| 1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */ |
| 2 |
|
| 3 |
#ifndef lint |
| 4 |
static char SCCSid[] = "$SunId$ SGI"; |
| 5 |
#endif |
| 6 |
|
| 7 |
/* |
| 8 |
* Routines for tracking beam compuatations |
| 9 |
*/ |
| 10 |
|
| 11 |
#include "rholo.h" |
| 12 |
|
| 13 |
|
| 14 |
#define abs(x) ((x) > 0 ? (x) : -(x)) |
| 15 |
#define sgn(x) ((x) > 0 ? 1 : (x) < 0 ? -1 : 0) |
| 16 |
|
| 17 |
|
| 18 |
static PACKHEAD *complist; /* list of beams to compute */ |
| 19 |
static int complen; /* length of complist */ |
| 20 |
static int listpos; /* current list position for next_pack */ |
| 21 |
static int lastin; /* last ordered position in list */ |
| 22 |
|
| 23 |
|
| 24 |
int |
| 25 |
weightf(hp, x0, x1, x2) /* voxel weighting function */ |
| 26 |
register HOLO *hp; |
| 27 |
register int x0, x1, x2; |
| 28 |
{ |
| 29 |
switch (vlet(OCCUPANCY)) { |
| 30 |
case 'U': /* uniform weighting */ |
| 31 |
return(1); |
| 32 |
case 'C': /* center weighting (crude) */ |
| 33 |
x0 += x0 - hp->grid[0] + 1; |
| 34 |
x0 = abs(x0)*hp->grid[1]*hp->grid[2]; |
| 35 |
x1 += x1 - hp->grid[1] + 1; |
| 36 |
x1 = abs(x1)*hp->grid[0]*hp->grid[2]; |
| 37 |
x2 += x2 - hp->grid[2] + 1; |
| 38 |
x2 = abs(x2)*hp->grid[0]*hp->grid[1]; |
| 39 |
return(hp->grid[0]*hp->grid[1]*hp->grid[2] - |
| 40 |
(x0+x1+x2)/3); |
| 41 |
default: |
| 42 |
badvalue(OCCUPANCY); |
| 43 |
} |
| 44 |
} |
| 45 |
|
| 46 |
|
| 47 |
/* The following is by Daniel Cohen, taken from Graphics Gems IV, p. 368 */ |
| 48 |
long |
| 49 |
lineweight(hp, x, y, z, dx, dy, dz) /* compute weights along a line */ |
| 50 |
HOLO *hp; |
| 51 |
int x, y, z, dx, dy, dz; |
| 52 |
{ |
| 53 |
long wres = 0; |
| 54 |
int n, sx, sy, sz, exy, exz, ezy, ax, ay, az, bx, by, bz; |
| 55 |
|
| 56 |
sx = sgn(dx); sy = sgn(dy); sz = sgn(dz); |
| 57 |
ax = abs(dx); ay = abs(dy); az = abs(dz); |
| 58 |
bx = 2*ax; by = 2*ay; bz = 2*az; |
| 59 |
exy = ay-ax; exz = az-ax; ezy = ay-az; |
| 60 |
n = ax+ay+az + 1; /* added increment to visit last */ |
| 61 |
while (n--) { |
| 62 |
wres += weightf(hp, x, y, z); |
| 63 |
if (exy < 0) { |
| 64 |
if (exz < 0) { |
| 65 |
x += sx; |
| 66 |
exy += by; exz += bz; |
| 67 |
} else { |
| 68 |
z += sz; |
| 69 |
exz -= bx; ezy += by; |
| 70 |
} |
| 71 |
} else { |
| 72 |
if (ezy < 0) { |
| 73 |
z += sz; |
| 74 |
exz -= bx; ezy += by; |
| 75 |
} else { |
| 76 |
y += sy; |
| 77 |
exy -= bx; ezy -= bz; |
| 78 |
} |
| 79 |
} |
| 80 |
} |
| 81 |
return(wres); |
| 82 |
} |
| 83 |
|
| 84 |
|
| 85 |
int |
| 86 |
beamcmp(b0, b1) /* comparison for descending compute order */ |
| 87 |
register PACKHEAD *b0, *b1; |
| 88 |
{ |
| 89 |
return( b1->nr*(bnrays(hdlist[b0->hd],b0->bi)+1) - |
| 90 |
b0->nr*(bnrays(hdlist[b1->hd],b1->bi)+1) ); |
| 91 |
} |
| 92 |
|
| 93 |
|
| 94 |
init_global() /* initialize global ray computation */ |
| 95 |
{ |
| 96 |
long wtotal = 0; |
| 97 |
int i, j; |
| 98 |
int lseg[2][3]; |
| 99 |
double frac; |
| 100 |
register int k; |
| 101 |
/* allocate beam list */ |
| 102 |
complen = 0; |
| 103 |
for (j = 0; hdlist[j] != NULL; j++) |
| 104 |
complen += nbeams(hdlist[j]); |
| 105 |
complist = (PACKHEAD *)malloc(complen*sizeof(PACKHEAD)); |
| 106 |
if (complist == NULL) |
| 107 |
error(SYSTEM, "out of memory in init_global"); |
| 108 |
/* compute beam weights */ |
| 109 |
k = 0; |
| 110 |
for (j = 0; hdlist[j] != NULL; j++) |
| 111 |
for (i = nbeams(hdlist[j]); i > 0; i--) { |
| 112 |
hdlseg(lseg, hdlist[j], i); |
| 113 |
complist[k].hd = j; |
| 114 |
complist[k].bi = i; |
| 115 |
complist[k].nr = lineweight( hdlist[j], |
| 116 |
lseg[0][0], lseg[0][1], lseg[0][2], |
| 117 |
lseg[1][0] - lseg[0][0], |
| 118 |
lseg[1][1] - lseg[0][1], |
| 119 |
lseg[1][2] - lseg[0][2] ); |
| 120 |
wtotal += complist[k++].nr; |
| 121 |
} |
| 122 |
/* adjust weights */ |
| 123 |
if (vdef(DISKSPACE)) { |
| 124 |
frac = 1024.*1024.*vflt(DISKSPACE) / (wtotal*sizeof(RAYVAL)); |
| 125 |
if (frac < 0.95 | frac > 1.05) |
| 126 |
while (k--) |
| 127 |
complist[k].nr = frac * complist[k].nr; |
| 128 |
} |
| 129 |
listpos = 0; lastin = -1; |
| 130 |
} |
| 131 |
|
| 132 |
|
| 133 |
mergeclists(cdest, cl1, n1, cl2, n2) /* merge two sorted lists */ |
| 134 |
PACKHEAD *cdest; |
| 135 |
PACKHEAD *cl1, *cl2; |
| 136 |
int n1, n2; |
| 137 |
{ |
| 138 |
int cmp; |
| 139 |
|
| 140 |
while (n1 | n2) { |
| 141 |
if (!n1) cmp = 1; |
| 142 |
else if (!n2) cmp = -1; |
| 143 |
else cmp = beamcmp(cl1, cl2); |
| 144 |
if (cmp > 0) { |
| 145 |
copystruct(cdest, cl2); |
| 146 |
cl2++; n2--; |
| 147 |
} else { |
| 148 |
copystruct(cdest, cl1); |
| 149 |
cl1++; n1--; |
| 150 |
} |
| 151 |
cdest++; |
| 152 |
} |
| 153 |
} |
| 154 |
|
| 155 |
|
| 156 |
sortcomplist() /* fix our list order */ |
| 157 |
{ |
| 158 |
PACKHEAD *list2; |
| 159 |
/* empty queue */ |
| 160 |
done_packets(flush_queue()); |
| 161 |
if (lastin < 0) /* flag to sort entire list */ |
| 162 |
qsort((char *)complist, complen, sizeof(PACKHEAD), beamcmp); |
| 163 |
else if (listpos) { /* else sort and merge sublist */ |
| 164 |
list2 = (PACKHEAD *)malloc(listpos*sizeof(PACKHEAD)); |
| 165 |
if (list2 == NULL) |
| 166 |
error(SYSTEM, "out of memory in sortcomplist"); |
| 167 |
bcopy((char *)complist,(char *)list2,listpos*sizeof(PACKHEAD)); |
| 168 |
qsort((char *)list2, listpos, sizeof(PACKHEAD), beamcmp); |
| 169 |
mergeclists(complist, list2, listpos, |
| 170 |
complist+listpos, complen-listpos); |
| 171 |
free((char *)list2); |
| 172 |
} |
| 173 |
listpos = 0; lastin = complen-1; |
| 174 |
} |
| 175 |
|
| 176 |
|
| 177 |
/* |
| 178 |
* The following routine works on the assumption that the bundle weights are |
| 179 |
* more or less evenly distributed, such that computing a packet causes |
| 180 |
* a given bundle to move way down in the computation order. We keep |
| 181 |
* track of where the computed bundle with the highest priority would end |
| 182 |
* up, and if we get further in our compute list than this, we resort the |
| 183 |
* list and start again from the beginning. We have to flush the queue |
| 184 |
* each time we sort, to ensure that we are not disturbing the order. |
| 185 |
* If our major assumption is violated, and we have a very steep |
| 186 |
* descent in our weights, then we will end up resorting much more often |
| 187 |
* than necessary, resulting in frequent flushing of the queue. Since |
| 188 |
* a merge sort is used, the sorting costs will be minimal. |
| 189 |
*/ |
| 190 |
next_packet(p) /* prepare packet for computation */ |
| 191 |
register PACKET *p; |
| 192 |
{ |
| 193 |
int ncomp; |
| 194 |
register int i; |
| 195 |
|
| 196 |
if (complen <= 0) |
| 197 |
return(0); |
| 198 |
if (listpos > lastin) /* time to sort the list */ |
| 199 |
sortcomplist(); |
| 200 |
p->hd = complist[listpos].hd; |
| 201 |
p->bi = complist[listpos].bi; |
| 202 |
ncomp = bnrays(hdlist[p->hd],p->bi); |
| 203 |
p->nr = complist[listpos].nr - ncomp; |
| 204 |
if (p->nr <= 0) |
| 205 |
return(0); |
| 206 |
if (p->nr > RPACKSIZ) |
| 207 |
p->nr = RPACKSIZ; |
| 208 |
ncomp += p->nr; /* find where this one would go */ |
| 209 |
while (lastin > listpos && complist[listpos].nr * |
| 210 |
(bnrays(hdlist[complist[lastin].hd],complist[lastin].bi)+1) |
| 211 |
> complist[lastin].nr * (ncomp+1)) |
| 212 |
lastin--; |
| 213 |
listpos++; |
| 214 |
return(1); |
| 215 |
} |