| 1 | greg | 2.1 | /* Copyright (c) 1992 Regents of the University of California */ | 
| 2 |  |  |  | 
| 3 |  |  | #ifndef lint | 
| 4 |  |  | static char SCCSid[] = "$SunId$ LBL"; | 
| 5 |  |  | #endif | 
| 6 |  |  |  | 
| 7 |  |  | /* | 
| 8 |  |  | *  Shading functions for anisotropic materials. | 
| 9 |  |  | */ | 
| 10 |  |  |  | 
| 11 |  |  | #include  "ray.h" | 
| 12 |  |  |  | 
| 13 |  |  | #include  "otypes.h" | 
| 14 |  |  |  | 
| 15 |  |  | #include  "func.h" | 
| 16 |  |  |  | 
| 17 |  |  | #include  "random.h" | 
| 18 |  |  |  | 
| 19 | greg | 2.4 | extern double  specthresh;              /* specular sampling threshold */ | 
| 20 |  |  | extern double  specjitter;              /* specular sampling jitter */ | 
| 21 |  |  |  | 
| 22 | greg | 2.1 | /* | 
| 23 |  |  | *      This anisotropic reflection model uses a variant on the | 
| 24 |  |  | *  exponential Gaussian used in normal.c. | 
| 25 |  |  | *      We orient the surface towards the incoming ray, so a single | 
| 26 |  |  | *  surface can be used to represent an infinitely thin object. | 
| 27 |  |  | * | 
| 28 |  |  | *  Arguments for MAT_PLASTIC2 and MAT_METAL2 are: | 
| 29 |  |  | *  4+ ux       uy      uz      funcfile        [transform...] | 
| 30 |  |  | *  0 | 
| 31 |  |  | *  6  red      grn     blu     specular-frac.  u-facet-slope v-facet-slope | 
| 32 |  |  | * | 
| 33 |  |  | *  Real arguments for MAT_TRANS2 are: | 
| 34 |  |  | *  8  red      grn     blu     rspec   u-rough v-rough trans   tspec | 
| 35 |  |  | */ | 
| 36 |  |  |  | 
| 37 | greg | 2.14 | #define  BSPEC(m)       (6.0)           /* specularity parameter b */ | 
| 38 |  |  |  | 
| 39 | greg | 2.1 | /* specularity flags */ | 
| 40 |  |  | #define  SP_REFL        01              /* has reflected specular component */ | 
| 41 |  |  | #define  SP_TRAN        02              /* has transmitted specular */ | 
| 42 | greg | 2.10 | #define  SP_FLAT        04              /* reflecting surface is flat */ | 
| 43 |  |  | #define  SP_RBLT        010             /* reflection below sample threshold */ | 
| 44 |  |  | #define  SP_TBLT        020             /* transmission below threshold */ | 
| 45 |  |  | #define  SP_BADU        040             /* bad u direction calculation */ | 
| 46 | greg | 2.1 |  | 
| 47 |  |  | typedef struct { | 
| 48 | greg | 2.2 | OBJREC  *mp;            /* material pointer */ | 
| 49 | greg | 2.1 | RAY  *rp;               /* ray pointer */ | 
| 50 |  |  | short  specfl;          /* specularity flags, defined above */ | 
| 51 |  |  | COLOR  mcolor;          /* color of this material */ | 
| 52 |  |  | COLOR  scolor;          /* color of specular component */ | 
| 53 | greg | 2.6 | FVECT  vrefl;           /* vector in reflected direction */ | 
| 54 | greg | 2.1 | FVECT  prdir;           /* vector in transmitted direction */ | 
| 55 |  |  | FVECT  u, v;            /* u and v vectors orienting anisotropy */ | 
| 56 |  |  | double  u_alpha;        /* u roughness */ | 
| 57 |  |  | double  v_alpha;        /* v roughness */ | 
| 58 |  |  | double  rdiff, rspec;   /* reflected specular, diffuse */ | 
| 59 |  |  | double  trans;          /* transmissivity */ | 
| 60 |  |  | double  tdiff, tspec;   /* transmitted specular, diffuse */ | 
| 61 |  |  | FVECT  pnorm;           /* perturbed surface normal */ | 
| 62 |  |  | double  pdot;           /* perturbed dot product */ | 
| 63 |  |  | }  ANISODAT;            /* anisotropic material data */ | 
| 64 |  |  |  | 
| 65 |  |  |  | 
| 66 |  |  | diraniso(cval, np, ldir, omega)         /* compute source contribution */ | 
| 67 |  |  | COLOR  cval;                    /* returned coefficient */ | 
| 68 |  |  | register ANISODAT  *np;         /* material data */ | 
| 69 |  |  | FVECT  ldir;                    /* light source direction */ | 
| 70 |  |  | double  omega;                  /* light source size */ | 
| 71 |  |  | { | 
| 72 |  |  | double  ldot; | 
| 73 |  |  | double  dtmp, dtmp2; | 
| 74 |  |  | FVECT  h; | 
| 75 |  |  | double  au2, av2; | 
| 76 |  |  | COLOR  ctmp; | 
| 77 |  |  |  | 
| 78 |  |  | setcolor(cval, 0.0, 0.0, 0.0); | 
| 79 |  |  |  | 
| 80 |  |  | ldot = DOT(np->pnorm, ldir); | 
| 81 |  |  |  | 
| 82 |  |  | if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) | 
| 83 |  |  | return;         /* wrong side */ | 
| 84 |  |  |  | 
| 85 |  |  | if (ldot > FTINY && np->rdiff > FTINY) { | 
| 86 |  |  | /* | 
| 87 |  |  | *  Compute and add diffuse reflected component to returned | 
| 88 |  |  | *  color.  The diffuse reflected component will always be | 
| 89 |  |  | *  modified by the color of the material. | 
| 90 |  |  | */ | 
| 91 |  |  | copycolor(ctmp, np->mcolor); | 
| 92 |  |  | dtmp = ldot * omega * np->rdiff / PI; | 
| 93 |  |  | scalecolor(ctmp, dtmp); | 
| 94 |  |  | addcolor(cval, ctmp); | 
| 95 |  |  | } | 
| 96 | greg | 2.10 | if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { | 
| 97 | greg | 2.1 | /* | 
| 98 |  |  | *  Compute specular reflection coefficient using | 
| 99 |  |  | *  anisotropic gaussian distribution model. | 
| 100 |  |  | */ | 
| 101 | greg | 2.2 | /* add source width if flat */ | 
| 102 |  |  | if (np->specfl & SP_FLAT) | 
| 103 |  |  | au2 = av2 = omega/(4.0*PI); | 
| 104 |  |  | else | 
| 105 |  |  | au2 = av2 = 0.0; | 
| 106 | greg | 2.1 | au2 += np->u_alpha * np->u_alpha; | 
| 107 |  |  | av2 += np->v_alpha * np->v_alpha; | 
| 108 |  |  | /* half vector */ | 
| 109 |  |  | h[0] = ldir[0] - np->rp->rdir[0]; | 
| 110 |  |  | h[1] = ldir[1] - np->rp->rdir[1]; | 
| 111 |  |  | h[2] = ldir[2] - np->rp->rdir[2]; | 
| 112 |  |  | normalize(h); | 
| 113 |  |  | /* ellipse */ | 
| 114 |  |  | dtmp = DOT(np->u, h); | 
| 115 |  |  | dtmp *= dtmp / au2; | 
| 116 |  |  | dtmp2 = DOT(np->v, h); | 
| 117 |  |  | dtmp2 *= dtmp2 / av2; | 
| 118 |  |  | /* gaussian */ | 
| 119 |  |  | dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); | 
| 120 |  |  | dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); | 
| 121 |  |  | /* worth using? */ | 
| 122 |  |  | if (dtmp > FTINY) { | 
| 123 |  |  | copycolor(ctmp, np->scolor); | 
| 124 | greg | 2.13 | dtmp *= omega * sqrt(ldot/np->pdot); | 
| 125 | greg | 2.1 | scalecolor(ctmp, dtmp); | 
| 126 |  |  | addcolor(cval, ctmp); | 
| 127 |  |  | } | 
| 128 |  |  | } | 
| 129 |  |  | if (ldot < -FTINY && np->tdiff > FTINY) { | 
| 130 |  |  | /* | 
| 131 |  |  | *  Compute diffuse transmission. | 
| 132 |  |  | */ | 
| 133 |  |  | copycolor(ctmp, np->mcolor); | 
| 134 |  |  | dtmp = -ldot * omega * np->tdiff / PI; | 
| 135 |  |  | scalecolor(ctmp, dtmp); | 
| 136 |  |  | addcolor(cval, ctmp); | 
| 137 |  |  | } | 
| 138 | greg | 2.10 | if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { | 
| 139 | greg | 2.1 | /* | 
| 140 |  |  | *  Compute specular transmission.  Specular transmission | 
| 141 |  |  | *  is always modified by material color. | 
| 142 |  |  | */ | 
| 143 |  |  | /* roughness + source */ | 
| 144 |  |  | /* gaussian */ | 
| 145 |  |  | dtmp = 0.0; | 
| 146 |  |  | /* worth using? */ | 
| 147 |  |  | if (dtmp > FTINY) { | 
| 148 |  |  | copycolor(ctmp, np->mcolor); | 
| 149 | greg | 2.13 | dtmp *= np->tspec * omega * sqrt(ldot/np->pdot); | 
| 150 | greg | 2.1 | scalecolor(ctmp, dtmp); | 
| 151 |  |  | addcolor(cval, ctmp); | 
| 152 |  |  | } | 
| 153 |  |  | } | 
| 154 |  |  | } | 
| 155 |  |  |  | 
| 156 |  |  |  | 
| 157 |  |  | m_aniso(m, r)                   /* shade ray that hit something anisotropic */ | 
| 158 |  |  | register OBJREC  *m; | 
| 159 |  |  | register RAY  *r; | 
| 160 |  |  | { | 
| 161 |  |  | ANISODAT  nd; | 
| 162 |  |  | double  dtmp; | 
| 163 |  |  | COLOR  ctmp; | 
| 164 |  |  | register int  i; | 
| 165 |  |  | /* easy shadow test */ | 
| 166 | greg | 2.10 | if (r->crtype & SHADOW) | 
| 167 | greg | 2.1 | return; | 
| 168 |  |  |  | 
| 169 |  |  | if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) | 
| 170 |  |  | objerror(m, USER, "bad number of real arguments"); | 
| 171 | greg | 2.2 | nd.mp = m; | 
| 172 | greg | 2.1 | nd.rp = r; | 
| 173 |  |  | /* get material color */ | 
| 174 |  |  | setcolor(nd.mcolor, m->oargs.farg[0], | 
| 175 |  |  | m->oargs.farg[1], | 
| 176 |  |  | m->oargs.farg[2]); | 
| 177 |  |  | /* get roughness */ | 
| 178 |  |  | nd.specfl = 0; | 
| 179 |  |  | nd.u_alpha = m->oargs.farg[4]; | 
| 180 |  |  | nd.v_alpha = m->oargs.farg[5]; | 
| 181 | greg | 2.10 | if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6) | 
| 182 |  |  | objerror(m, USER, "roughness too small"); | 
| 183 | greg | 2.1 | /* reorient if necessary */ | 
| 184 |  |  | if (r->rod < 0.0) | 
| 185 |  |  | flipsurface(r); | 
| 186 |  |  | /* get modifiers */ | 
| 187 |  |  | raytexture(r, m->omod); | 
| 188 |  |  | nd.pdot = raynormal(nd.pnorm, r);       /* perturb normal */ | 
| 189 |  |  | if (nd.pdot < .001) | 
| 190 |  |  | nd.pdot = .001;                 /* non-zero for diraniso() */ | 
| 191 |  |  | multcolor(nd.mcolor, r->pcol);          /* modify material color */ | 
| 192 |  |  | /* get specular component */ | 
| 193 |  |  | if ((nd.rspec = m->oargs.farg[3]) > FTINY) { | 
| 194 |  |  | nd.specfl |= SP_REFL; | 
| 195 |  |  | /* compute specular color */ | 
| 196 |  |  | if (m->otype == MAT_METAL2) | 
| 197 |  |  | copycolor(nd.scolor, nd.mcolor); | 
| 198 |  |  | else | 
| 199 |  |  | setcolor(nd.scolor, 1.0, 1.0, 1.0); | 
| 200 |  |  | scalecolor(nd.scolor, nd.rspec); | 
| 201 | greg | 2.14 | /* improved model */ | 
| 202 |  |  | dtmp = exp(-BSPEC(m)*nd.pdot); | 
| 203 |  |  | for (i = 0; i < 3; i++) | 
| 204 |  |  | colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; | 
| 205 |  |  | nd.rspec += (1.0-nd.rspec)*dtmp; | 
| 206 | greg | 2.4 | /* check threshold */ | 
| 207 | greg | 2.5 | if (specthresh > FTINY && | 
| 208 | greg | 2.12 | (specthresh >= 1.-FTINY || | 
| 209 | greg | 2.15 | specthresh + .05 - .1*frandom() > nd.rspec)) | 
| 210 | greg | 2.4 | nd.specfl |= SP_RBLT; | 
| 211 | greg | 2.6 | /* compute refl. direction */ | 
| 212 |  |  | for (i = 0; i < 3; i++) | 
| 213 |  |  | nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; | 
| 214 |  |  | if (DOT(nd.vrefl, r->ron) <= FTINY)     /* penetration? */ | 
| 215 |  |  | for (i = 0; i < 3; i++)         /* safety measure */ | 
| 216 |  |  | nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; | 
| 217 | greg | 2.1 | } | 
| 218 |  |  | /* compute transmission */ | 
| 219 |  |  | if (m->otype == MAT_TRANS) { | 
| 220 |  |  | nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); | 
| 221 |  |  | nd.tspec = nd.trans * m->oargs.farg[7]; | 
| 222 |  |  | nd.tdiff = nd.trans - nd.tspec; | 
| 223 |  |  | if (nd.tspec > FTINY) { | 
| 224 |  |  | nd.specfl |= SP_TRAN; | 
| 225 | greg | 2.4 | /* check threshold */ | 
| 226 | greg | 2.5 | if (specthresh > FTINY && | 
| 227 | greg | 2.12 | (specthresh >= 1.-FTINY || | 
| 228 | greg | 2.15 | specthresh + .05 - .1*frandom() > nd.tspec)) | 
| 229 | greg | 2.4 | nd.specfl |= SP_TBLT; | 
| 230 | greg | 2.10 | if (DOT(r->pert,r->pert) <= FTINY*FTINY) { | 
| 231 | greg | 2.1 | VCOPY(nd.prdir, r->rdir); | 
| 232 |  |  | } else { | 
| 233 |  |  | for (i = 0; i < 3; i++)         /* perturb */ | 
| 234 |  |  | nd.prdir[i] = r->rdir[i] - | 
| 235 | greg | 2.7 | 0.5*r->pert[i]; | 
| 236 | greg | 2.6 | if (DOT(nd.prdir, r->ron) < -FTINY) | 
| 237 |  |  | normalize(nd.prdir);    /* OK */ | 
| 238 |  |  | else | 
| 239 |  |  | VCOPY(nd.prdir, r->rdir); | 
| 240 | greg | 2.1 | } | 
| 241 |  |  | } | 
| 242 |  |  | } else | 
| 243 |  |  | nd.tdiff = nd.tspec = nd.trans = 0.0; | 
| 244 |  |  |  | 
| 245 |  |  | /* diffuse reflection */ | 
| 246 |  |  | nd.rdiff = 1.0 - nd.trans - nd.rspec; | 
| 247 |  |  |  | 
| 248 | greg | 2.11 | if (r->ro != NULL && (r->ro->otype == OBJ_FACE || | 
| 249 |  |  | r->ro->otype == OBJ_RING)) | 
| 250 | greg | 2.4 | nd.specfl |= SP_FLAT; | 
| 251 |  |  |  | 
| 252 | greg | 2.1 | getacoords(r, &nd);                     /* set up coordinates */ | 
| 253 |  |  |  | 
| 254 | greg | 2.10 | if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) | 
| 255 | greg | 2.1 | agaussamp(r, &nd); | 
| 256 |  |  |  | 
| 257 |  |  | if (nd.rdiff > FTINY) {         /* ambient from this side */ | 
| 258 |  |  | ambient(ctmp, r); | 
| 259 | greg | 2.4 | if (nd.specfl & SP_RBLT) | 
| 260 |  |  | scalecolor(ctmp, 1.0-nd.trans); | 
| 261 |  |  | else | 
| 262 |  |  | scalecolor(ctmp, nd.rdiff); | 
| 263 | greg | 2.1 | multcolor(ctmp, nd.mcolor);     /* modified by material color */ | 
| 264 |  |  | addcolor(r->rcol, ctmp);        /* add to returned color */ | 
| 265 |  |  | } | 
| 266 |  |  | if (nd.tdiff > FTINY) {         /* ambient from other side */ | 
| 267 |  |  | flipsurface(r); | 
| 268 |  |  | ambient(ctmp, r); | 
| 269 | greg | 2.4 | if (nd.specfl & SP_TBLT) | 
| 270 |  |  | scalecolor(ctmp, nd.trans); | 
| 271 |  |  | else | 
| 272 |  |  | scalecolor(ctmp, nd.tdiff); | 
| 273 | greg | 2.1 | multcolor(ctmp, nd.mcolor);     /* modified by color */ | 
| 274 |  |  | addcolor(r->rcol, ctmp); | 
| 275 |  |  | flipsurface(r); | 
| 276 |  |  | } | 
| 277 |  |  | /* add direct component */ | 
| 278 |  |  | direct(r, diraniso, &nd); | 
| 279 |  |  | } | 
| 280 |  |  |  | 
| 281 |  |  |  | 
| 282 |  |  | static | 
| 283 |  |  | getacoords(r, np)               /* set up coordinate system */ | 
| 284 |  |  | RAY  *r; | 
| 285 |  |  | register ANISODAT  *np; | 
| 286 |  |  | { | 
| 287 |  |  | register MFUNC  *mf; | 
| 288 |  |  | register int  i; | 
| 289 |  |  |  | 
| 290 |  |  | mf = getfunc(np->mp, 3, 0x7, 1); | 
| 291 |  |  | setfunc(np->mp, r); | 
| 292 |  |  | errno = 0; | 
| 293 |  |  | for (i = 0; i < 3; i++) | 
| 294 |  |  | np->u[i] = evalue(mf->ep[i]); | 
| 295 |  |  | if (errno) { | 
| 296 |  |  | objerror(np->mp, WARNING, "compute error"); | 
| 297 |  |  | np->specfl |= SP_BADU; | 
| 298 |  |  | return; | 
| 299 |  |  | } | 
| 300 |  |  | multv3(np->u, np->u, mf->f->xfm); | 
| 301 |  |  | fcross(np->v, np->pnorm, np->u); | 
| 302 |  |  | if (normalize(np->v) == 0.0) { | 
| 303 |  |  | objerror(np->mp, WARNING, "illegal orientation vector"); | 
| 304 |  |  | np->specfl |= SP_BADU; | 
| 305 |  |  | return; | 
| 306 |  |  | } | 
| 307 |  |  | fcross(np->u, np->v, np->pnorm); | 
| 308 |  |  | } | 
| 309 |  |  |  | 
| 310 |  |  |  | 
| 311 |  |  | static | 
| 312 |  |  | agaussamp(r, np)                /* sample anisotropic gaussian specular */ | 
| 313 |  |  | RAY  *r; | 
| 314 |  |  | register ANISODAT  *np; | 
| 315 |  |  | { | 
| 316 |  |  | RAY  sr; | 
| 317 |  |  | FVECT  h; | 
| 318 |  |  | double  rv[2]; | 
| 319 |  |  | double  d, sinp, cosp; | 
| 320 |  |  | register int  i; | 
| 321 |  |  | /* compute reflection */ | 
| 322 | greg | 2.4 | if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && | 
| 323 | greg | 2.1 | rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { | 
| 324 |  |  | dimlist[ndims++] = (int)np->mp; | 
| 325 | greg | 2.6 | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 326 |  |  | multisamp(rv, 2, d); | 
| 327 |  |  | d = 2.0*PI * rv[0]; | 
| 328 |  |  | cosp = np->u_alpha * cos(d); | 
| 329 |  |  | sinp = np->v_alpha * sin(d); | 
| 330 |  |  | d = sqrt(cosp*cosp + sinp*sinp); | 
| 331 |  |  | cosp /= d; | 
| 332 |  |  | sinp /= d; | 
| 333 |  |  | rv[1] = 1.0 - specjitter*rv[1]; | 
| 334 |  |  | if (rv[1] <= FTINY) | 
| 335 |  |  | d = 1.0; | 
| 336 |  |  | else | 
| 337 |  |  | d = sqrt(-log(rv[1]) / | 
| 338 |  |  | (cosp*cosp/(np->u_alpha*np->u_alpha) + | 
| 339 |  |  | sinp*sinp/(np->v_alpha*np->v_alpha))); | 
| 340 |  |  | for (i = 0; i < 3; i++) | 
| 341 |  |  | h[i] = np->pnorm[i] + | 
| 342 |  |  | d*(cosp*np->u[i] + sinp*np->v[i]); | 
| 343 |  |  | d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); | 
| 344 |  |  | for (i = 0; i < 3; i++) | 
| 345 |  |  | sr.rdir[i] = r->rdir[i] + d*h[i]; | 
| 346 |  |  | if (DOT(sr.rdir, r->ron) <= FTINY)      /* penetration? */ | 
| 347 |  |  | VCOPY(sr.rdir, np->vrefl);      /* jitter no good */ | 
| 348 |  |  | rayvalue(&sr); | 
| 349 |  |  | multcolor(sr.rcol, np->scolor); | 
| 350 |  |  | addcolor(r->rcol, sr.rcol); | 
| 351 | greg | 2.1 | ndims--; | 
| 352 |  |  | } | 
| 353 |  |  | /* compute transmission */ | 
| 354 | greg | 2.7 | if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && | 
| 355 |  |  | rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { | 
| 356 |  |  | dimlist[ndims++] = (int)np->mp; | 
| 357 |  |  | d = urand(ilhash(dimlist,ndims)+1823+samplendx); | 
| 358 |  |  | multisamp(rv, 2, d); | 
| 359 |  |  | d = 2.0*PI * rv[0]; | 
| 360 |  |  | cosp = cos(d); | 
| 361 |  |  | sinp = sin(d); | 
| 362 |  |  | rv[1] = 1.0 - specjitter*rv[1]; | 
| 363 |  |  | if (rv[1] <= FTINY) | 
| 364 |  |  | d = 1.0; | 
| 365 |  |  | else | 
| 366 |  |  | d = sqrt(-log(rv[1]) / | 
| 367 |  |  | (cosp*cosp*4./(np->u_alpha*np->u_alpha) + | 
| 368 |  |  | sinp*sinp*4./(np->v_alpha*np->v_alpha))); | 
| 369 |  |  | for (i = 0; i < 3; i++) | 
| 370 |  |  | sr.rdir[i] = np->prdir[i] + | 
| 371 |  |  | d*(cosp*np->u[i] + sinp*np->v[i]); | 
| 372 |  |  | if (DOT(sr.rdir, r->ron) < -FTINY) | 
| 373 |  |  | normalize(sr.rdir);             /* OK, normalize */ | 
| 374 |  |  | else | 
| 375 |  |  | VCOPY(sr.rdir, np->prdir);      /* else no jitter */ | 
| 376 |  |  | rayvalue(&sr); | 
| 377 | greg | 2.10 | scalecolor(sr.rcol, np->tspec); | 
| 378 |  |  | multcolor(sr.rcol, np->mcolor);         /* modify by color */ | 
| 379 | greg | 2.7 | addcolor(r->rcol, sr.rcol); | 
| 380 |  |  | ndims--; | 
| 381 |  |  | } | 
| 382 | greg | 2.1 | } |