| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: rhdisp3.c,v 3.15 2004/01/01 11:21:55 schorsch Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* Holodeck beam support for display process |
| 6 |
*/ |
| 7 |
|
| 8 |
#include "rholo.h" |
| 9 |
#include "rhdisp.h" |
| 10 |
|
| 11 |
struct cellist { |
| 12 |
GCOORD *cl; |
| 13 |
int n; |
| 14 |
}; |
| 15 |
|
| 16 |
|
| 17 |
int |
| 18 |
npixels(vp, hr, vr, hp, bi) /* compute appropriate nrays to evaluate */ |
| 19 |
register VIEW *vp; |
| 20 |
int hr, vr; |
| 21 |
HOLO *hp; |
| 22 |
int bi; |
| 23 |
{ |
| 24 |
VIEW vrev; |
| 25 |
GCOORD gc[2]; |
| 26 |
FVECT cp[4], ip[4], pf, pb; |
| 27 |
double af, ab, sf2, sb2, dfb2, df2, db2, penalty; |
| 28 |
register int i; |
| 29 |
/* special case */ |
| 30 |
if (hr <= 0 | vr <= 0) |
| 31 |
return(0); |
| 32 |
/* compute cell corners in image */ |
| 33 |
if (!hdbcoord(gc, hp, bi)) |
| 34 |
error(CONSISTENCY, "bad beam index in npixels"); |
| 35 |
hdcell(cp, hp, gc+1); /* find cell on front image */ |
| 36 |
for (i = 3; i--; ) /* compute front center */ |
| 37 |
pf[i] = 0.5*(cp[0][i] + cp[2][i]); |
| 38 |
sf2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ |
| 39 |
for (i = 0; i < 4; i++) { /* compute visible quad */ |
| 40 |
viewloc(ip[i], vp, cp[i]); |
| 41 |
if (ip[i][2] < 0.) { |
| 42 |
af = 0; |
| 43 |
goto getback; |
| 44 |
} |
| 45 |
ip[i][0] *= (double)hr; /* scale by resolution */ |
| 46 |
ip[i][1] *= (double)vr; |
| 47 |
} |
| 48 |
/* compute front area */ |
| 49 |
af = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - |
| 50 |
(ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); |
| 51 |
af += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - |
| 52 |
(ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); |
| 53 |
af *= af >= 0 ? 0.5 : -0.5; |
| 54 |
getback: |
| 55 |
vrev = *vp; /* compute reverse view */ |
| 56 |
for (i = 0; i < 3; i++) { |
| 57 |
vrev.vdir[i] = -vp->vdir[i]; |
| 58 |
vrev.vup[i] = -vp->vup[i]; |
| 59 |
vrev.hvec[i] = -vp->hvec[i]; |
| 60 |
vrev.vvec[i] = -vp->vvec[i]; |
| 61 |
} |
| 62 |
hdcell(cp, hp, gc); /* find cell on back image */ |
| 63 |
for (i = 3; i--; ) /* compute rear center */ |
| 64 |
pb[i] = 0.5*(cp[0][i] + cp[2][i]); |
| 65 |
sb2 = 0.25*dist2(cp[0], cp[2]); /* compute half diagonal length */ |
| 66 |
for (i = 0; i < 4; i++) { /* compute visible quad */ |
| 67 |
viewloc(ip[i], &vrev, cp[i]); |
| 68 |
if (ip[i][2] < 0.) { |
| 69 |
ab = 0; |
| 70 |
goto finish; |
| 71 |
} |
| 72 |
ip[i][0] *= (double)hr; /* scale by resolution */ |
| 73 |
ip[i][1] *= (double)vr; |
| 74 |
} |
| 75 |
/* compute back area */ |
| 76 |
ab = (ip[1][0]-ip[0][0])*(ip[2][1]-ip[0][1]) - |
| 77 |
(ip[2][0]-ip[0][0])*(ip[1][1]-ip[0][1]); |
| 78 |
ab += (ip[2][0]-ip[3][0])*(ip[1][1]-ip[3][1]) - |
| 79 |
(ip[1][0]-ip[3][0])*(ip[2][1]-ip[3][1]); |
| 80 |
ab *= ab >= 0 ? 0.5 : -0.5; |
| 81 |
finish: /* compute penalty based on dist. sightline - viewpoint */ |
| 82 |
df2 = dist2(vp->vp, pf); |
| 83 |
db2 = dist2(vp->vp, pb); |
| 84 |
dfb2 = dist2(pf, pb); |
| 85 |
penalty = dfb2 + df2 - db2; |
| 86 |
penalty = df2 - 0.25*penalty*penalty/dfb2; |
| 87 |
if (df2 > db2) penalty /= df2 <= dfb2 ? sb2 : sb2*df2/dfb2; |
| 88 |
else penalty /= db2 <= dfb2 ? sf2 : sf2*db2/dfb2; |
| 89 |
if (penalty < 1.) penalty = 1.; |
| 90 |
/* round off smaller non-zero area */ |
| 91 |
if (ab <= FTINY || (af > FTINY && af <= ab)) |
| 92 |
return((int)(af/penalty + 0.5)); |
| 93 |
return((int)(ab/penalty + 0.5)); |
| 94 |
} |
| 95 |
|
| 96 |
|
| 97 |
/* |
| 98 |
* The ray directions that define the pyramid in visit_cells() needn't |
| 99 |
* be normalized, but they must be given in clockwise order as seen |
| 100 |
* from the pyramid's apex (origin). |
| 101 |
* If no cell centers fall within the domain, the closest cell is visited. |
| 102 |
*/ |
| 103 |
int |
| 104 |
visit_cells(orig, pyrd, hp, vf, dp) /* visit cells within a pyramid */ |
| 105 |
FVECT orig, pyrd[4]; /* pyramid ray directions in clockwise order */ |
| 106 |
register HOLO *hp; |
| 107 |
int (*vf)(); |
| 108 |
char *dp; |
| 109 |
{ |
| 110 |
int ncalls = 0, n = 0; |
| 111 |
int inflags = 0; |
| 112 |
FVECT gp, pn[4], lo, ld; |
| 113 |
double po[4], lbeg, lend, d, t; |
| 114 |
GCOORD gc, gc2[2]; |
| 115 |
register int i; |
| 116 |
/* figure out whose side we're on */ |
| 117 |
hdgrid(gp, hp, orig); |
| 118 |
for (i = 0; i < 3; i++) { |
| 119 |
inflags |= (gp[i] > FTINY) << (i<<1); |
| 120 |
inflags |= (gp[i] < hp->grid[i]-FTINY) << (i<<1 | 1); |
| 121 |
} |
| 122 |
/* compute pyramid planes */ |
| 123 |
for (i = 0; i < 4; i++) { |
| 124 |
fcross(pn[i], pyrd[i], pyrd[(i+1)&03]); |
| 125 |
po[i] = DOT(pn[i], orig); |
| 126 |
} |
| 127 |
/* traverse each wall */ |
| 128 |
for (gc.w = 0; gc.w < 6; gc.w++) { |
| 129 |
if (!(inflags & 1<<gc.w)) /* origin on wrong side */ |
| 130 |
continue; |
| 131 |
/* scanline algorithm */ |
| 132 |
for (gc.i[1] = hp->grid[hdwg1[gc.w]]; gc.i[1]--; ) { |
| 133 |
/* compute scanline */ |
| 134 |
gp[gc.w>>1] = gc.w&1 ? hp->grid[gc.w>>1] : 0; |
| 135 |
gp[hdwg0[gc.w]] = 0; |
| 136 |
gp[hdwg1[gc.w]] = gc.i[1] + 0.5; |
| 137 |
hdworld(lo, hp, gp); |
| 138 |
gp[hdwg0[gc.w]] = 1; |
| 139 |
hdworld(ld, hp, gp); |
| 140 |
ld[0] -= lo[0]; ld[1] -= lo[1]; ld[2] -= lo[2]; |
| 141 |
/* find scanline limits */ |
| 142 |
lbeg = 0; lend = hp->grid[hdwg0[gc.w]]; |
| 143 |
for (i = 0; i < 4; i++) { |
| 144 |
t = DOT(pn[i], lo) - po[i]; |
| 145 |
d = -DOT(pn[i], ld); |
| 146 |
if (d > FTINY) { /* <- plane */ |
| 147 |
if ((t /= d) < lend) |
| 148 |
lend = t; |
| 149 |
} else if (d < -FTINY) { /* plane -> */ |
| 150 |
if ((t /= d) > lbeg) |
| 151 |
lbeg = t; |
| 152 |
} else if (t < 0) { /* outside */ |
| 153 |
lend = -1; |
| 154 |
break; |
| 155 |
} |
| 156 |
} |
| 157 |
if (lbeg >= lend) |
| 158 |
continue; |
| 159 |
i = lend + .5; /* visit cells on this scan */ |
| 160 |
for (gc.i[0] = lbeg + .5; gc.i[0] < i; gc.i[0]++) { |
| 161 |
n += (*vf)(&gc, dp); |
| 162 |
ncalls++; |
| 163 |
} |
| 164 |
} |
| 165 |
} |
| 166 |
if (ncalls) /* got one at least */ |
| 167 |
return(n); |
| 168 |
/* else find closest cell */ |
| 169 |
VSUM(ld, pyrd[0], pyrd[1], 1.); |
| 170 |
VSUM(ld, ld, pyrd[2], 1.); |
| 171 |
VSUM(ld, ld, pyrd[3], 1.); |
| 172 |
#if 0 |
| 173 |
if (normalize(ld) == 0.0) /* technically not necessary */ |
| 174 |
return(0); |
| 175 |
#endif |
| 176 |
d = hdinter(gc2, NULL, &t, hp, orig, ld); |
| 177 |
if (d >= FHUGE || t <= 0.) |
| 178 |
return(0); |
| 179 |
return((*vf)(gc2+1, dp)); /* visit it */ |
| 180 |
} |
| 181 |
|
| 182 |
|
| 183 |
sect_behind(hp, vp) /* check if section is "behind" viewpoint */ |
| 184 |
register HOLO *hp; |
| 185 |
register VIEW *vp; |
| 186 |
{ |
| 187 |
FVECT hcent; |
| 188 |
/* compute holodeck section center */ |
| 189 |
VSUM(hcent, hp->orig, hp->xv[0], 0.5); |
| 190 |
VSUM(hcent, hcent, hp->xv[1], 0.5); |
| 191 |
VSUM(hcent, hcent, hp->xv[2], 0.5); |
| 192 |
/* behind if center is behind */ |
| 193 |
return(DOT(vp->vdir,hcent) < DOT(vp->vdir,vp->vp)); |
| 194 |
} |
| 195 |
|
| 196 |
|
| 197 |
viewpyramid(org, dir, hp, vp) /* compute view pyramid */ |
| 198 |
FVECT org, dir[4]; |
| 199 |
HOLO *hp; |
| 200 |
VIEW *vp; |
| 201 |
{ |
| 202 |
register int i; |
| 203 |
/* check view type */ |
| 204 |
if (vp->type == VT_PAR) |
| 205 |
return(0); |
| 206 |
/* in front or behind? */ |
| 207 |
if (!sect_behind(hp, vp)) { |
| 208 |
if (viewray(org, dir[0], vp, 0., 0.) < -FTINY) |
| 209 |
return(0); |
| 210 |
if (viewray(org, dir[1], vp, 0., 1.) < -FTINY) |
| 211 |
return(0); |
| 212 |
if (viewray(org, dir[2], vp, 1., 1.) < -FTINY) |
| 213 |
return(0); |
| 214 |
if (viewray(org, dir[3], vp, 1., 0.) < -FTINY) |
| 215 |
return(0); |
| 216 |
return(1); |
| 217 |
} /* reverse pyramid */ |
| 218 |
if (viewray(org, dir[3], vp, 0., 0.) < -FTINY) |
| 219 |
return(0); |
| 220 |
if (viewray(org, dir[2], vp, 0., 1.) < -FTINY) |
| 221 |
return(0); |
| 222 |
if (viewray(org, dir[1], vp, 1., 1.) < -FTINY) |
| 223 |
return(0); |
| 224 |
if (viewray(org, dir[0], vp, 1., 0.) < -FTINY) |
| 225 |
return(0); |
| 226 |
for (i = 0; i < 3; i++) { |
| 227 |
dir[0][i] = -dir[0][i]; |
| 228 |
dir[1][i] = -dir[1][i]; |
| 229 |
dir[2][i] = -dir[2][i]; |
| 230 |
dir[3][i] = -dir[3][i]; |
| 231 |
} |
| 232 |
return(-1); |
| 233 |
} |
| 234 |
|
| 235 |
|
| 236 |
int |
| 237 |
addcell(gcp, cl) /* add a cell to a list */ |
| 238 |
GCOORD *gcp; |
| 239 |
register struct cellist *cl; |
| 240 |
{ |
| 241 |
*(cl->cl+cl->n) = *gcp; |
| 242 |
cl->n++; |
| 243 |
return(1); |
| 244 |
} |
| 245 |
|
| 246 |
|
| 247 |
int |
| 248 |
cellcmp(gcp1, gcp2) /* visit_cells() cell ordering */ |
| 249 |
register GCOORD *gcp1, *gcp2; |
| 250 |
{ |
| 251 |
register int c; |
| 252 |
|
| 253 |
if ((c = gcp1->w - gcp2->w)) |
| 254 |
return(c); |
| 255 |
if ((c = gcp2->i[1] - gcp1->i[1])) /* wg1 is reverse-ordered */ |
| 256 |
return(c); |
| 257 |
return(gcp1->i[0] - gcp2->i[0]); |
| 258 |
} |
| 259 |
|
| 260 |
|
| 261 |
GCOORD * |
| 262 |
getviewcells(np, hp, vp) /* get ordered cell list for section view */ |
| 263 |
int *np; /* returned number of cells (negative if reversed) */ |
| 264 |
register HOLO *hp; |
| 265 |
VIEW *vp; |
| 266 |
{ |
| 267 |
FVECT org, dir[4]; |
| 268 |
int orient; |
| 269 |
struct cellist cl; |
| 270 |
/* compute view pyramid */ |
| 271 |
*np = 0; |
| 272 |
orient = viewpyramid(org, dir, hp, vp); |
| 273 |
if (!orient) |
| 274 |
return(NULL); |
| 275 |
/* allocate enough list space */ |
| 276 |
cl.n = 2*( hp->grid[0]*hp->grid[1] + |
| 277 |
hp->grid[0]*hp->grid[2] + |
| 278 |
hp->grid[1]*hp->grid[2] ); |
| 279 |
cl.cl = (GCOORD *)malloc(cl.n*sizeof(GCOORD)); |
| 280 |
if (cl.cl == NULL) |
| 281 |
goto memerr; |
| 282 |
cl.n = 0; /* add cells within pyramid */ |
| 283 |
visit_cells(org, dir, hp, addcell, (char *)&cl); |
| 284 |
if (!cl.n) { |
| 285 |
free((void *)cl.cl); |
| 286 |
return(NULL); |
| 287 |
} |
| 288 |
*np = cl.n * orient; |
| 289 |
#if 0 |
| 290 |
/* We're just going to free this memory in a moment, and list is |
| 291 |
* sorted automatically by visit_cells(), so we don't need this. |
| 292 |
*/ |
| 293 |
/* optimize memory use */ |
| 294 |
cl.cl = (GCOORD *)realloc((void *)cl.cl, cl.n*sizeof(GCOORD)); |
| 295 |
if (cl.cl == NULL) |
| 296 |
goto memerr; |
| 297 |
/* sort the list */ |
| 298 |
qsort((char *)cl.cl, cl.n, sizeof(GCOORD), cellcmp); |
| 299 |
#endif |
| 300 |
return(cl.cl); |
| 301 |
memerr: |
| 302 |
error(SYSTEM, "out of memory in getviewcells"); |
| 303 |
} |
| 304 |
|
| 305 |
|
| 306 |
extern void |
| 307 |
gridlines( /* run through holodeck section grid lines */ |
| 308 |
void (*f)(FVECT wp[2]) |
| 309 |
) |
| 310 |
{ |
| 311 |
register int hd, w, i; |
| 312 |
int g0, g1; |
| 313 |
FVECT wp[2], mov; |
| 314 |
double d; |
| 315 |
/* do each wall on each section */ |
| 316 |
for (hd = 0; hdlist[hd] != NULL; hd++) |
| 317 |
for (w = 0; w < 6; w++) { |
| 318 |
g0 = hdwg0[w]; |
| 319 |
g1 = hdwg1[w]; |
| 320 |
d = 1.0/hdlist[hd]->grid[g0]; |
| 321 |
mov[0] = d * hdlist[hd]->xv[g0][0]; |
| 322 |
mov[1] = d * hdlist[hd]->xv[g0][1]; |
| 323 |
mov[2] = d * hdlist[hd]->xv[g0][2]; |
| 324 |
if (w & 1) { |
| 325 |
VSUM(wp[0], hdlist[hd]->orig, |
| 326 |
hdlist[hd]->xv[w>>1], 1.); |
| 327 |
VSUM(wp[0], wp[0], mov, 1.); |
| 328 |
} else |
| 329 |
VCOPY(wp[0], hdlist[hd]->orig); |
| 330 |
VSUM(wp[1], wp[0], hdlist[hd]->xv[g1], 1.); |
| 331 |
for (i = hdlist[hd]->grid[g0]; ; ) { /* g0 lines */ |
| 332 |
(*f)(wp); |
| 333 |
if (!--i) break; |
| 334 |
wp[0][0] += mov[0]; wp[0][1] += mov[1]; |
| 335 |
wp[0][2] += mov[2]; wp[1][0] += mov[0]; |
| 336 |
wp[1][1] += mov[1]; wp[1][2] += mov[2]; |
| 337 |
} |
| 338 |
d = 1.0/hdlist[hd]->grid[g1]; |
| 339 |
mov[0] = d * hdlist[hd]->xv[g1][0]; |
| 340 |
mov[1] = d * hdlist[hd]->xv[g1][1]; |
| 341 |
mov[2] = d * hdlist[hd]->xv[g1][2]; |
| 342 |
if (w & 1) |
| 343 |
VSUM(wp[0], hdlist[hd]->orig, |
| 344 |
hdlist[hd]->xv[w>>1], 1.); |
| 345 |
else |
| 346 |
VSUM(wp[0], hdlist[hd]->orig, mov, 1.); |
| 347 |
VSUM(wp[1], wp[0], hdlist[hd]->xv[g0], 1.); |
| 348 |
for (i = hdlist[hd]->grid[g1]; ; ) { /* g1 lines */ |
| 349 |
(*f)(wp); |
| 350 |
if (!--i) break; |
| 351 |
wp[0][0] += mov[0]; wp[0][1] += mov[1]; |
| 352 |
wp[0][2] += mov[2]; wp[1][0] += mov[0]; |
| 353 |
wp[1][1] += mov[1]; wp[1][2] += mov[2]; |
| 354 |
} |
| 355 |
} |
| 356 |
} |