| 1 |
/* Copyright (c) 1997 Silicon Graphics, Inc. */
|
| 2 |
|
| 3 |
#ifndef lint
|
| 4 |
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
#endif
|
| 6 |
|
| 7 |
/*
|
| 8 |
* Routines for converting holodeck coordinates, etc.
|
| 9 |
*
|
| 10 |
* 10/22/97 GWLarson
|
| 11 |
*/
|
| 12 |
|
| 13 |
#include "holo.h"
|
| 14 |
|
| 15 |
float hd_depthmap[DCINF-DCLIN];
|
| 16 |
|
| 17 |
static double logstep;
|
| 18 |
|
| 19 |
static int wg0[6] = {1,1,2,2,0,0};
|
| 20 |
static int wg1[6] = {2,2,0,0,1,1};
|
| 21 |
|
| 22 |
|
| 23 |
hdcompgrid(hp) /* compute derived grid vector and index */
|
| 24 |
register HOLO *hp;
|
| 25 |
{
|
| 26 |
double d;
|
| 27 |
register int i, j;
|
| 28 |
/* initialize depth map */
|
| 29 |
if (hd_depthmap[0] < 1.) {
|
| 30 |
d = 1. + .5/DCLIN;
|
| 31 |
for (i = 0; i < DCINF-DCLIN; i++) {
|
| 32 |
hd_depthmap[i] = d;
|
| 33 |
d *= 1. + 1./DCLIN;
|
| 34 |
}
|
| 35 |
logstep = log(1. + 1./DCLIN);
|
| 36 |
}
|
| 37 |
/* compute grid coordinate vectors */
|
| 38 |
for (i = 0; i < 3; i++) {
|
| 39 |
fcross(hp->wn[i], hp->xv[(i+1)%3], hp->xv[(i+2)%3]);
|
| 40 |
if (normalize(hp->wn[i]) == 0.)
|
| 41 |
error(USER, "degenerate holodeck section");
|
| 42 |
hp->wo[i<<1] = DOT(hp->wn[i],hp->orig);
|
| 43 |
d = DOT(hp->wn[i],hp->xv[i]);
|
| 44 |
hp->wo[i<<1|1] = hp->wo[i<<1] + d;
|
| 45 |
hp->wg[i] = (double)hp->grid[i] / d;
|
| 46 |
}
|
| 47 |
/* compute linear depth range */
|
| 48 |
hp->tlin = VLEN(hp->xv[0]) + VLEN(hp->xv[1]) + VLEN(hp->xv[2]);
|
| 49 |
/* compute wall super-indices from grid */
|
| 50 |
hp->wi[0] = 1; /**** index values begin at 1 ****/
|
| 51 |
for (i = 1; i < 6; i++) {
|
| 52 |
hp->wi[i] = 0;
|
| 53 |
for (j = i; j < 6; j++)
|
| 54 |
hp->wi[i] += hp->grid[wg0[j]] * hp->grid[wg1[j]];
|
| 55 |
hp->wi[i] *= hp->grid[wg0[i-1]] * hp->grid[wg1[i-1]];
|
| 56 |
hp->wi[i] += hp->wi[i-1];
|
| 57 |
}
|
| 58 |
}
|
| 59 |
|
| 60 |
|
| 61 |
HOLO *
|
| 62 |
hdalloc(hproto) /* allocate and set holodeck section based on grid */
|
| 63 |
HDGRID *hproto;
|
| 64 |
{
|
| 65 |
HOLO hdhead;
|
| 66 |
register HOLO *hp;
|
| 67 |
int n;
|
| 68 |
/* copy grid to temporary header */
|
| 69 |
bcopy((char *)hproto, (char *)&hdhead, sizeof(HDGRID));
|
| 70 |
/* compute grid vectors and sizes */
|
| 71 |
hdcompgrid(&hdhead);
|
| 72 |
/* allocate header with directory */
|
| 73 |
n = sizeof(HOLO)+nbeams(&hdhead)*sizeof(BEAMI);
|
| 74 |
if ((hp = (HOLO *)malloc(n)) == NULL)
|
| 75 |
return(NULL);
|
| 76 |
/* copy header information */
|
| 77 |
copystruct(hp, &hdhead);
|
| 78 |
/* allocate and clear beam list */
|
| 79 |
hp->bl = (BEAM **)malloc((nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
|
| 80 |
if (hp->bl == NULL) {
|
| 81 |
free((char *)hp);
|
| 82 |
return(NULL);
|
| 83 |
}
|
| 84 |
bzero((char *)hp->bl, (nbeams(hp)+1)*sizeof(BEAM *)+sizeof(BEAM));
|
| 85 |
hp->bl[0] = (BEAM *)(hp->bl+nbeams(hp)+1); /* set blglob(hp) */
|
| 86 |
hp->fd = -1;
|
| 87 |
hp->dirty = 0;
|
| 88 |
hp->priv = NULL;
|
| 89 |
/* clear beam directory */
|
| 90 |
bzero((char *)hp->bi, (nbeams(hp)+1)*sizeof(BEAMI));
|
| 91 |
return(hp); /* all is well */
|
| 92 |
}
|
| 93 |
|
| 94 |
|
| 95 |
hdbcoord(gc, hp, i) /* compute beam coordinates from index */
|
| 96 |
GCOORD gc[2]; /* returned */
|
| 97 |
register HOLO *hp;
|
| 98 |
register int i;
|
| 99 |
{
|
| 100 |
register int j, n;
|
| 101 |
int n2, reverse;
|
| 102 |
GCOORD g2[2];
|
| 103 |
/* check range */
|
| 104 |
if (i < 1 | i > nbeams(hp))
|
| 105 |
return(0);
|
| 106 |
if (reverse = i >= hp->wi[5])
|
| 107 |
i -= hp->wi[5] - 1;
|
| 108 |
for (j = 0; j < 5; j++) /* find w0 */
|
| 109 |
if (hp->wi[j+1] > i)
|
| 110 |
break;
|
| 111 |
i -= hp->wi[gc[0].w=j];
|
| 112 |
/* find w1 */
|
| 113 |
n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
|
| 114 |
while (++j < 5) {
|
| 115 |
n = n2 * hp->grid[wg0[j]] * hp->grid[wg1[j]];
|
| 116 |
if (n > i)
|
| 117 |
break;
|
| 118 |
i -= n;
|
| 119 |
}
|
| 120 |
gc[1].w = j;
|
| 121 |
/* find position on w0 */
|
| 122 |
n2 = hp->grid[wg0[j]] * hp->grid[wg1[j]];
|
| 123 |
n = i / n2;
|
| 124 |
gc[0].i[1] = n / hp->grid[wg0[gc[0].w]];
|
| 125 |
gc[0].i[0] = n - gc[0].i[1]*hp->grid[wg0[gc[0].w]];
|
| 126 |
i -= n*n2;
|
| 127 |
/* find position on w1 */
|
| 128 |
gc[1].i[1] = i / hp->grid[wg0[gc[1].w]];
|
| 129 |
gc[1].i[0] = i - gc[1].i[1]*hp->grid[wg0[gc[1].w]];
|
| 130 |
if (reverse) {
|
| 131 |
copystruct(g2, gc+1);
|
| 132 |
copystruct(gc+1, gc);
|
| 133 |
copystruct(gc, g2);
|
| 134 |
}
|
| 135 |
return(1); /* we're done */
|
| 136 |
}
|
| 137 |
|
| 138 |
|
| 139 |
int
|
| 140 |
hdbindex(hp, gc) /* compute index from beam coordinates */
|
| 141 |
register HOLO *hp;
|
| 142 |
register GCOORD gc[2];
|
| 143 |
{
|
| 144 |
GCOORD g2[2];
|
| 145 |
int reverse;
|
| 146 |
register int i, j;
|
| 147 |
/* check ordering and limits */
|
| 148 |
if (reverse = gc[0].w > gc[1].w) {
|
| 149 |
copystruct(g2, gc+1);
|
| 150 |
copystruct(g2+1, gc);
|
| 151 |
gc = g2;
|
| 152 |
} else if (gc[0].w == gc[1].w)
|
| 153 |
return(0);
|
| 154 |
if (gc[0].w < 0 | gc[1].w > 5)
|
| 155 |
return(0);
|
| 156 |
i = 0; /* compute index */
|
| 157 |
for (j = gc[0].w+1; j < gc[1].w; j++)
|
| 158 |
i += hp->grid[wg0[j]] * hp->grid[wg1[j]];
|
| 159 |
i *= hp->grid[wg0[gc[0].w]] * hp->grid[wg1[gc[0].w]];
|
| 160 |
i += hp->wi[gc[0].w];
|
| 161 |
i += (hp->grid[wg0[gc[0].w]]*gc[0].i[1] + gc[0].i[0]) *
|
| 162 |
hp->grid[wg0[gc[1].w]] * hp->grid[wg1[gc[1].w]] ;
|
| 163 |
i += hp->grid[wg0[gc[1].w]]*gc[1].i[1] + gc[1].i[0];
|
| 164 |
if (reverse)
|
| 165 |
i += hp->wi[5] - 1;
|
| 166 |
return(i);
|
| 167 |
}
|
| 168 |
|
| 169 |
|
| 170 |
hdcell(cp, hp, gc) /* compute cell coordinates */
|
| 171 |
register FVECT cp[4]; /* returned (may be passed as FVECT cp[2][2]) */
|
| 172 |
register HOLO *hp;
|
| 173 |
register GCOORD *gc;
|
| 174 |
{
|
| 175 |
register FLOAT *v;
|
| 176 |
double d;
|
| 177 |
/* compute common component */
|
| 178 |
VCOPY(cp[0], hp->orig);
|
| 179 |
if (gc->w & 1) {
|
| 180 |
v = hp->xv[gc->w>>1];
|
| 181 |
cp[0][0] += v[0]; cp[0][1] += v[1]; cp[0][2] += v[2];
|
| 182 |
}
|
| 183 |
v = hp->xv[wg0[gc->w]];
|
| 184 |
d = (double)gc->i[0] / hp->grid[wg0[gc->w]];
|
| 185 |
VSUM(cp[0], cp[0], v, d);
|
| 186 |
v = hp->xv[wg1[gc->w]];
|
| 187 |
d = (double)gc->i[1] / hp->grid[wg1[gc->w]];
|
| 188 |
VSUM(cp[0], cp[0], v, d);
|
| 189 |
/* compute x1 sums */
|
| 190 |
v = hp->xv[wg0[gc->w]];
|
| 191 |
d = 1.0 / hp->grid[wg0[gc->w]];
|
| 192 |
VSUM(cp[1], cp[0], v, d);
|
| 193 |
VSUM(cp[3], cp[0], v, d);
|
| 194 |
/* compute y1 sums */
|
| 195 |
v = hp->xv[wg1[gc->w]];
|
| 196 |
d = 1.0 / hp->grid[wg1[gc->w]];
|
| 197 |
VSUM(cp[2], cp[0], v, d);
|
| 198 |
VSUM(cp[3], cp[3], v, d);
|
| 199 |
}
|
| 200 |
|
| 201 |
|
| 202 |
hdlseg(lseg, hp, gc) /* compute line segment for beam */
|
| 203 |
register int lseg[2][3];
|
| 204 |
register HOLO *hp;
|
| 205 |
GCOORD gc[2];
|
| 206 |
{
|
| 207 |
register int k;
|
| 208 |
|
| 209 |
for (k = 0; k < 2; k++) { /* compute end points */
|
| 210 |
lseg[k][gc[k].w>>1] = gc[k].w&1 ? hp->grid[gc[k].w>>1]-1 : 0 ;
|
| 211 |
lseg[k][wg0[gc[k].w]] = gc[k].i[0];
|
| 212 |
lseg[k][wg1[gc[k].w]] = gc[k].i[1];
|
| 213 |
}
|
| 214 |
return(1);
|
| 215 |
}
|
| 216 |
|
| 217 |
|
| 218 |
unsigned
|
| 219 |
hdcode(hp, d) /* compute depth code for d */
|
| 220 |
HOLO *hp;
|
| 221 |
double d;
|
| 222 |
{
|
| 223 |
double tl = hp->tlin;
|
| 224 |
register long c;
|
| 225 |
|
| 226 |
if (d <= 0.)
|
| 227 |
return(0);
|
| 228 |
if (d >= .99*FHUGE)
|
| 229 |
return(DCINF);
|
| 230 |
if (d < tl)
|
| 231 |
return((unsigned)(d*DCLIN/tl));
|
| 232 |
c = (long)(log(d/tl)/logstep) + DCLIN;
|
| 233 |
return(c > DCINF ? (unsigned)DCINF : (unsigned)c);
|
| 234 |
}
|
| 235 |
|
| 236 |
|
| 237 |
hdgrid(gp, hp, wp) /* compute grid coordinates */
|
| 238 |
FVECT gp; /* returned */
|
| 239 |
register HOLO *hp;
|
| 240 |
FVECT wp;
|
| 241 |
{
|
| 242 |
FVECT vt;
|
| 243 |
|
| 244 |
vt[0] = wp[0] - hp->orig[0];
|
| 245 |
vt[1] = wp[1] - hp->orig[1];
|
| 246 |
vt[2] = wp[2] - hp->orig[2];
|
| 247 |
gp[0] = DOT(vt, hp->wn[0]) * hp->wg[0];
|
| 248 |
gp[1] = DOT(vt, hp->wn[1]) * hp->wg[1];
|
| 249 |
gp[2] = DOT(vt, hp->wn[2]) * hp->wg[2];
|
| 250 |
}
|
| 251 |
|
| 252 |
|
| 253 |
hdworld(wp, hp, gp) /* compute world coordinates */
|
| 254 |
register FVECT wp;
|
| 255 |
register HOLO *hp;
|
| 256 |
FVECT gp;
|
| 257 |
{
|
| 258 |
register double d;
|
| 259 |
|
| 260 |
d = gp[0]/hp->grid[0];
|
| 261 |
VSUM(wp, hp->orig, hp->xv[0], d);
|
| 262 |
|
| 263 |
d = gp[1]/hp->grid[1];
|
| 264 |
VSUM(wp, wp, hp->xv[1], d);
|
| 265 |
|
| 266 |
d = gp[2]/hp->grid[2];
|
| 267 |
VSUM(wp, wp, hp->xv[2], d);
|
| 268 |
}
|
| 269 |
|
| 270 |
|
| 271 |
double
|
| 272 |
hdray(ro, rd, hp, gc, r) /* compute ray within a beam */
|
| 273 |
FVECT ro, rd; /* returned */
|
| 274 |
HOLO *hp;
|
| 275 |
GCOORD gc[2];
|
| 276 |
BYTE r[2][2];
|
| 277 |
{
|
| 278 |
FVECT cp[4], p[2];
|
| 279 |
register int i, j;
|
| 280 |
double d0, d1;
|
| 281 |
/* compute entry and exit points */
|
| 282 |
for (i = 0; i < 2; i++) {
|
| 283 |
hdcell(cp, hp, gc+i);
|
| 284 |
d0 = (1./256.)*(r[i][0]+.5);
|
| 285 |
d1 = (1./256.)*(r[i][1]+.5);
|
| 286 |
for (j = 0; j < 3; j++)
|
| 287 |
p[i][j] = (1.-d0-d1)*cp[0][j] +
|
| 288 |
d0*cp[1][j] + d1*cp[2][j];
|
| 289 |
}
|
| 290 |
VCOPY(ro, p[0]); /* assign ray origin and direction */
|
| 291 |
rd[0] = p[1][0] - p[0][0];
|
| 292 |
rd[1] = p[1][1] - p[0][1];
|
| 293 |
rd[2] = p[1][2] - p[0][2];
|
| 294 |
return(normalize(rd)); /* return maximum inside distance */
|
| 295 |
}
|
| 296 |
|
| 297 |
|
| 298 |
double
|
| 299 |
hdinter(gc, r, ed, hp, ro, rd) /* compute ray intersection with section */
|
| 300 |
register GCOORD gc[2]; /* returned */
|
| 301 |
BYTE r[2][2]; /* returned (optional) */
|
| 302 |
double *ed; /* returned (optional) */
|
| 303 |
register HOLO *hp;
|
| 304 |
FVECT ro, rd; /* normalization of rd affects distances */
|
| 305 |
{
|
| 306 |
FVECT p[2], vt;
|
| 307 |
double d, t0, t1, d0, d1;
|
| 308 |
register FLOAT *v;
|
| 309 |
register int i;
|
| 310 |
/* first, intersect walls */
|
| 311 |
gc[0].w = gc[1].w = -1;
|
| 312 |
t0 = -FHUGE; t1 = FHUGE;
|
| 313 |
for (i = 0; i < 3; i++) { /* for each wall pair */
|
| 314 |
d = -DOT(rd, hp->wn[i]); /* plane distance */
|
| 315 |
if (d <= FTINY && d >= -FTINY) /* check for parallel */
|
| 316 |
continue;
|
| 317 |
d1 = DOT(ro, hp->wn[i]); /* ray distances */
|
| 318 |
d0 = (d1 - hp->wo[i<<1]) / d;
|
| 319 |
d1 = (d1 - hp->wo[i<<1|1]) / d;
|
| 320 |
if (d0 < d1) { /* check against best */
|
| 321 |
if (d0 > t0) {
|
| 322 |
t0 = d0;
|
| 323 |
gc[0].w = i<<1;
|
| 324 |
}
|
| 325 |
if (d1 < t1) {
|
| 326 |
t1 = d1;
|
| 327 |
gc[1].w = i<<1 | 1;
|
| 328 |
}
|
| 329 |
} else {
|
| 330 |
if (d1 > t0) {
|
| 331 |
t0 = d1;
|
| 332 |
gc[0].w = i<<1 | 1;
|
| 333 |
}
|
| 334 |
if (d0 < t1) {
|
| 335 |
t1 = d0;
|
| 336 |
gc[1].w = i<<1;
|
| 337 |
}
|
| 338 |
}
|
| 339 |
}
|
| 340 |
if (gc[0].w < 0 | gc[1].w < 0) /* paranoid check */
|
| 341 |
return(FHUGE);
|
| 342 |
/* compute intersections */
|
| 343 |
for (i = 0; i < 3; i++) {
|
| 344 |
p[0][i] = ro[i] + rd[i]*t0;
|
| 345 |
p[1][i] = ro[i] + rd[i]*t1;
|
| 346 |
}
|
| 347 |
/* now, compute grid coordinates */
|
| 348 |
for (i = 0; i < 2; i++) {
|
| 349 |
vt[0] = p[i][0] - hp->orig[0];
|
| 350 |
vt[1] = p[i][1] - hp->orig[1];
|
| 351 |
vt[2] = p[i][2] - hp->orig[2];
|
| 352 |
v = hp->wn[wg0[gc[i].w]];
|
| 353 |
d = DOT(vt, v) * hp->wg[wg0[gc[i].w]];
|
| 354 |
if (d < 0. || (gc[i].i[0] = d) >= hp->grid[wg0[gc[i].w]])
|
| 355 |
return(FHUGE); /* outside wall */
|
| 356 |
if (r != NULL)
|
| 357 |
r[i][0] = 256. * (d - gc[i].i[0]);
|
| 358 |
v = hp->wn[wg1[gc[i].w]];
|
| 359 |
d = DOT(vt, v) * hp->wg[wg1[gc[i].w]];
|
| 360 |
if (d < 0. || (gc[i].i[1] = d) >= hp->grid[wg1[gc[i].w]])
|
| 361 |
return(FHUGE); /* outside wall */
|
| 362 |
if (r != NULL)
|
| 363 |
r[i][1] = 256. * (d - gc[i].i[1]);
|
| 364 |
}
|
| 365 |
if (ed != NULL) /* assign distance to exit point */
|
| 366 |
*ed = t1;
|
| 367 |
return(t0); /* return distance to entry point */
|
| 368 |
}
|