| 1 |
greg |
1.1 |
#ifndef lint |
| 2 |
schorsch |
2.4 |
static const char RCSid[] = "$Id: o_cone.c,v 2.3 2004/03/27 12:41:45 schorsch Exp $"; |
| 3 |
greg |
1.1 |
#endif |
| 4 |
|
|
/* |
| 5 |
|
|
* o_cone.c - routines for intersecting cubes with cones. |
| 6 |
|
|
* |
| 7 |
|
|
* 2/3/86 |
| 8 |
|
|
*/ |
| 9 |
|
|
|
| 10 |
|
|
#include "standard.h" |
| 11 |
|
|
#include "octree.h" |
| 12 |
|
|
#include "object.h" |
| 13 |
|
|
#include "cone.h" |
| 14 |
|
|
|
| 15 |
|
|
#define ROOT3 1.732050808 |
| 16 |
|
|
|
| 17 |
|
|
/* |
| 18 |
|
|
* The algorithm used to detect cube intersection with cones is |
| 19 |
|
|
* recursive. First, we approximate the cube to be a sphere. Then |
| 20 |
|
|
* we test for cone intersection with the sphere by testing the |
| 21 |
|
|
* segment of the cone which is nearest the sphere's center. |
| 22 |
|
|
* If the cone has points within the cube's bounding sphere, |
| 23 |
|
|
* we must check for intersection with the cube. This is done with |
| 24 |
|
|
* the 3D line clipper. The same cone segment is used in this test. |
| 25 |
|
|
* If the clip fails, we still cannot be sure there is no intersection, |
| 26 |
|
|
* so we subdivide the cube and recurse. |
| 27 |
|
|
* If none of the sub-cubes intersect, then our cube does not intersect. |
| 28 |
|
|
*/ |
| 29 |
|
|
|
| 30 |
|
|
extern double mincusize; /* minimum cube size */ |
| 31 |
|
|
|
| 32 |
schorsch |
2.3 |
static double findcseg(FVECT ep0, FVECT ep1, CONE *co, FVECT p); |
| 33 |
|
|
|
| 34 |
greg |
1.1 |
|
| 35 |
schorsch |
2.3 |
|
| 36 |
schorsch |
2.4 |
extern int |
| 37 |
|
|
o_cone( /* determine if cone intersects cube */ |
| 38 |
schorsch |
2.3 |
OBJREC *o, |
| 39 |
|
|
register CUBE *cu |
| 40 |
|
|
) |
| 41 |
greg |
1.1 |
{ |
| 42 |
|
|
CONE *co; |
| 43 |
|
|
FVECT ep0, ep1; |
| 44 |
schorsch |
2.3 |
#ifdef STRICT |
| 45 |
greg |
1.1 |
FVECT cumin, cumax; |
| 46 |
|
|
CUBE cukid; |
| 47 |
schorsch |
2.3 |
register int j; |
| 48 |
|
|
#endif |
| 49 |
greg |
1.1 |
double r; |
| 50 |
|
|
FVECT p; |
| 51 |
schorsch |
2.3 |
register int i; |
| 52 |
greg |
1.1 |
/* get cone arguments */ |
| 53 |
|
|
co = getcone(o, 0); |
| 54 |
|
|
/* get cube center */ |
| 55 |
|
|
r = cu->cusize * 0.5; |
| 56 |
|
|
for (i = 0; i < 3; i++) |
| 57 |
|
|
p[i] = cu->cuorg[i] + r; |
| 58 |
|
|
r *= ROOT3; /* bounding radius for cube */ |
| 59 |
|
|
|
| 60 |
|
|
if (findcseg(ep0, ep1, co, p) > 0.0) { |
| 61 |
|
|
/* check min. distance to cone */ |
| 62 |
|
|
if (dist2lseg(p, ep0, ep1) > (r+FTINY)*(r+FTINY)) |
| 63 |
greg |
1.2 |
return(O_MISS); |
| 64 |
greg |
1.1 |
#ifdef STRICT |
| 65 |
|
|
/* get cube boundaries */ |
| 66 |
|
|
for (i = 0; i < 3; i++) |
| 67 |
|
|
cumax[i] = (cumin[i] = cu->cuorg[i]) + cu->cusize; |
| 68 |
|
|
/* closest segment intersects? */ |
| 69 |
|
|
if (clip(ep0, ep1, cumin, cumax)) |
| 70 |
greg |
1.2 |
return(O_HIT); |
| 71 |
greg |
1.1 |
} |
| 72 |
|
|
/* check sub-cubes */ |
| 73 |
|
|
cukid.cusize = cu->cusize * 0.5; |
| 74 |
|
|
if (cukid.cusize < mincusize) |
| 75 |
greg |
1.2 |
return(O_HIT); /* cube too small */ |
| 76 |
greg |
1.1 |
cukid.cutree = EMPTY; |
| 77 |
|
|
|
| 78 |
|
|
for (j = 0; j < 8; j++) { |
| 79 |
|
|
for (i = 0; i < 3; i++) { |
| 80 |
|
|
cukid.cuorg[i] = cu->cuorg[i]; |
| 81 |
|
|
if (1<<i & j) |
| 82 |
|
|
cukid.cuorg[i] += cukid.cusize; |
| 83 |
|
|
} |
| 84 |
|
|
if (o_cone(o, &cukid)) |
| 85 |
greg |
1.2 |
return(O_HIT); /* sub-cube intersects */ |
| 86 |
greg |
1.1 |
} |
| 87 |
greg |
1.2 |
return(O_MISS); /* no intersection */ |
| 88 |
greg |
1.1 |
#else |
| 89 |
|
|
} |
| 90 |
greg |
1.2 |
return(O_HIT); /* assume intersection */ |
| 91 |
greg |
1.1 |
#endif |
| 92 |
|
|
} |
| 93 |
|
|
|
| 94 |
|
|
|
| 95 |
schorsch |
2.3 |
static double |
| 96 |
|
|
findcseg( /* find line segment from cone closest to p */ |
| 97 |
|
|
FVECT ep0, |
| 98 |
|
|
FVECT ep1, |
| 99 |
|
|
register CONE *co, |
| 100 |
|
|
FVECT p |
| 101 |
|
|
) |
| 102 |
greg |
1.1 |
{ |
| 103 |
|
|
double d; |
| 104 |
|
|
FVECT v; |
| 105 |
|
|
register int i; |
| 106 |
|
|
/* find direction from axis to point */ |
| 107 |
|
|
for (i = 0; i < 3; i++) |
| 108 |
|
|
v[i] = p[i] - CO_P0(co)[i]; |
| 109 |
|
|
d = DOT(v, co->ad); |
| 110 |
|
|
for (i = 0; i < 3; i++) |
| 111 |
|
|
v[i] = v[i] - d*co->ad[i]; |
| 112 |
|
|
d = normalize(v); |
| 113 |
|
|
if (d > 0.0) /* find endpoints of segment */ |
| 114 |
|
|
for (i = 0; i < 3; i++) { |
| 115 |
|
|
ep0[i] = CO_R0(co)*v[i] + CO_P0(co)[i]; |
| 116 |
|
|
ep1[i] = CO_R1(co)*v[i] + CO_P1(co)[i]; |
| 117 |
|
|
} |
| 118 |
|
|
return(d); /* return distance from axis */ |
| 119 |
|
|
} |