| 1 |
gregl |
3.1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */
|
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint
|
| 4 |
|
|
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
|
|
#endif
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
|
|
* Routines for tracking beam compuatations
|
| 9 |
|
|
*/
|
| 10 |
|
|
|
| 11 |
|
|
#include "rholo.h"
|
| 12 |
|
|
|
| 13 |
|
|
|
| 14 |
|
|
#define abs(x) ((x) > 0 ? (x) : -(x))
|
| 15 |
|
|
#define sgn(x) ((x) > 0 ? 1 : (x) < 0 ? -1 : 0)
|
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
static PACKHEAD *complist; /* list of beams to compute */
|
| 19 |
|
|
static int complen; /* length of complist */
|
| 20 |
|
|
static int listpos; /* current list position for next_pack */
|
| 21 |
|
|
static int lastin; /* last ordered position in list */
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
int
|
| 25 |
|
|
weightf(hp, x0, x1, x2) /* voxel weighting function */
|
| 26 |
|
|
register HOLO *hp;
|
| 27 |
|
|
register int x0, x1, x2;
|
| 28 |
|
|
{
|
| 29 |
|
|
switch (vlet(OCCUPANCY)) {
|
| 30 |
|
|
case 'U': /* uniform weighting */
|
| 31 |
|
|
return(1);
|
| 32 |
|
|
case 'C': /* center weighting (crude) */
|
| 33 |
|
|
x0 += x0 - hp->grid[0] + 1;
|
| 34 |
|
|
x0 = abs(x0)*hp->grid[1]*hp->grid[2];
|
| 35 |
|
|
x1 += x1 - hp->grid[1] + 1;
|
| 36 |
|
|
x1 = abs(x1)*hp->grid[0]*hp->grid[2];
|
| 37 |
|
|
x2 += x2 - hp->grid[2] + 1;
|
| 38 |
|
|
x2 = abs(x2)*hp->grid[0]*hp->grid[1];
|
| 39 |
|
|
return(hp->grid[0]*hp->grid[1]*hp->grid[2] -
|
| 40 |
|
|
(x0+x1+x2)/3);
|
| 41 |
|
|
default:
|
| 42 |
|
|
badvalue(OCCUPANCY);
|
| 43 |
|
|
}
|
| 44 |
|
|
}
|
| 45 |
|
|
|
| 46 |
|
|
|
| 47 |
|
|
/* The following is by Daniel Cohen, taken from Graphics Gems IV, p. 368 */
|
| 48 |
|
|
long
|
| 49 |
|
|
lineweight(hp, x, y, z, dx, dy, dz) /* compute weights along a line */
|
| 50 |
|
|
HOLO *hp;
|
| 51 |
|
|
int x, y, z, dx, dy, dz;
|
| 52 |
|
|
{
|
| 53 |
|
|
long wres = 0;
|
| 54 |
|
|
int n, sx, sy, sz, exy, exz, ezy, ax, ay, az, bx, by, bz;
|
| 55 |
|
|
|
| 56 |
|
|
sx = sgn(dx); sy = sgn(dy); sz = sgn(dz);
|
| 57 |
|
|
ax = abs(dx); ay = abs(dy); az = abs(dz);
|
| 58 |
|
|
bx = 2*ax; by = 2*ay; bz = 2*az;
|
| 59 |
|
|
exy = ay-ax; exz = az-ax; ezy = ay-az;
|
| 60 |
|
|
n = ax+ay+az + 1; /* added increment to visit last */
|
| 61 |
|
|
while (n--) {
|
| 62 |
|
|
wres += weightf(hp, x, y, z);
|
| 63 |
|
|
if (exy < 0) {
|
| 64 |
|
|
if (exz < 0) {
|
| 65 |
|
|
x += sx;
|
| 66 |
|
|
exy += by; exz += bz;
|
| 67 |
|
|
} else {
|
| 68 |
|
|
z += sz;
|
| 69 |
|
|
exz -= bx; ezy += by;
|
| 70 |
|
|
}
|
| 71 |
|
|
} else {
|
| 72 |
|
|
if (ezy < 0) {
|
| 73 |
|
|
z += sz;
|
| 74 |
|
|
exz -= bx; ezy += by;
|
| 75 |
|
|
} else {
|
| 76 |
|
|
y += sy;
|
| 77 |
|
|
exy -= bx; ezy -= bz;
|
| 78 |
|
|
}
|
| 79 |
|
|
}
|
| 80 |
|
|
}
|
| 81 |
|
|
return(wres);
|
| 82 |
|
|
}
|
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
int
|
| 86 |
|
|
beamcmp(b0, b1) /* comparison for descending compute order */
|
| 87 |
|
|
register PACKHEAD *b0, *b1;
|
| 88 |
|
|
{
|
| 89 |
|
|
return( b1->nr*(bnrays(hdlist[b0->hd],b0->bi)+1) -
|
| 90 |
|
|
b0->nr*(bnrays(hdlist[b1->hd],b1->bi)+1) );
|
| 91 |
|
|
}
|
| 92 |
|
|
|
| 93 |
|
|
|
| 94 |
|
|
init_global() /* initialize global ray computation */
|
| 95 |
|
|
{
|
| 96 |
|
|
long wtotal = 0;
|
| 97 |
|
|
int i, j;
|
| 98 |
|
|
int lseg[2][3];
|
| 99 |
|
|
double frac;
|
| 100 |
|
|
register int k;
|
| 101 |
|
|
/* allocate beam list */
|
| 102 |
|
|
complen = 0;
|
| 103 |
|
|
for (j = 0; hdlist[j] != NULL; j++)
|
| 104 |
|
|
complen += nbeams(hdlist[j]);
|
| 105 |
|
|
complist = (PACKHEAD *)malloc(complen*sizeof(PACKHEAD));
|
| 106 |
|
|
if (complist == NULL)
|
| 107 |
|
|
error(SYSTEM, "out of memory in init_global");
|
| 108 |
|
|
/* compute beam weights */
|
| 109 |
|
|
k = 0;
|
| 110 |
|
|
for (j = 0; hdlist[j] != NULL; j++)
|
| 111 |
|
|
for (i = nbeams(hdlist[j]); i > 0; i--) {
|
| 112 |
|
|
hdlseg(lseg, hdlist[j], i);
|
| 113 |
|
|
complist[k].hd = j;
|
| 114 |
|
|
complist[k].bi = i;
|
| 115 |
|
|
complist[k].nr = lineweight( hdlist[j],
|
| 116 |
|
|
lseg[0][0], lseg[0][1], lseg[0][2],
|
| 117 |
|
|
lseg[1][0] - lseg[0][0],
|
| 118 |
|
|
lseg[1][1] - lseg[0][1],
|
| 119 |
|
|
lseg[1][2] - lseg[0][2] );
|
| 120 |
|
|
wtotal += complist[k++].nr;
|
| 121 |
|
|
}
|
| 122 |
|
|
/* adjust weights */
|
| 123 |
|
|
if (vdef(DISKSPACE)) {
|
| 124 |
|
|
frac = 1024.*1024.*vflt(DISKSPACE) / (wtotal*sizeof(RAYVAL));
|
| 125 |
|
|
if (frac < 0.95 | frac > 1.05)
|
| 126 |
|
|
while (k--)
|
| 127 |
|
|
complist[k].nr = frac * complist[k].nr;
|
| 128 |
|
|
}
|
| 129 |
|
|
listpos = 0; lastin = -1;
|
| 130 |
|
|
}
|
| 131 |
|
|
|
| 132 |
|
|
|
| 133 |
|
|
mergeclists(cdest, cl1, n1, cl2, n2) /* merge two sorted lists */
|
| 134 |
|
|
PACKHEAD *cdest;
|
| 135 |
|
|
PACKHEAD *cl1, *cl2;
|
| 136 |
|
|
int n1, n2;
|
| 137 |
|
|
{
|
| 138 |
|
|
int cmp;
|
| 139 |
|
|
|
| 140 |
|
|
while (n1 | n2) {
|
| 141 |
|
|
if (!n1) cmp = 1;
|
| 142 |
|
|
else if (!n2) cmp = -1;
|
| 143 |
|
|
else cmp = beamcmp(cl1, cl2);
|
| 144 |
|
|
if (cmp > 0) {
|
| 145 |
|
|
copystruct(cdest, cl2);
|
| 146 |
|
|
cl2++; n2--;
|
| 147 |
|
|
} else {
|
| 148 |
|
|
copystruct(cdest, cl1);
|
| 149 |
|
|
cl1++; n1--;
|
| 150 |
|
|
}
|
| 151 |
|
|
cdest++;
|
| 152 |
|
|
}
|
| 153 |
|
|
}
|
| 154 |
|
|
|
| 155 |
|
|
|
| 156 |
|
|
sortcomplist() /* fix our list order */
|
| 157 |
|
|
{
|
| 158 |
|
|
PACKHEAD *list2;
|
| 159 |
|
|
/* empty queue */
|
| 160 |
|
|
done_packets(flush_queue());
|
| 161 |
|
|
if (lastin < 0) /* flag to sort entire list */
|
| 162 |
|
|
qsort((char *)complist, complen, sizeof(PACKHEAD), beamcmp);
|
| 163 |
|
|
else if (listpos) { /* else sort and merge sublist */
|
| 164 |
|
|
list2 = (PACKHEAD *)malloc(listpos*sizeof(PACKHEAD));
|
| 165 |
|
|
if (list2 == NULL)
|
| 166 |
|
|
error(SYSTEM, "out of memory in sortcomplist");
|
| 167 |
|
|
bcopy((char *)complist,(char *)list2,listpos*sizeof(PACKHEAD));
|
| 168 |
|
|
qsort((char *)list2, listpos, sizeof(PACKHEAD), beamcmp);
|
| 169 |
|
|
mergeclists(complist, list2, listpos,
|
| 170 |
|
|
complist+listpos, complen-listpos);
|
| 171 |
|
|
free((char *)list2);
|
| 172 |
|
|
}
|
| 173 |
|
|
listpos = 0; lastin = complen-1;
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
|
| 177 |
|
|
/*
|
| 178 |
|
|
* The following routine works on the assumption that the bundle weights are
|
| 179 |
|
|
* more or less evenly distributed, such that computing a packet causes
|
| 180 |
|
|
* a given bundle to move way down in the computation order. We keep
|
| 181 |
|
|
* track of where the computed bundle with the highest priority would end
|
| 182 |
|
|
* up, and if we get further in our compute list than this, we resort the
|
| 183 |
|
|
* list and start again from the beginning. We have to flush the queue
|
| 184 |
|
|
* each time we sort, to ensure that we are not disturbing the order.
|
| 185 |
|
|
* If our major assumption is violated, and we have a very steep
|
| 186 |
|
|
* descent in our weights, then we will end up resorting much more often
|
| 187 |
|
|
* than necessary, resulting in frequent flushing of the queue. Since
|
| 188 |
|
|
* a merge sort is used, the sorting costs will be minimal.
|
| 189 |
|
|
*/
|
| 190 |
|
|
next_packet(p) /* prepare packet for computation */
|
| 191 |
|
|
register PACKET *p;
|
| 192 |
|
|
{
|
| 193 |
|
|
int ncomp;
|
| 194 |
|
|
register int i;
|
| 195 |
|
|
|
| 196 |
|
|
if (complen <= 0)
|
| 197 |
|
|
return(0);
|
| 198 |
|
|
if (listpos > lastin) /* time to sort the list */
|
| 199 |
|
|
sortcomplist();
|
| 200 |
|
|
p->hd = complist[listpos].hd;
|
| 201 |
|
|
p->bi = complist[listpos].bi;
|
| 202 |
|
|
ncomp = bnrays(hdlist[p->hd],p->bi);
|
| 203 |
|
|
p->nr = complist[listpos].nr - ncomp;
|
| 204 |
|
|
if (p->nr <= 0)
|
| 205 |
|
|
return(0);
|
| 206 |
|
|
if (p->nr > RPACKSIZ)
|
| 207 |
|
|
p->nr = RPACKSIZ;
|
| 208 |
|
|
ncomp += p->nr; /* find where this one would go */
|
| 209 |
|
|
while (lastin > listpos && complist[listpos].nr *
|
| 210 |
|
|
(bnrays(hdlist[complist[lastin].hd],complist[lastin].bi)+1)
|
| 211 |
|
|
> complist[lastin].nr * (ncomp+1))
|
| 212 |
|
|
lastin--;
|
| 213 |
|
|
listpos++;
|
| 214 |
|
|
return(1);
|
| 215 |
|
|
}
|