| 1 |
– |
/* Copyright (c) 1989 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
|
static char SCCSid[] = "$SunId$ LBL"; |
| 3 |
|
#endif |
| 4 |
|
|
| 5 |
+ |
/* Copyright (c) 1989 Regents of the University of California */ |
| 6 |
+ |
|
| 7 |
|
/* |
| 8 |
|
* gensurf.c - program to generate functional surfaces |
| 9 |
|
* |
| 16 |
|
* 4/3/87 |
| 17 |
|
*/ |
| 18 |
|
|
| 19 |
< |
#include <stdio.h> |
| 20 |
< |
#include "fvect.h" |
| 19 |
> |
#include "standard.h" |
| 20 |
|
|
| 21 |
|
#define XNAME "X_" /* x function name */ |
| 22 |
|
#define YNAME "Y_" /* y function name */ |
| 23 |
|
#define ZNAME "Z_" /* z function name */ |
| 24 |
|
|
| 25 |
< |
#define PI 3.14159265358979323846 |
| 25 |
> |
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
| 26 |
|
|
| 28 |
– |
#define FTINY 1e-7 |
| 29 |
– |
|
| 27 |
|
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
| 28 |
|
|
| 29 |
|
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
| 34 |
|
|
| 35 |
|
char *modname, *surfname; |
| 36 |
|
|
| 37 |
< |
double funvalue(), l_hermite(), argument(), fabs(); |
| 37 |
> |
double funvalue(), l_hermite(), l_bezier(), l_bspline(), argument(); |
| 38 |
|
|
| 39 |
|
typedef struct { |
| 40 |
|
FVECT p; /* vertex position */ |
| 52 |
|
|
| 53 |
|
varset("PI", PI); |
| 54 |
|
funset("hermite", 5, l_hermite); |
| 55 |
+ |
funset("bezier", 5, l_bezier); |
| 56 |
+ |
funset("bspline", 5, l_bspline); |
| 57 |
|
|
| 58 |
|
if (argc < 8) |
| 59 |
|
goto userror; |
| 81 |
|
if (m <= 0 || n <= 0) |
| 82 |
|
goto userror; |
| 83 |
|
|
| 84 |
< |
row0 = (POINT *)malloc((n+1)*sizeof(POINT)); |
| 85 |
< |
row1 = (POINT *)malloc((n+1)*sizeof(POINT)); |
| 86 |
< |
row2 = (POINT *)malloc((n+1)*sizeof(POINT)); |
| 84 |
> |
row0 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 85 |
> |
row1 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 86 |
> |
row2 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 87 |
|
if (row0 == NULL || row1 == NULL || row2 == NULL) { |
| 88 |
|
fprintf(stderr, "%s: out of memory\n", argv[0]); |
| 89 |
|
quit(1); |
| 90 |
|
} |
| 91 |
+ |
row0++; row1++; row2++; |
| 92 |
|
/* print header */ |
| 93 |
|
printhead(argc, argv); |
| 94 |
< |
/* compute first two rows */ |
| 94 |
> |
/* initialize */ |
| 95 |
> |
comprow(-1.0/m, row0, n); |
| 96 |
|
comprow(0.0, row1, n); |
| 97 |
|
comprow(1.0/m, row2, n); |
| 98 |
< |
compnorms(row1, row1, row2, n); |
| 98 |
> |
compnorms(row0, row1, row2, n); |
| 99 |
|
/* for each row */ |
| 100 |
|
for (i = 0; i < m; i++) { |
| 101 |
|
/* compute next row */ |
| 103 |
|
row0 = row1; |
| 104 |
|
row1 = row2; |
| 105 |
|
row2 = rp; |
| 106 |
< |
if (i+2 <= m) { |
| 107 |
< |
comprow((double)(i+2)/m, row2, n); |
| 107 |
< |
compnorms(row0, row1, row2, n); |
| 108 |
< |
} else |
| 109 |
< |
compnorms(row0, row1, row1, n); |
| 106 |
> |
comprow((double)(i+2)/m, row2, n); |
| 107 |
> |
compnorms(row0, row1, row2, n); |
| 108 |
|
|
| 109 |
|
for (j = 0; j < n; j++) { |
| 110 |
|
/* put polygons */ |
| 218 |
|
register POINT *row; |
| 219 |
|
int siz; |
| 220 |
|
{ |
| 221 |
< |
double st[2], step; |
| 222 |
< |
|
| 221 |
> |
double st[2]; |
| 222 |
> |
register int i; |
| 223 |
> |
/* compute one past each end */ |
| 224 |
|
st[0] = s; |
| 225 |
< |
st[1] = 0.0; |
| 226 |
< |
step = 1.0 / siz; |
| 227 |
< |
while (siz-- >= 0) { |
| 228 |
< |
row->p[0] = funvalue(XNAME, 2, st); |
| 229 |
< |
row->p[1] = funvalue(YNAME, 2, st); |
| 231 |
< |
row->p[2] = funvalue(ZNAME, 2, st); |
| 232 |
< |
row++; |
| 233 |
< |
st[1] += step; |
| 225 |
> |
for (i = -1; i <= siz+1; i++) { |
| 226 |
> |
st[1] = (double)i/siz; |
| 227 |
> |
row[i].p[0] = funvalue(XNAME, 2, st); |
| 228 |
> |
row[i].p[1] = funvalue(YNAME, 2, st); |
| 229 |
> |
row[i].p[2] = funvalue(ZNAME, 2, st); |
| 230 |
|
} |
| 231 |
|
} |
| 232 |
|
|
| 236 |
|
int siz; |
| 237 |
|
{ |
| 238 |
|
FVECT v1, v2, vc; |
| 239 |
+ |
register int i; |
| 240 |
|
|
| 241 |
|
if (!smooth) /* not needed if no smoothing */ |
| 242 |
|
return; |
| 246 |
– |
/* compute first point */ |
| 247 |
– |
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
| 248 |
– |
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
| 249 |
– |
fcross(r1[0].n, v1, v2); |
| 250 |
– |
fvsum(v1, r0[0].p, r1[0].p, -1.0); |
| 251 |
– |
fcross(vc, v2, v1); |
| 252 |
– |
fvsum(r1[0].n, r1[0].n, vc, 1.0); |
| 253 |
– |
normalize(r1[0].n); |
| 254 |
– |
r0++; r1++; r2++; |
| 243 |
|
/* compute middle points */ |
| 244 |
< |
while (--siz > 0) { |
| 244 |
> |
while (siz-- >= 0) { |
| 245 |
|
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
| 246 |
|
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
| 247 |
|
fcross(r1[0].n, v1, v2); |
| 257 |
|
normalize(r1[0].n); |
| 258 |
|
r0++; r1++; r2++; |
| 259 |
|
} |
| 272 |
– |
/* compute end point */ |
| 273 |
– |
fvsum(v1, r0[0].p, r1[0].p, -1.0); |
| 274 |
– |
fvsum(v2, r1[-1].p, r1[0].p, -1.0); |
| 275 |
– |
fcross(r1[0].n, v1, v2); |
| 276 |
– |
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
| 277 |
– |
fcross(vc, v2, v1); |
| 278 |
– |
fvsum(r1[0].n, r1[0].n, vc, 1.0); |
| 279 |
– |
normalize(r1[0].n); |
| 260 |
|
} |
| 261 |
|
|
| 262 |
|
|
| 269 |
|
#define v ((ax+2)%3) |
| 270 |
|
|
| 271 |
|
register int ax; |
| 272 |
< |
double eqnmat[4][4], solmat[4][4]; |
| 272 |
> |
double eqnmat[4][4]; |
| 273 |
|
FVECT v1; |
| 274 |
|
register int i, j; |
| 275 |
|
|
| 280 |
|
fvsum(v1, v1, p1->n, 1.0); |
| 281 |
|
fvsum(v1, v1, p2->n, 1.0); |
| 282 |
|
fvsum(v1, v1, p3->n, 1.0); |
| 283 |
< |
ax = fabs(v1[0]) > fabs(v1[1]) ? 0 : 1; |
| 284 |
< |
ax = fabs(v1[ax]) > fabs(v1[2]) ? ax : 2; |
| 283 |
> |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; |
| 284 |
> |
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; |
| 285 |
|
/* assign equation matrix */ |
| 286 |
|
eqnmat[0][0] = p0->p[u]*p0->p[v]; |
| 287 |
|
eqnmat[0][1] = p0->p[u]; |
| 300 |
|
eqnmat[3][2] = p3->p[v]; |
| 301 |
|
eqnmat[3][3] = 1.0; |
| 302 |
|
/* invert matrix (solve system) */ |
| 303 |
< |
if (!invmat(solmat, eqnmat)) |
| 303 |
> |
if (!invmat(eqnmat, eqnmat)) |
| 304 |
|
return(-1); /* no solution */ |
| 305 |
|
/* compute result matrix */ |
| 306 |
|
for (j = 0; j < 4; j++) |
| 307 |
|
for (i = 0; i < 3; i++) |
| 308 |
< |
resmat[j][i] = solmat[j][0]*p0->n[i] + |
| 309 |
< |
solmat[j][1]*p1->n[i] + |
| 310 |
< |
solmat[j][2]*p2->n[i] + |
| 311 |
< |
solmat[j][3]*p3->n[i]; |
| 308 |
> |
resmat[j][i] = eqnmat[j][0]*p0->n[i] + |
| 309 |
> |
eqnmat[j][1]*p1->n[i] + |
| 310 |
> |
eqnmat[j][2]*p2->n[i] + |
| 311 |
> |
eqnmat[j][3]*p3->n[i]; |
| 312 |
|
return(ax); |
| 313 |
|
|
| 314 |
|
#undef u |
| 316 |
|
} |
| 317 |
|
|
| 318 |
|
|
| 339 |
– |
static double m4tmp[4][4]; /* for efficiency */ |
| 340 |
– |
|
| 341 |
– |
#define copymat4(m4a,m4b) bcopy((char *)m4b,(char *)m4a,sizeof(m4tmp)) |
| 342 |
– |
|
| 343 |
– |
|
| 344 |
– |
setident4(m4) |
| 345 |
– |
double m4[4][4]; |
| 346 |
– |
{ |
| 347 |
– |
static double ident[4][4] = { |
| 348 |
– |
1.,0.,0.,0., |
| 349 |
– |
0.,1.,0.,0., |
| 350 |
– |
0.,0.,1.,0., |
| 351 |
– |
0.,0.,0.,1., |
| 352 |
– |
}; |
| 353 |
– |
copymat4(m4, ident); |
| 354 |
– |
} |
| 355 |
– |
|
| 319 |
|
/* |
| 320 |
|
* invmat - computes the inverse of mat into inverse. Returns 1 |
| 321 |
|
* if there exists an inverse, 0 otherwise. It uses Gaussian Elimination |
| 327 |
|
{ |
| 328 |
|
#define SWAP(a,b,t) (t=a,a=b,b=t) |
| 329 |
|
|
| 330 |
+ |
double m4tmp[4][4]; |
| 331 |
|
register int i,j,k; |
| 332 |
|
register double temp; |
| 333 |
|
|
| 334 |
< |
setident4(inverse); |
| 335 |
< |
copymat4(m4tmp, mat); |
| 334 |
> |
bcopy((char *)mat, (char *)m4tmp, sizeof(m4tmp)); |
| 335 |
> |
/* set inverse to identity */ |
| 336 |
> |
for (i = 0; i < 4; i++) |
| 337 |
> |
for (j = 0; j < 4; j++) |
| 338 |
> |
inverse[i][j] = i==j ? 1.0 : 0.0; |
| 339 |
|
|
| 340 |
|
for(i = 0; i < 4; i++) { |
| 341 |
< |
if(m4tmp[i][i] == 0) { /* Pivot is zero */ |
| 342 |
< |
/* Look for a raw with pivot != 0 and swap raws */ |
| 343 |
< |
for(j = i + 1; j < 4; j++) |
| 344 |
< |
if(m4tmp[j][i] != 0) { |
| 345 |
< |
for( k = 0; k < 4; k++) { |
| 346 |
< |
SWAP(m4tmp[i][k],m4tmp[j][k],temp); |
| 347 |
< |
SWAP(inverse[i][k],inverse[j][k],temp); |
| 348 |
< |
} |
| 349 |
< |
break; |
| 350 |
< |
} |
| 351 |
< |
if(j == 4) /* No replacing raw -> no inverse */ |
| 352 |
< |
return(0); |
| 353 |
< |
} |
| 341 |
> |
/* Look for raw with largest pivot and swap raws */ |
| 342 |
> |
temp = FTINY; j = -1; |
| 343 |
> |
for(k = i; k < 4; k++) |
| 344 |
> |
if(ABS(m4tmp[k][i]) > temp) { |
| 345 |
> |
temp = ABS(m4tmp[k][i]); |
| 346 |
> |
j = k; |
| 347 |
> |
} |
| 348 |
> |
if(j == -1) /* No replacing raw -> no inverse */ |
| 349 |
> |
return(0); |
| 350 |
> |
if (j != i) |
| 351 |
> |
for(k = 0; k < 4; k++) { |
| 352 |
> |
SWAP(m4tmp[i][k],m4tmp[j][k],temp); |
| 353 |
> |
SWAP(inverse[i][k],inverse[j][k],temp); |
| 354 |
> |
} |
| 355 |
|
|
| 356 |
|
temp = m4tmp[i][i]; |
| 357 |
|
for(k = 0; k < 4; k++) { |
| 369 |
|
} |
| 370 |
|
} |
| 371 |
|
return(1); |
| 372 |
+ |
|
| 373 |
|
#undef SWAP |
| 374 |
|
} |
| 375 |
|
|
| 417 |
|
argument(2)*(-2.0*t+3.0)*t*t + |
| 418 |
|
argument(3)*((t-2.0)*t+1.0)*t + |
| 419 |
|
argument(4)*(t-1.0)*t*t ); |
| 420 |
+ |
} |
| 421 |
+ |
|
| 422 |
+ |
|
| 423 |
+ |
double |
| 424 |
+ |
l_bezier() |
| 425 |
+ |
{ |
| 426 |
+ |
double t; |
| 427 |
+ |
|
| 428 |
+ |
t = argument(5); |
| 429 |
+ |
return( argument(1) * (1.+t*(-3.+t*(3.-t))) + |
| 430 |
+ |
argument(2) * 3.*t*(1.+t*(-2.+t)) + |
| 431 |
+ |
argument(3) * 3.*t*t*(1.-t) + |
| 432 |
+ |
argument(4) * t*t*t ); |
| 433 |
+ |
} |
| 434 |
+ |
|
| 435 |
+ |
|
| 436 |
+ |
double |
| 437 |
+ |
l_bspline() |
| 438 |
+ |
{ |
| 439 |
+ |
double t; |
| 440 |
+ |
|
| 441 |
+ |
t = argument(5); |
| 442 |
+ |
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + |
| 443 |
+ |
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + |
| 444 |
+ |
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + |
| 445 |
+ |
argument(4) * (1./6.*t*t*t) ); |
| 446 |
|
} |