d; | 
| 409 | rv[1] = 1.0 - specjitter*rv[1]; | 
| 410 | if (rv[1] <= FTINY) | 
| 411 | d = 1.0; | 
| 412 | else | 
| 413 | d = sqrt(-log(rv[1]) / | 
| 414 | (cosp*cosp/(np->u_alpha*np->u_alpha) + | 
| 415 | sinp*sinp/(np->v_alpha*np->v_alpha))); | 
| 416 | for (i = 0; i < 3; i++) | 
| 417 | sr.rdir[i] = np->prdir[i] + | 
| 418 | d*(cosp*np->u[i] + sinp*np->v[i]); | 
| 419 | if (DOT(sr.rdir, r->ron) < -FTINY) { | 
| 420 | normalize(sr.rdir);     /* OK, normalize */ | 
| 421 | rayvalue(&sr); | 
| 422 | multcolor(sr.rcol, sr.rcoef); | 
| 423 | addcolor(r->rcol, sr.rcol); | 
| 424 | break; | 
| 425 | } | 
| 426 | } | 
| 427 | ndims--; | 
| 428 | } | 
| 429 | } |