| 1 |
/* Copyright (c) 1996 Regents of the University of California */ |
| 2 |
|
| 3 |
#ifndef lint |
| 4 |
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
#endif |
| 6 |
|
| 7 |
/* |
| 8 |
* Routines for veiling glare and loss of acuity. |
| 9 |
*/ |
| 10 |
|
| 11 |
#include "pcond.h" |
| 12 |
|
| 13 |
/************** VEILING STUFF *****************/ |
| 14 |
|
| 15 |
#define VADAPT 0.08 /* fraction of adaptation from veil */ |
| 16 |
|
| 17 |
extern COLOR *fovimg; /* foveal (1 degree) averaged image */ |
| 18 |
extern short fvxr, fvyr; /* foveal image resolution */ |
| 19 |
|
| 20 |
#define fovscan(y) (fovimg+(y)*fvxr) |
| 21 |
|
| 22 |
static COLOR *veilimg; /* veiling image */ |
| 23 |
|
| 24 |
#define veilscan(y) (veilimg+(y)*fvxr) |
| 25 |
|
| 26 |
static float (*raydir)[3] = NULL; /* ray direction for each pixel */ |
| 27 |
|
| 28 |
#define rdirscan(y) (raydir+(y)*fvxr) |
| 29 |
|
| 30 |
|
| 31 |
compraydir() /* compute ray directions */ |
| 32 |
{ |
| 33 |
FVECT rorg, rdir; |
| 34 |
double h, v; |
| 35 |
register int x, y; |
| 36 |
|
| 37 |
if (raydir != NULL) /* already done? */ |
| 38 |
return; |
| 39 |
raydir = (float (*)[3])malloc(fvxr*fvyr*3*sizeof(float)); |
| 40 |
if (raydir == NULL) |
| 41 |
syserror("malloc"); |
| 42 |
|
| 43 |
for (y = 0; y < fvyr; y++) { |
| 44 |
switch (inpres.or) { |
| 45 |
case YMAJOR: case YMAJOR|XDECR: |
| 46 |
v = (y+.5)/fvyr; break; |
| 47 |
case YMAJOR|YDECR: case YMAJOR|YDECR|XDECR: |
| 48 |
v = 1. - (y+.5)/fvyr; break; |
| 49 |
case 0: case YDECR: |
| 50 |
h = (y+.5)/fvyr; break; |
| 51 |
case XDECR: case XDECR|YDECR: |
| 52 |
h = 1. - (y+.5)/fvyr; break; |
| 53 |
} |
| 54 |
for (x = 0; x < fvxr; x++) { |
| 55 |
switch (inpres.or) { |
| 56 |
case YMAJOR: case YMAJOR|YDECR: |
| 57 |
h = (x+.5)/fvxr; break; |
| 58 |
case YMAJOR|XDECR: case YMAJOR|XDECR|YDECR: |
| 59 |
h = 1. - (x+.5)/fvxr; break; |
| 60 |
case 0: case XDECR: |
| 61 |
v = (x+.5)/fvxr; break; |
| 62 |
case YDECR: case YDECR|XDECR: |
| 63 |
v = 1. - (x+.5)/fvxr; break; |
| 64 |
} |
| 65 |
if (viewray(rorg, rdir, &ourview, h, v) |
| 66 |
>= -FTINY) { |
| 67 |
rdirscan(y)[x][0] = rdir[0]; |
| 68 |
rdirscan(y)[x][1] = rdir[1]; |
| 69 |
rdirscan(y)[x][2] = rdir[2]; |
| 70 |
} else { |
| 71 |
rdirscan(y)[x][0] = |
| 72 |
rdirscan(y)[x][1] = |
| 73 |
rdirscan(y)[x][2] = 0.0; |
| 74 |
} |
| 75 |
} |
| 76 |
} |
| 77 |
} |
| 78 |
|
| 79 |
|
| 80 |
compveil() /* compute veiling image */ |
| 81 |
{ |
| 82 |
double t2, t2sum; |
| 83 |
COLOR ctmp, vsum; |
| 84 |
int px, py; |
| 85 |
register int x, y; |
| 86 |
/* compute ray directions */ |
| 87 |
compraydir(); |
| 88 |
/* compute veil image */ |
| 89 |
veilimg = (COLOR *)malloc(fvxr*fvyr*sizeof(COLOR)); |
| 90 |
if (veilimg == NULL) |
| 91 |
syserror("malloc"); |
| 92 |
for (py = 0; py < fvyr; py++) |
| 93 |
for (px = 0; px < fvxr; px++) { |
| 94 |
t2sum = 0.; |
| 95 |
setcolor(vsum, 0., 0., 0.); |
| 96 |
for (y = 0; y < fvyr; y++) |
| 97 |
for (x = 0; x < fvxr; x++) { |
| 98 |
if (x == px && y == py) continue; |
| 99 |
t2 = DOT(rdirscan(py)[px], |
| 100 |
rdirscan(y)[x]); |
| 101 |
if (t2 <= FTINY) continue; |
| 102 |
t2 = acos(t2); |
| 103 |
t2 = 1./(t2*t2); |
| 104 |
copycolor(ctmp, fovscan(y)[x]); |
| 105 |
scalecolor(ctmp, t2); |
| 106 |
addcolor(vsum, ctmp); |
| 107 |
t2sum += t2; |
| 108 |
} |
| 109 |
/* VADAPT of original is subtracted in addveil() */ |
| 110 |
scalecolor(vsum, VADAPT/t2sum); |
| 111 |
copycolor(veilscan(py)[px], vsum); |
| 112 |
} |
| 113 |
} |
| 114 |
|
| 115 |
|
| 116 |
addveil(sl, y) /* add veil to scanline */ |
| 117 |
COLOR *sl; |
| 118 |
int y; |
| 119 |
{ |
| 120 |
int vx, vy; |
| 121 |
double dx, dy; |
| 122 |
double lv, uv; |
| 123 |
register int x, i; |
| 124 |
|
| 125 |
vy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
| 126 |
if (vy >= fvyr-1) vy--; |
| 127 |
dy -= (double)vy; |
| 128 |
for (x = 0; x < scanlen(&inpres); x++) { |
| 129 |
vx = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
| 130 |
if (vx >= fvxr-1) vx--; |
| 131 |
dx -= (double)vx; |
| 132 |
for (i = 0; i < 3; i++) { |
| 133 |
lv = (1.-dy)*colval(veilscan(vy)[vx],i) + |
| 134 |
dy*colval(veilscan(vy+1)[vx],i); |
| 135 |
uv = (1.-dy)*colval(veilscan(vy)[vx+1],i) + |
| 136 |
dy*colval(veilscan(vy+1)[vx+1],i); |
| 137 |
colval(sl[x],i) = (1.-VADAPT)*colval(sl[x],i) + |
| 138 |
(1.-dx)*lv + dx*uv; |
| 139 |
} |
| 140 |
} |
| 141 |
} |
| 142 |
|
| 143 |
|
| 144 |
/****************** ACUITY STUFF *******************/ |
| 145 |
|
| 146 |
typedef struct scanbar { |
| 147 |
short sampr; /* sample area size (power of 2) */ |
| 148 |
short nscans; /* number of scanlines in this bar */ |
| 149 |
int len; /* individual scanline length */ |
| 150 |
struct scanbar *next; /* next higher resolution scanbar */ |
| 151 |
int nread; /* number of scanlines loaded */ |
| 152 |
/* followed by the scanline data */ |
| 153 |
} SCANBAR; |
| 154 |
|
| 155 |
#define bscan(sb,y) ((COLOR *)((sb)+1)+((y)%(sb)->nscans)*(sb)->len) |
| 156 |
|
| 157 |
SCANBAR *rootbar; /* root scan bar (lowest resolution) */ |
| 158 |
|
| 159 |
float *inpacuD; /* input acuity data (cycles/degree) */ |
| 160 |
|
| 161 |
#define tsampr(x,y) inpacuD[(y)*fvxr+(x)] |
| 162 |
|
| 163 |
|
| 164 |
double |
| 165 |
hacuity(La) /* return visual acuity in cycles/degree */ |
| 166 |
double La; |
| 167 |
{ /* data due to S. Shaler (we should fit it!) */ |
| 168 |
#define NPOINTS 20 |
| 169 |
static float l10lum[NPOINTS] = { |
| 170 |
-3.10503,-2.66403,-2.37703,-2.09303,-1.64403,-1.35803, |
| 171 |
-1.07403,-0.67203,-0.38503,-0.10103,0.29397,0.58097,0.86497, |
| 172 |
1.25697,1.54397,1.82797,2.27597,2.56297,2.84697,3.24897 |
| 173 |
}; |
| 174 |
static float resfreq[NPOINTS] = { |
| 175 |
2.09,3.28,3.79,4.39,6.11,8.83,10.94,18.66,23.88,31.05,37.42, |
| 176 |
37.68,41.60,43.16,45.30,47.00,48.43,48.32,51.06,51.09 |
| 177 |
}; |
| 178 |
double l10La; |
| 179 |
register int i; |
| 180 |
/* interpolate/extrapolate data */ |
| 181 |
l10La = log10(La); |
| 182 |
for (i = 0; i < NPOINTS-2 && l10lum[i+1] <= l10La; i++) |
| 183 |
; |
| 184 |
return( ( (l10lum[i+1] - l10La)*resfreq[i] + |
| 185 |
(l10La - l10lum[i])*resfreq[i+1] ) / |
| 186 |
(l10lum[i+1] - l10lum[i]) ); |
| 187 |
#undef NPOINTS |
| 188 |
} |
| 189 |
|
| 190 |
|
| 191 |
COLOR * |
| 192 |
getascan(sb, y) /* find/read scanline y for scanbar sb */ |
| 193 |
register SCANBAR *sb; |
| 194 |
int y; |
| 195 |
{ |
| 196 |
register COLOR *sl0, *sl1, *mysl; |
| 197 |
register int i; |
| 198 |
|
| 199 |
if (y < sb->nread - sb->nscans) { |
| 200 |
fprintf(stderr, "%s: internal - cannot backspace in getascan\n", |
| 201 |
progname); |
| 202 |
exit(1); |
| 203 |
} |
| 204 |
for ( ; y >= sb->nread; sb->nread++) { /* read as necessary */ |
| 205 |
mysl = bscan(sb, sb->nread); |
| 206 |
if (sb->sampr == 1) { |
| 207 |
if (freadscan(mysl, sb->len, infp) < 0) { |
| 208 |
fprintf(stderr, "%s: %s: scanline read error\n", |
| 209 |
progname, infn); |
| 210 |
exit(1); |
| 211 |
} |
| 212 |
} else { |
| 213 |
sl0 = getascan(sb->next, 2*y); |
| 214 |
sl1 = getascan(sb->next, 2*y+1); |
| 215 |
for (i = 0; i < sb->len; i++) { |
| 216 |
copycolor(mysl[i], sl0[2*i]); |
| 217 |
addcolor(mysl[i], sl0[2*i+1]); |
| 218 |
addcolor(mysl[i], sl1[2*i]); |
| 219 |
addcolor(mysl[i], sl1[2*i+1]); |
| 220 |
scalecolor(mysl[i], 0.25); |
| 221 |
} |
| 222 |
} |
| 223 |
} |
| 224 |
return(bscan(sb, y)); |
| 225 |
} |
| 226 |
|
| 227 |
|
| 228 |
acuscan(scln, y) /* get acuity-sampled scanline */ |
| 229 |
COLOR *scln; |
| 230 |
int y; |
| 231 |
{ |
| 232 |
double sr; |
| 233 |
double dx, dy; |
| 234 |
int ix, iy; |
| 235 |
register int x; |
| 236 |
/* compute foveal y position */ |
| 237 |
iy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
| 238 |
if (iy >= fvyr-1) iy--; |
| 239 |
dy -= (double)iy; |
| 240 |
for (x = 0; x < scanlen(&inpres); x++) { |
| 241 |
/* compute foveal x position */ |
| 242 |
ix = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
| 243 |
if (ix >= fvxr-1) ix--; |
| 244 |
dx -= (double)ix; |
| 245 |
/* interpolate sample rate */ |
| 246 |
sr = (1.-dy)*((1.-dx)*tsampr(ix,iy) + dx*tsampr(ix+1,iy)) + |
| 247 |
dy*((1.-dx)*tsampr(ix,iy+1) + dx*tsampr(ix+1,iy+1)); |
| 248 |
|
| 249 |
acusample(scln[x], x, y, sr); /* compute sample */ |
| 250 |
} |
| 251 |
} |
| 252 |
|
| 253 |
|
| 254 |
acusample(col, x, y, sr) /* interpolate sample at (x,y) using rate sr */ |
| 255 |
COLOR col; |
| 256 |
int x, y; |
| 257 |
double sr; |
| 258 |
{ |
| 259 |
COLOR c1; |
| 260 |
double d; |
| 261 |
register SCANBAR *sb0; |
| 262 |
|
| 263 |
for (sb0 = rootbar; sb0->next != NULL && sb0->next->sampr > sr; |
| 264 |
sb0 = sb0->next) |
| 265 |
; |
| 266 |
ascanval(col, x, y, sb0); |
| 267 |
if (sb0->next == NULL) /* don't extrapolate highest */ |
| 268 |
return; |
| 269 |
ascanval(c1, x, y, sb0->next); |
| 270 |
d = (sb0->sampr - sr)/(sb0->sampr - sb0->next->sampr); |
| 271 |
scalecolor(col, 1.-d); |
| 272 |
scalecolor(c1, d); |
| 273 |
addcolor(col, c1); |
| 274 |
} |
| 275 |
|
| 276 |
|
| 277 |
ascanval(col, x, y, sb) /* interpolate scanbar at orig. coords (x,y) */ |
| 278 |
COLOR col; |
| 279 |
int x, y; |
| 280 |
SCANBAR *sb; |
| 281 |
{ |
| 282 |
COLOR *sl0, *sl1, c1, c1y; |
| 283 |
double dx, dy; |
| 284 |
int ix, iy; |
| 285 |
|
| 286 |
ix = dx = (x+.5)/sb->sampr - .5; |
| 287 |
if (ix >= sb->len-1) ix--; |
| 288 |
dx -= (double)ix; |
| 289 |
iy = dy = (y+.5)/sb->sampr - .5; |
| 290 |
if (iy >= numscans(&inpres)/sb->sampr-1) iy--; |
| 291 |
dy -= (double)iy; |
| 292 |
/* get scanlines */ |
| 293 |
sl0 = getascan(sb, iy); |
| 294 |
sl1 = getascan(sb, iy+1); |
| 295 |
/* 2D linear interpolation */ |
| 296 |
copycolor(col, sl0[ix]); |
| 297 |
scalecolor(col, 1.-dx); |
| 298 |
copycolor(c1, sl0[ix+1]); |
| 299 |
scalecolor(c1, dx); |
| 300 |
addcolor(col, c1); |
| 301 |
copycolor(c1y, sl1[ix]); |
| 302 |
scalecolor(c1y, 1.-dx); |
| 303 |
copycolor(c1, sl1[ix+1]); |
| 304 |
scalecolor(c1, dx); |
| 305 |
addcolor(c1y, c1); |
| 306 |
scalecolor(col, 1.-dy); |
| 307 |
scalecolor(c1y, dy); |
| 308 |
addcolor(col, c1y); |
| 309 |
} |
| 310 |
|
| 311 |
|
| 312 |
SCANBAR * |
| 313 |
sballoc(sr, ns, sl) /* allocate scanbar */ |
| 314 |
int sr; /* sampling rate */ |
| 315 |
int ns; /* number of scanlines */ |
| 316 |
int sl; /* original scanline length */ |
| 317 |
{ |
| 318 |
register SCANBAR *sb; |
| 319 |
|
| 320 |
sb = (SCANBAR *)malloc(sizeof(SCANBAR)+(sl/sr)*ns*sizeof(COLOR)); |
| 321 |
if (sb == NULL) |
| 322 |
syserror("malloc"); |
| 323 |
sb->nscans = ns; |
| 324 |
sb->len = sl/sr; |
| 325 |
sb->nread = 0; |
| 326 |
if ((sb->sampr = sr) > 1) |
| 327 |
sb->next = sballoc(sr/2, ns*2, sl); |
| 328 |
else |
| 329 |
sb->next = NULL; |
| 330 |
return(sb); |
| 331 |
} |
| 332 |
|
| 333 |
|
| 334 |
initacuity() /* initialize variable acuity sampling */ |
| 335 |
{ |
| 336 |
FVECT diffx, diffy, cp; |
| 337 |
double omega, maxsr; |
| 338 |
register int x, y, i; |
| 339 |
|
| 340 |
compraydir(); /* compute ray directions */ |
| 341 |
|
| 342 |
inpacuD = (float *)malloc(fvxr*fvyr*sizeof(float)); |
| 343 |
if (inpacuD == NULL) |
| 344 |
syserror("malloc"); |
| 345 |
maxsr = 1.; /* compute internal sample rates */ |
| 346 |
for (y = 1; y < fvyr-1; y++) |
| 347 |
for (x = 1; x < fvxr-1; x++) { |
| 348 |
for (i = 0; i < 3; i++) { |
| 349 |
diffx[i] = 0.5*fvxr/scanlen(&inpres) * |
| 350 |
(rdirscan(y)[x+1][i] - |
| 351 |
rdirscan(y)[x-1][i]); |
| 352 |
diffy[i] = 0.5*fvyr/numscans(&inpres) * |
| 353 |
(rdirscan(y+1)[x][i] - |
| 354 |
rdirscan(y-1)[x][i]); |
| 355 |
} |
| 356 |
fcross(cp, diffx, diffy); |
| 357 |
omega = 0.5 * sqrt(DOT(cp,cp)); |
| 358 |
tsampr(x,y) = PI/180. / sqrt(omega) / |
| 359 |
hacuity(plum(fovscan(y)[x])); |
| 360 |
if (tsampr(x,y) > maxsr) |
| 361 |
maxsr = tsampr(x,y); |
| 362 |
} |
| 363 |
/* copy perimeter (easier) */ |
| 364 |
for (x = 1; x < fvxr-1; x++) { |
| 365 |
tsampr(x,0) = tsampr(x,1); |
| 366 |
tsampr(x,fvyr-1) = tsampr(x,fvyr-2); |
| 367 |
} |
| 368 |
for (y = 0; y < fvyr; y++) { |
| 369 |
tsampr(y,0) = tsampr(y,1); |
| 370 |
tsampr(y,fvxr-1) = tsampr(y,fvxr-2); |
| 371 |
} |
| 372 |
/* initialize with next power of two */ |
| 373 |
rootbar = sballoc(2<<(int)(log(maxsr)/log(2.)), 2, scanlen(&inpres)); |
| 374 |
} |