| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
2.7 |
static const char RCSid[] = "$Id: sun.c,v 2.6 2013/08/09 16:51:15 greg Exp $";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
greg |
1.2 |
/*
|
| 5 |
greg |
1.1 |
* SOLAR CALCULATIONS
|
| 6 |
|
|
*
|
| 7 |
|
|
* 3/31/87
|
| 8 |
|
|
*
|
| 9 |
greg |
2.7 |
* Michalsky algorithm added October 2019:
|
| 10 |
|
|
* "The Astronomical Almanac's Algorithm for Approximate
|
| 11 |
|
|
* Solar Position (1950-2050)" by Joseph J. Michalsky,
|
| 12 |
|
|
* published in 1988 in Solar Energy, Vol. 40, No. 3.
|
| 13 |
|
|
* Also added correction to sdec() (365 was 368 originally)
|
| 14 |
|
|
*
|
| 15 |
greg |
1.1 |
*/
|
| 16 |
|
|
|
| 17 |
greg |
2.2 |
#include <math.h>
|
| 18 |
greg |
2.6 |
#include "sun.h"
|
| 19 |
greg |
2.2 |
|
| 20 |
greg |
2.5 |
#ifdef M_PI
|
| 21 |
|
|
#define PI M_PI
|
| 22 |
|
|
#else
|
| 23 |
greg |
2.7 |
#define PI 3.14159265358979323846
|
| 24 |
greg |
2.5 |
#endif
|
| 25 |
greg |
2.7 |
#undef DEG
|
| 26 |
|
|
#define DEG (PI/180.)
|
| 27 |
|
|
|
| 28 |
greg |
1.1 |
|
| 29 |
greg |
2.7 |
double s_latitude = 0.66; /* site latitude (radians north of equator) */
|
| 30 |
|
|
double s_longitude = 2.13; /* site longitude (radians west of Greenwich) */
|
| 31 |
|
|
double s_meridian = 120.*DEG; /* standard meridian (radians west) */
|
| 32 |
greg |
1.1 |
|
| 33 |
|
|
|
| 34 |
|
|
int
|
| 35 |
schorsch |
2.4 |
jdate( /* Julian date (days into year) */
|
| 36 |
|
|
int month,
|
| 37 |
|
|
int day
|
| 38 |
|
|
)
|
| 39 |
greg |
1.1 |
{
|
| 40 |
|
|
static short mo_da[12] = {0,31,59,90,120,151,181,212,243,273,304,334};
|
| 41 |
|
|
|
| 42 |
|
|
return(mo_da[month-1] + day);
|
| 43 |
|
|
}
|
| 44 |
|
|
|
| 45 |
|
|
|
| 46 |
|
|
double
|
| 47 |
schorsch |
2.4 |
stadj( /* solar time adjustment from Julian date */
|
| 48 |
|
|
int jd
|
| 49 |
|
|
)
|
| 50 |
greg |
1.1 |
{
|
| 51 |
greg |
2.7 |
return( 0.170 * sin( (4.*PI/373.) * (jd - 80) ) -
|
| 52 |
|
|
0.129 * sin( (2.*PI/355.) * (jd - 8) ) +
|
| 53 |
|
|
(12./PI) * (s_meridian - s_longitude) );
|
| 54 |
greg |
1.1 |
}
|
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
|
|
double
|
| 58 |
schorsch |
2.4 |
sdec( /* solar declination angle from Julian date */
|
| 59 |
|
|
int jd
|
| 60 |
|
|
)
|
| 61 |
greg |
1.1 |
{
|
| 62 |
greg |
2.7 |
return( 0.4093 * sin( (2.*PI/365.) * (jd - 81) ) );
|
| 63 |
greg |
1.1 |
}
|
| 64 |
|
|
|
| 65 |
|
|
|
| 66 |
|
|
double
|
| 67 |
schorsch |
2.4 |
salt( /* solar altitude from solar declination and solar time */
|
| 68 |
|
|
double sd,
|
| 69 |
|
|
double st
|
| 70 |
|
|
)
|
| 71 |
greg |
1.1 |
{
|
| 72 |
|
|
return( asin( sin(s_latitude) * sin(sd) -
|
| 73 |
greg |
2.7 |
cos(s_latitude) * cos(sd) * cos(st*(PI/12.)) ) );
|
| 74 |
greg |
1.1 |
}
|
| 75 |
|
|
|
| 76 |
|
|
|
| 77 |
|
|
double
|
| 78 |
schorsch |
2.4 |
sazi( /* solar azimuth from solar declination and solar time */
|
| 79 |
|
|
double sd,
|
| 80 |
|
|
double st
|
| 81 |
|
|
)
|
| 82 |
greg |
1.1 |
{
|
| 83 |
greg |
2.7 |
return( -atan2( cos(sd)*sin(st*(PI/12.)),
|
| 84 |
greg |
1.1 |
-cos(s_latitude)*sin(sd) -
|
| 85 |
greg |
2.7 |
sin(s_latitude)*cos(sd)*cos(st*(PI/12.)) ) );
|
| 86 |
|
|
}
|
| 87 |
|
|
|
| 88 |
|
|
|
| 89 |
|
|
/****************** More accurate Michalsky algorithm ****************/
|
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
|
|
/* circle normalization */
|
| 93 |
|
|
static double
|
| 94 |
|
|
norm_cir(double r, const double p)
|
| 95 |
|
|
{
|
| 96 |
|
|
while (r < 0) r += p;
|
| 97 |
|
|
while (r >= p) r -= p;
|
| 98 |
|
|
return(r);
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
|
|
|
| 102 |
|
|
/* Almanac Julian date relative to noon UT on Jan 1, 2000 (fractional days) */
|
| 103 |
|
|
double
|
| 104 |
|
|
mjdate(int year, int month, int day, double hour)
|
| 105 |
|
|
{
|
| 106 |
|
|
int jd = jdate(month, day);
|
| 107 |
|
|
jd += (month > 2) & !(year&3);
|
| 108 |
|
|
jd += (year - 1949)*365 + (year - 1949)/4;
|
| 109 |
|
|
hour += s_meridian*(12./PI);
|
| 110 |
|
|
return(jd + hour*(1./24.) + (2432916.5-2451545.));
|
| 111 |
|
|
}
|
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
/* Solar declination (and solar time) from Almanac Julian date (fractional) */
|
| 115 |
|
|
double
|
| 116 |
|
|
msdec(double mjd, double *stp)
|
| 117 |
|
|
{ /* Ecliptic coordinates (radians) */
|
| 118 |
|
|
double L = norm_cir(280.460*DEG + 0.9856474*DEG*mjd, 2.*PI);
|
| 119 |
|
|
double g = norm_cir(357.528*DEG + 0.9856003*DEG*mjd, 2.*PI);
|
| 120 |
|
|
double l = L + 1.915*DEG*sin(g) + 0.020*DEG*sin(2.*g);
|
| 121 |
|
|
double ep = 23.439*DEG - 4e-7*DEG*mjd;
|
| 122 |
|
|
double sin_l = sin(l);
|
| 123 |
|
|
|
| 124 |
|
|
if (stp) { /* solar time requested, also? */
|
| 125 |
|
|
double ra = atan2(sin_l*cos(ep), cos(l));
|
| 126 |
|
|
double utime = 24.*(mjd - floor(mjd)) + 12.;
|
| 127 |
|
|
double gmst = 6.697375 + 0.0657098242*mjd + utime;
|
| 128 |
|
|
double lmst = gmst - s_longitude*(12./PI);
|
| 129 |
|
|
|
| 130 |
|
|
*stp = norm_cir(lmst - ra*(12./PI) + 12., 24.);
|
| 131 |
|
|
}
|
| 132 |
|
|
return(asin(sin(ep)*sin_l)); /* return solar declination angle */
|
| 133 |
greg |
1.1 |
}
|