| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: mksource.c,v 2.3 2005/09/19 12:32:12 schorsch Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* Generate distant sources corresponding to the given environment map |
| 6 |
*/ |
| 7 |
|
| 8 |
#include "ray.h" |
| 9 |
#include "random.h" |
| 10 |
#include "resolu.h" |
| 11 |
|
| 12 |
#define NTRUNKBR 4 /* number of branches at trunk */ |
| 13 |
#define NTRUNKVERT 4 /* number of vertices at trunk */ |
| 14 |
#define DEF_NSAMPS 262144L /* default # sphere samples */ |
| 15 |
#define DEF_MAXANG 15. /* maximum source angle (deg.) */ |
| 16 |
|
| 17 |
/* Data structure for geodesic samples */ |
| 18 |
|
| 19 |
typedef struct tritree { |
| 20 |
FVECT gdv[3]; /* spherical triangle vertex direc. */ |
| 21 |
FVECT sd; /* sample direction if leaf */ |
| 22 |
struct tritree *kid; /* 4 children if branch node */ |
| 23 |
COLR val; /* sampled color value */ |
| 24 |
} TRITREE; |
| 25 |
|
| 26 |
typedef struct lostlight { |
| 27 |
struct lostlight *next; /* next in list */ |
| 28 |
FVECT sd; /* lost source direction */ |
| 29 |
COLOR intens; /* output times solid angle */ |
| 30 |
} LOSTLIGHT; |
| 31 |
|
| 32 |
extern char *progname; |
| 33 |
|
| 34 |
FVECT scene_cent; /* center of octree cube */ |
| 35 |
RREAL scene_rad; /* radius to get outside cube from center */ |
| 36 |
|
| 37 |
const COLR blkclr = BLKCOLR; |
| 38 |
|
| 39 |
#define isleaf(node) ((node)->kid == NULL) |
| 40 |
|
| 41 |
/* Compute signum of signed volume for three vectors */ |
| 42 |
int |
| 43 |
vol_sign(const FVECT v1, const FVECT v2, const FVECT v3) |
| 44 |
{ |
| 45 |
double vol; |
| 46 |
|
| 47 |
vol = v1[0]*(v2[1]*v3[2] - v2[2]*v3[1]); |
| 48 |
vol += v1[1]*(v2[2]*v3[0] - v2[0]*v3[2]); |
| 49 |
vol += v1[2]*(v2[0]*v3[1] - v2[1]*v3[0]); |
| 50 |
if (vol > .0) |
| 51 |
return(1); |
| 52 |
if (vol < .0) |
| 53 |
return(-1); |
| 54 |
return(0); |
| 55 |
} |
| 56 |
|
| 57 |
/* Is the given direction contained within the specified spherical triangle? */ |
| 58 |
int |
| 59 |
intriv(FVECT tri[3], const FVECT sdir) |
| 60 |
{ |
| 61 |
int sv[3]; |
| 62 |
|
| 63 |
sv[0] = vol_sign(sdir, tri[0], tri[1]); |
| 64 |
sv[1] = vol_sign(sdir, tri[1], tri[2]); |
| 65 |
sv[2] = vol_sign(sdir, tri[2], tri[0]); |
| 66 |
if ((sv[0] == sv[1]) & (sv[1] == sv[2])) |
| 67 |
return(1); |
| 68 |
return(!sv[0] | !sv[1] | !sv[2]); |
| 69 |
} |
| 70 |
|
| 71 |
/* Find leaf containing the given sample direction */ |
| 72 |
TRITREE * |
| 73 |
findleaf(TRITREE *node, const FVECT sdir) |
| 74 |
{ |
| 75 |
int i; |
| 76 |
|
| 77 |
if (isleaf(node)) |
| 78 |
return(intriv(node->gdv,sdir) ? node : (TRITREE *)NULL); |
| 79 |
for (i = 0; i < 4; i++) { |
| 80 |
TRITREE *chknode = &node->kid[i]; |
| 81 |
if (intriv(chknode->gdv, sdir)) |
| 82 |
return(isleaf(chknode) ? chknode : |
| 83 |
findleaf(chknode, sdir)); |
| 84 |
} |
| 85 |
return(NULL); |
| 86 |
} |
| 87 |
|
| 88 |
/* Initialize leaf with random sample inside the given spherical triangle */ |
| 89 |
void |
| 90 |
leafsample(TRITREE *leaf) |
| 91 |
{ |
| 92 |
RAY myray; |
| 93 |
RREAL wt[3]; |
| 94 |
int i, j; |
| 95 |
/* random point on triangle */ |
| 96 |
i = random() % 3; |
| 97 |
wt[i] = frandom(); |
| 98 |
j = random() & 1; |
| 99 |
wt[(i+2-j)%3] = 1. - wt[i] - |
| 100 |
(wt[(i+1+j)%3] = (1.-wt[i])*frandom()); |
| 101 |
leaf->sd[0] = leaf->sd[1] = leaf->sd[2] = .0; |
| 102 |
for (i = 0; i < 3; i++) |
| 103 |
VSUM(leaf->sd, leaf->sd, leaf->gdv[i], wt[i]); |
| 104 |
normalize(leaf->sd); /* record sample direction */ |
| 105 |
/* evaluate at inf. */ |
| 106 |
VSUM(myray.rorg, scene_cent, leaf->sd, scene_rad); |
| 107 |
VCOPY(myray.rdir, leaf->sd); |
| 108 |
myray.rmax = 0.; |
| 109 |
ray_trace(&myray); |
| 110 |
setcolr(leaf->val, colval(myray.rcol,RED), |
| 111 |
colval(myray.rcol,GRN), |
| 112 |
colval(myray.rcol,BLU)); |
| 113 |
} |
| 114 |
|
| 115 |
/* Initialize a branch node contained in the given spherical triangle */ |
| 116 |
void |
| 117 |
subdivide(TRITREE *branch, FVECT dv[3]) |
| 118 |
{ |
| 119 |
FVECT sdv[3]; |
| 120 |
int i; |
| 121 |
|
| 122 |
for (i = 0; i < 3; i++) /* copy spherical triangle */ |
| 123 |
VCOPY(branch->gdv[i], dv[i]); |
| 124 |
for (i = 0; i < 3; i++) { /* create new vertices */ |
| 125 |
int j = (i+1)%3; |
| 126 |
VADD(sdv[i], dv[i], dv[j]); |
| 127 |
normalize(sdv[i]); |
| 128 |
} |
| 129 |
/* allocate leaves */ |
| 130 |
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE)); |
| 131 |
if (branch->kid == NULL) |
| 132 |
error(SYSTEM, "out of memory in subdivide()"); |
| 133 |
/* assign subtriangle directions */ |
| 134 |
VCOPY(branch->kid[0].gdv[0], dv[0]); |
| 135 |
VCOPY(branch->kid[0].gdv[1], sdv[0]); |
| 136 |
VCOPY(branch->kid[0].gdv[2], sdv[2]); |
| 137 |
VCOPY(branch->kid[1].gdv[0], sdv[0]); |
| 138 |
VCOPY(branch->kid[1].gdv[1], dv[1]); |
| 139 |
VCOPY(branch->kid[1].gdv[2], sdv[1]); |
| 140 |
VCOPY(branch->kid[2].gdv[0], sdv[1]); |
| 141 |
VCOPY(branch->kid[2].gdv[1], dv[2]); |
| 142 |
VCOPY(branch->kid[2].gdv[2], sdv[2]); |
| 143 |
VCOPY(branch->kid[3].gdv[0], sdv[0]); |
| 144 |
VCOPY(branch->kid[3].gdv[1], sdv[1]); |
| 145 |
VCOPY(branch->kid[3].gdv[2], sdv[2]); |
| 146 |
} |
| 147 |
|
| 148 |
/* Recursively subdivide the given node to the specified quadtree depth */ |
| 149 |
void |
| 150 |
branchsample(TRITREE *node, int depth) |
| 151 |
{ |
| 152 |
int i; |
| 153 |
|
| 154 |
if (depth <= 0) |
| 155 |
return; |
| 156 |
if (isleaf(node)) { /* subdivide leaf node */ |
| 157 |
TRITREE branch, *moved_leaf; |
| 158 |
subdivide(&branch, node->gdv); |
| 159 |
moved_leaf = findleaf(&branch, node->sd); |
| 160 |
if (moved_leaf != NULL) { /* bequeath old sample */ |
| 161 |
VCOPY(moved_leaf->sd, node->sd); |
| 162 |
copycolr(moved_leaf->val, node->val); |
| 163 |
} |
| 164 |
for (i = 0; i < 4; i++) /* compute new samples */ |
| 165 |
if (&branch.kid[i] != moved_leaf) |
| 166 |
leafsample(&branch.kid[i]); |
| 167 |
*node = branch; /* replace leaf with branch */ |
| 168 |
} |
| 169 |
for (i = 0; i < 4; i++) /* subdivide children */ |
| 170 |
branchsample(&node->kid[i], depth-1); |
| 171 |
} |
| 172 |
|
| 173 |
/* Sample sphere using triangular geodesic mesh */ |
| 174 |
TRITREE * |
| 175 |
geosample(int nsamps) |
| 176 |
{ |
| 177 |
int depth; |
| 178 |
TRITREE *tree; |
| 179 |
FVECT trunk[NTRUNKVERT]; |
| 180 |
int i, j; |
| 181 |
/* figure out depth */ |
| 182 |
if ((nsamps -= 4) < 0) |
| 183 |
error(USER, "minimum number of samples is 4"); |
| 184 |
nsamps = nsamps*3/NTRUNKBR; /* round up */ |
| 185 |
for (depth = 0; nsamps > 1; depth++) |
| 186 |
nsamps >>= 2; |
| 187 |
/* make base tetrahedron */ |
| 188 |
tree = (TRITREE *)malloc(sizeof(TRITREE)); |
| 189 |
if (tree == NULL) goto memerr; |
| 190 |
trunk[0][0] = trunk[0][1] = 0; trunk[0][2] = 1; |
| 191 |
trunk[1][0] = 0; |
| 192 |
trunk[1][2] = cos(2.*asin(sqrt(2./3.))); |
| 193 |
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]); |
| 194 |
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.); |
| 195 |
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.); |
| 196 |
VCOPY(tree->gdv[0], trunk[0]); |
| 197 |
VCOPY(tree->gdv[1], trunk[0]); |
| 198 |
VCOPY(tree->gdv[2], trunk[0]); |
| 199 |
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE)); |
| 200 |
if (tree->kid == NULL) goto memerr; |
| 201 |
/* grow our tree from trunk */ |
| 202 |
for (i = 0; i < NTRUNKBR; i++) { |
| 203 |
for (j = 0; j < 3; j++) /* XXX works for tetra only */ |
| 204 |
VCOPY(tree->kid[i].gdv[j], trunk[(i+j)%NTRUNKVERT]); |
| 205 |
leafsample(&tree->kid[i]); |
| 206 |
branchsample(&tree->kid[i], depth); |
| 207 |
} |
| 208 |
return(tree); |
| 209 |
memerr: |
| 210 |
error(SYSTEM, "out of memory in geosample()"); |
| 211 |
return NULL; /* dummy return */ |
| 212 |
} |
| 213 |
|
| 214 |
/* Compute leaf exponent histogram */ |
| 215 |
void |
| 216 |
get_ehisto(const TRITREE *node, long exphisto[256]) |
| 217 |
{ |
| 218 |
int i; |
| 219 |
|
| 220 |
if (isleaf(node)) { |
| 221 |
++exphisto[node->val[EXP]]; |
| 222 |
return; |
| 223 |
} |
| 224 |
for (i = 0; i < 4; i++) |
| 225 |
get_ehisto(&node->kid[i], exphisto); |
| 226 |
} |
| 227 |
|
| 228 |
/* Get reasonable source threshold */ |
| 229 |
double |
| 230 |
get_threshold(const TRITREE *tree) |
| 231 |
{ |
| 232 |
long exphisto[256]; |
| 233 |
long samptotal; |
| 234 |
int i; |
| 235 |
/* compute sample histogram */ |
| 236 |
memset((void *)exphisto, 0, sizeof(exphisto)); |
| 237 |
for (i = 0; i < NTRUNKBR; i++) |
| 238 |
get_ehisto(&tree->kid[i], exphisto); |
| 239 |
/* use 98th percentile */ |
| 240 |
for (i = 0; i < 256; i++) |
| 241 |
samptotal += exphisto[i]; |
| 242 |
samptotal /= 50; |
| 243 |
for (i = 256; (--i > 0) & (samptotal > 0); ) |
| 244 |
samptotal -= exphisto[i]; |
| 245 |
return(ldexp(.75, i-COLXS)); |
| 246 |
} |
| 247 |
|
| 248 |
/* Find leaf containing the maximum exponent */ |
| 249 |
TRITREE * |
| 250 |
findemax(TRITREE *node, int *expp) |
| 251 |
{ |
| 252 |
if (!isleaf(node)) { |
| 253 |
TRITREE *maxleaf; |
| 254 |
TRITREE *rleaf; |
| 255 |
maxleaf = findemax(&node->kid[0], expp); |
| 256 |
rleaf = findemax(&node->kid[1], expp); |
| 257 |
if (rleaf != NULL) maxleaf = rleaf; |
| 258 |
rleaf = findemax(&node->kid[2], expp); |
| 259 |
if (rleaf != NULL) maxleaf = rleaf; |
| 260 |
rleaf = findemax(&node->kid[3], expp); |
| 261 |
if (rleaf != NULL) maxleaf = rleaf; |
| 262 |
return(maxleaf); |
| 263 |
} |
| 264 |
if (node->val[EXP] <= *expp) |
| 265 |
return(NULL); |
| 266 |
*expp = node->val[EXP]; |
| 267 |
return(node); |
| 268 |
} |
| 269 |
|
| 270 |
/* Compute solid angle of spherical triangle (approx.) */ |
| 271 |
double |
| 272 |
tri_omegav(FVECT v[3]) |
| 273 |
{ |
| 274 |
FVECT e1, e2, vcross; |
| 275 |
|
| 276 |
VSUB(e1, v[1], v[0]); |
| 277 |
VSUB(e2, v[2], v[1]); |
| 278 |
fcross(vcross, e1, e2); |
| 279 |
return(.5*VLEN(vcross)); |
| 280 |
} |
| 281 |
|
| 282 |
/* Sum intensity times direction for non-zero leaves */ |
| 283 |
void |
| 284 |
vector_sum(FVECT vsum, TRITREE *node, |
| 285 |
const FVECT cent, double mincos, int ethresh) |
| 286 |
{ |
| 287 |
if (isleaf(node)) { |
| 288 |
double intens; |
| 289 |
if (node->val[EXP] < ethresh) |
| 290 |
return; |
| 291 |
if (DOT(node->sd,cent) < mincos) |
| 292 |
return; |
| 293 |
intens = colrval(node->val,GRN) * tri_omegav(node->gdv); |
| 294 |
VSUM(vsum, vsum, node->sd, intens); |
| 295 |
return; |
| 296 |
} |
| 297 |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
| 298 |
DOT(node->gdv[0],cent) > mincos && |
| 299 |
DOT(node->gdv[1],cent) > mincos && |
| 300 |
DOT(node->gdv[2],cent) > mincos) |
| 301 |
return; |
| 302 |
vector_sum(vsum, &node->kid[0], cent, mincos, ethresh); |
| 303 |
vector_sum(vsum, &node->kid[1], cent, mincos, ethresh); |
| 304 |
vector_sum(vsum, &node->kid[2], cent, mincos, ethresh); |
| 305 |
vector_sum(vsum, &node->kid[3], cent, mincos, ethresh); |
| 306 |
} |
| 307 |
|
| 308 |
/* Claim source contributions within the given solid angle */ |
| 309 |
void |
| 310 |
claimlight(COLOR intens, TRITREE *node, const FVECT cent, double mincos) |
| 311 |
{ |
| 312 |
int remaining; |
| 313 |
int i; |
| 314 |
if (isleaf(node)) { /* claim contribution */ |
| 315 |
COLOR contrib; |
| 316 |
if (node->val[EXP] <= 0) |
| 317 |
return; |
| 318 |
if (DOT(node->sd,cent) < mincos) |
| 319 |
return; |
| 320 |
colr_color(contrib, node->val); |
| 321 |
scalecolor(contrib, tri_omegav(node->gdv)); |
| 322 |
addcolor(intens, contrib); |
| 323 |
copycolr(node->val, blkclr); |
| 324 |
return; |
| 325 |
} |
| 326 |
if (DOT(node->gdv[0],node->gdv[1]) < mincos && |
| 327 |
DOT(node->gdv[0],cent) > mincos && |
| 328 |
DOT(node->gdv[1],cent) > mincos && |
| 329 |
DOT(node->gdv[2],cent) > mincos) |
| 330 |
return; |
| 331 |
remaining = 0; /* recurse on children */ |
| 332 |
for (i = 0; i < 4; i++) { |
| 333 |
claimlight(intens, &node->kid[i], cent, mincos); |
| 334 |
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0) |
| 335 |
++remaining; |
| 336 |
} |
| 337 |
if (remaining) |
| 338 |
return; |
| 339 |
/* consolidate empties */ |
| 340 |
free((void *)node->kid); node->kid = NULL; |
| 341 |
copycolr(node->val, blkclr); |
| 342 |
VCOPY(node->sd, node->gdv[0]); /* doesn't really matter */ |
| 343 |
} |
| 344 |
|
| 345 |
/* Add lost light contribution to the given list */ |
| 346 |
void |
| 347 |
add2lost(LOSTLIGHT **llp, COLOR intens, const FVECT cent) |
| 348 |
{ |
| 349 |
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT)); |
| 350 |
|
| 351 |
if (newll == NULL) |
| 352 |
return; |
| 353 |
copycolor(newll->intens, intens); |
| 354 |
VCOPY(newll->sd, cent); |
| 355 |
newll->next = *llp; |
| 356 |
*llp = newll; |
| 357 |
} |
| 358 |
|
| 359 |
/* Check lost light list for contributions */ |
| 360 |
void |
| 361 |
getlost(LOSTLIGHT **llp, COLOR intens, const FVECT cent, double omega) |
| 362 |
{ |
| 363 |
const double mincos = 1. - omega/(2.*PI); |
| 364 |
LOSTLIGHT lhead, *lastp, *thisp; |
| 365 |
|
| 366 |
lhead.next = *llp; |
| 367 |
lastp = &lhead; |
| 368 |
while ((thisp = lastp->next) != NULL) |
| 369 |
if (DOT(thisp->sd,cent) >= mincos) { |
| 370 |
LOSTLIGHT *mynext = thisp->next; |
| 371 |
addcolor(intens, thisp->intens); |
| 372 |
free((void *)thisp); |
| 373 |
lastp->next = mynext; |
| 374 |
} else |
| 375 |
lastp = thisp; |
| 376 |
*llp = lhead.next; |
| 377 |
} |
| 378 |
|
| 379 |
/* Create & print distant sources */ |
| 380 |
void |
| 381 |
mksources(TRITREE *samptree, double thresh, double maxang) |
| 382 |
{ |
| 383 |
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5)); |
| 384 |
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang)); |
| 385 |
const double minintens = .05*thresh*maxomega; |
| 386 |
int nsrcs = 0; |
| 387 |
LOSTLIGHT *lostlightlist = NULL; |
| 388 |
int emax; |
| 389 |
TRITREE *startleaf; |
| 390 |
double growstep; |
| 391 |
FVECT curcent; |
| 392 |
double currad; |
| 393 |
double curomega; |
| 394 |
COLOR curintens; |
| 395 |
double thisthresh; |
| 396 |
int thisethresh; |
| 397 |
int i; |
| 398 |
/* |
| 399 |
* General algorithm: |
| 400 |
* 1) Start with brightest unclaimed pixel |
| 401 |
* 2) Grow source toward brightest unclaimed perimeter until: |
| 402 |
* a) Source exceeds maximum size, or |
| 403 |
* b) Perimeter values all below threshold, or |
| 404 |
* c) Source average drops below threshold |
| 405 |
* 3) Loop until nothing over threshold |
| 406 |
* |
| 407 |
* Complexity added to absorb insignificant sources in larger ones. |
| 408 |
*/ |
| 409 |
if (thresh <= FTINY) |
| 410 |
return; |
| 411 |
for ( ; ; ) { |
| 412 |
emax = ethresh; /* find brightest unclaimed */ |
| 413 |
startleaf = NULL; |
| 414 |
for (i = 0; i < NTRUNKBR; i++) { |
| 415 |
TRITREE *bigger = findemax(&samptree->kid[i], &emax); |
| 416 |
if (bigger != NULL) |
| 417 |
startleaf = bigger; |
| 418 |
} |
| 419 |
if (startleaf == NULL) |
| 420 |
break; |
| 421 |
/* claim it */ |
| 422 |
VCOPY(curcent, startleaf->sd); |
| 423 |
curomega = tri_omegav(startleaf->gdv); |
| 424 |
currad = sqrt(curomega/PI); |
| 425 |
growstep = 3.*currad; |
| 426 |
colr_color(curintens, startleaf->val); |
| 427 |
thisthresh = .15*bright(curintens); |
| 428 |
if (thisthresh < thresh) thisthresh = thresh; |
| 429 |
thisethresh = (int)(log(thisthresh)/log(2.) + (COLXS+.5)); |
| 430 |
scalecolor(curintens, curomega); |
| 431 |
copycolr(startleaf->val, blkclr); |
| 432 |
do { /* grow source */ |
| 433 |
FVECT vsum; |
| 434 |
double movedist; |
| 435 |
vsum[0] = vsum[1] = vsum[2] = .0; |
| 436 |
for (i = 0; i < NTRUNKBR; i++) |
| 437 |
vector_sum(vsum, &samptree->kid[i], |
| 438 |
curcent, cos(currad+growstep), |
| 439 |
thisethresh); |
| 440 |
if (normalize(vsum) == .0) |
| 441 |
break; |
| 442 |
movedist = acos(DOT(vsum,curcent)); |
| 443 |
if (movedist > growstep) { |
| 444 |
VSUB(vsum, vsum, curcent); |
| 445 |
movedist = growstep/VLEN(vsum); |
| 446 |
VSUM(curcent, curcent, vsum, movedist); |
| 447 |
normalize(curcent); |
| 448 |
} else |
| 449 |
VCOPY(curcent, vsum); |
| 450 |
currad += growstep; |
| 451 |
curomega = 2.*PI*(1. - cos(currad)); |
| 452 |
for (i = 0; i < NTRUNKBR; i++) |
| 453 |
claimlight(curintens, &samptree->kid[i], |
| 454 |
curcent, cos(currad)); |
| 455 |
} while (curomega < maxomega && |
| 456 |
bright(curintens)/curomega > thisthresh); |
| 457 |
if (bright(curintens) < minintens) { |
| 458 |
add2lost(&lostlightlist, curintens, curcent); |
| 459 |
continue; |
| 460 |
} |
| 461 |
/* absorb lost contributions */ |
| 462 |
getlost(&lostlightlist, curintens, curcent, curomega); |
| 463 |
++nsrcs; /* output source */ |
| 464 |
scalecolor(curintens, 1./curomega); |
| 465 |
printf("\nvoid illum IBLout\n"); |
| 466 |
printf("0\n0\n3 %f %f %f\n", |
| 467 |
colval(curintens,RED), |
| 468 |
colval(curintens,GRN), |
| 469 |
colval(curintens,BLU)); |
| 470 |
printf("\nIBLout source IBLsrc%d\n", nsrcs); |
| 471 |
printf("0\n0\n4 %f %f %f %f\n", |
| 472 |
curcent[0], curcent[1], curcent[2], |
| 473 |
2.*180./PI*currad); |
| 474 |
} |
| 475 |
} |
| 476 |
|
| 477 |
int |
| 478 |
main(int argc, char *argv[]) |
| 479 |
{ |
| 480 |
long nsamps = DEF_NSAMPS; |
| 481 |
double maxang = DEF_MAXANG; |
| 482 |
TRITREE *samptree; |
| 483 |
double thresh = 0; |
| 484 |
int i; |
| 485 |
|
| 486 |
progname = argv[0]; |
| 487 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
| 488 |
switch (argv[i][1]) { |
| 489 |
case 'd': /* number of samples */ |
| 490 |
if (i >= argc-1) goto userr; |
| 491 |
nsamps = atol(argv[++i]); |
| 492 |
break; |
| 493 |
case 't': /* manual threshold */ |
| 494 |
if (i >= argc-1) goto userr; |
| 495 |
thresh = atof(argv[++i]); |
| 496 |
break; |
| 497 |
case 'a': /* maximum source angle */ |
| 498 |
if (i >= argc-1) goto userr; |
| 499 |
maxang = atof(argv[++i]); |
| 500 |
if (maxang <= FTINY) |
| 501 |
goto userr; |
| 502 |
if (maxang > 180.) |
| 503 |
maxang = 180.; |
| 504 |
break; |
| 505 |
default: |
| 506 |
goto userr; |
| 507 |
} |
| 508 |
if (i < argc-1) |
| 509 |
goto userr; |
| 510 |
/* start our ray calculation */ |
| 511 |
directvis = 0; |
| 512 |
ray_init(i == argc-1 ? argv[i] : (char *)NULL); |
| 513 |
VCOPY(scene_cent, thescene.cuorg); |
| 514 |
scene_cent[0] += 0.5*thescene.cusize; |
| 515 |
scene_cent[1] += 0.5*thescene.cusize; |
| 516 |
scene_cent[2] += 0.5*thescene.cusize; |
| 517 |
scene_rad = 0.86603*thescene.cusize; |
| 518 |
/* sample geodesic mesh */ |
| 519 |
samptree = geosample(nsamps); |
| 520 |
/* get source threshold */ |
| 521 |
if (thresh <= FTINY) |
| 522 |
thresh = get_threshold(samptree); |
| 523 |
/* done with ray samples */ |
| 524 |
ray_done(1); |
| 525 |
/* print header */ |
| 526 |
printf("# "); |
| 527 |
printargs(argc, argv, stdout); |
| 528 |
/* create & print sources */ |
| 529 |
mksources(samptree, thresh, maxang); |
| 530 |
/* all done, no need to clean up */ |
| 531 |
return(0); |
| 532 |
userr: |
| 533 |
fprintf(stderr, "Usage: %s [-d nsamps][-t thresh][-a maxang] [octree]\n", |
| 534 |
argv[0]); |
| 535 |
exit(1); |
| 536 |
} |
| 537 |
|
| 538 |
void |
| 539 |
eputs(char *s) |
| 540 |
{ |
| 541 |
static int midline = 0; |
| 542 |
|
| 543 |
if (!*s) |
| 544 |
return; |
| 545 |
if (!midline++) { |
| 546 |
fputs(progname, stderr); |
| 547 |
fputs(": ", stderr); |
| 548 |
} |
| 549 |
fputs(s, stderr); |
| 550 |
if (s[strlen(s)-1] == '\n') { |
| 551 |
fflush(stderr); |
| 552 |
midline = 0; |
| 553 |
} |
| 554 |
} |
| 555 |
|
| 556 |
void |
| 557 |
wputs(char *s) |
| 558 |
{ |
| 559 |
/* no warnings */ |
| 560 |
} |