| 1 |
greg |
1.1 |
#ifndef lint |
| 2 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
| 3 |
|
|
#endif |
| 4 |
greg |
1.2 |
|
| 5 |
greg |
1.7 |
/* Copyright (c) 1989 Regents of the University of California */ |
| 6 |
|
|
|
| 7 |
greg |
1.2 |
/* |
| 8 |
greg |
1.1 |
* gensurf.c - program to generate functional surfaces |
| 9 |
|
|
* |
| 10 |
|
|
* Parametric functions x(s,t), y(s,t) and z(s,t) |
| 11 |
|
|
* specify the surface, which is tesselated into an m by n |
| 12 |
|
|
* array of paired triangles. |
| 13 |
|
|
* The surface normal is defined by the right hand |
| 14 |
|
|
* rule applied to (s,t). |
| 15 |
|
|
* |
| 16 |
|
|
* 4/3/87 |
| 17 |
|
|
*/ |
| 18 |
|
|
|
| 19 |
greg |
1.5 |
#include "standard.h" |
| 20 |
greg |
1.1 |
|
| 21 |
greg |
1.15 |
#define XNAME "X`SYS`" /* x function name */ |
| 22 |
|
|
#define YNAME "Y`SYS`" /* y function name */ |
| 23 |
|
|
#define ZNAME "Z`SYS`" /* z function name */ |
| 24 |
greg |
1.1 |
|
| 25 |
greg |
1.4 |
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
| 26 |
|
|
|
| 27 |
greg |
1.3 |
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
| 28 |
greg |
1.1 |
|
| 29 |
|
|
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
| 30 |
greg |
1.3 |
char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n"; |
| 31 |
|
|
char texname[] = "Phong"; |
| 32 |
greg |
1.1 |
|
| 33 |
greg |
1.3 |
int smooth = 0; /* apply smoothing? */ |
| 34 |
greg |
1.1 |
|
| 35 |
greg |
1.3 |
char *modname, *surfname; |
| 36 |
greg |
1.1 |
|
| 37 |
greg |
1.7 |
double funvalue(), l_hermite(), l_bezier(), l_bspline(), argument(); |
| 38 |
greg |
1.3 |
|
| 39 |
|
|
typedef struct { |
| 40 |
|
|
FVECT p; /* vertex position */ |
| 41 |
|
|
FVECT n; /* average normal */ |
| 42 |
|
|
} POINT; |
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
greg |
1.1 |
main(argc, argv) |
| 46 |
|
|
int argc; |
| 47 |
|
|
char *argv[]; |
| 48 |
|
|
{ |
| 49 |
greg |
1.9 |
extern long eclock; |
| 50 |
greg |
1.3 |
POINT *row0, *row1, *row2, *rp; |
| 51 |
greg |
1.1 |
int i, j, m, n; |
| 52 |
|
|
char stmp[256]; |
| 53 |
|
|
|
| 54 |
greg |
1.13 |
varset("PI", ':', PI); |
| 55 |
greg |
1.14 |
funset("hermite", 5, ':', l_hermite); |
| 56 |
|
|
funset("bezier", 5, ':', l_bezier); |
| 57 |
|
|
funset("bspline", 5, ':', l_bspline); |
| 58 |
greg |
1.1 |
|
| 59 |
|
|
if (argc < 8) |
| 60 |
|
|
goto userror; |
| 61 |
|
|
|
| 62 |
|
|
for (i = 8; i < argc; i++) |
| 63 |
|
|
if (!strcmp(argv[i], "-e")) |
| 64 |
greg |
1.10 |
scompile(argv[++i], NULL, 0); |
| 65 |
greg |
1.1 |
else if (!strcmp(argv[i], "-f")) |
| 66 |
|
|
fcompile(argv[++i]); |
| 67 |
greg |
1.3 |
else if (!strcmp(argv[i], "-s")) |
| 68 |
|
|
smooth++; |
| 69 |
greg |
1.1 |
else |
| 70 |
|
|
goto userror; |
| 71 |
|
|
|
| 72 |
greg |
1.3 |
modname = argv[1]; |
| 73 |
|
|
surfname = argv[2]; |
| 74 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
| 75 |
greg |
1.10 |
scompile(stmp, NULL, 0); |
| 76 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
| 77 |
greg |
1.10 |
scompile(stmp, NULL, 0); |
| 78 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); |
| 79 |
greg |
1.10 |
scompile(stmp, NULL, 0); |
| 80 |
greg |
1.1 |
m = atoi(argv[6]); |
| 81 |
|
|
n = atoi(argv[7]); |
| 82 |
|
|
if (m <= 0 || n <= 0) |
| 83 |
|
|
goto userror; |
| 84 |
|
|
|
| 85 |
greg |
1.4 |
row0 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 86 |
|
|
row1 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 87 |
|
|
row2 = (POINT *)malloc((n+3)*sizeof(POINT)); |
| 88 |
greg |
1.3 |
if (row0 == NULL || row1 == NULL || row2 == NULL) { |
| 89 |
greg |
1.1 |
fprintf(stderr, "%s: out of memory\n", argv[0]); |
| 90 |
|
|
quit(1); |
| 91 |
|
|
} |
| 92 |
greg |
1.4 |
row0++; row1++; row2++; |
| 93 |
greg |
1.3 |
/* print header */ |
| 94 |
greg |
1.1 |
printhead(argc, argv); |
| 95 |
greg |
1.9 |
eclock = 0; |
| 96 |
greg |
1.4 |
/* initialize */ |
| 97 |
|
|
comprow(-1.0/m, row0, n); |
| 98 |
greg |
1.3 |
comprow(0.0, row1, n); |
| 99 |
|
|
comprow(1.0/m, row2, n); |
| 100 |
greg |
1.4 |
compnorms(row0, row1, row2, n); |
| 101 |
greg |
1.3 |
/* for each row */ |
| 102 |
greg |
1.1 |
for (i = 0; i < m; i++) { |
| 103 |
|
|
/* compute next row */ |
| 104 |
greg |
1.3 |
rp = row0; |
| 105 |
greg |
1.1 |
row0 = row1; |
| 106 |
greg |
1.3 |
row1 = row2; |
| 107 |
|
|
row2 = rp; |
| 108 |
greg |
1.4 |
comprow((double)(i+2)/m, row2, n); |
| 109 |
|
|
compnorms(row0, row1, row2, n); |
| 110 |
greg |
1.1 |
|
| 111 |
|
|
for (j = 0; j < n; j++) { |
| 112 |
greg |
1.3 |
/* put polygons */ |
| 113 |
|
|
if ((i+j) & 1) |
| 114 |
|
|
putsquare(&row0[j], &row1[j], |
| 115 |
|
|
&row0[j+1], &row1[j+1]); |
| 116 |
|
|
else |
| 117 |
|
|
putsquare(&row1[j], &row1[j+1], |
| 118 |
|
|
&row0[j], &row0[j+1]); |
| 119 |
greg |
1.1 |
} |
| 120 |
|
|
} |
| 121 |
|
|
|
| 122 |
|
|
quit(0); |
| 123 |
|
|
|
| 124 |
|
|
userror: |
| 125 |
|
|
fprintf(stderr, "Usage: %s material name ", argv[0]); |
| 126 |
greg |
1.3 |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n"); |
| 127 |
greg |
1.1 |
quit(1); |
| 128 |
|
|
} |
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
greg |
1.3 |
putsquare(p0, p1, p2, p3) /* put out a square */ |
| 132 |
|
|
POINT *p0, *p1, *p2, *p3; |
| 133 |
|
|
{ |
| 134 |
|
|
static int nout = 0; |
| 135 |
|
|
FVECT norm[4]; |
| 136 |
|
|
int axis; |
| 137 |
|
|
FVECT v1, v2, vc1, vc2; |
| 138 |
|
|
int ok1, ok2; |
| 139 |
|
|
/* compute exact normals */ |
| 140 |
|
|
fvsum(v1, p1->p, p0->p, -1.0); |
| 141 |
|
|
fvsum(v2, p2->p, p0->p, -1.0); |
| 142 |
|
|
fcross(vc1, v1, v2); |
| 143 |
|
|
ok1 = normalize(vc1) != 0.0; |
| 144 |
|
|
fvsum(v1, p2->p, p3->p, -1.0); |
| 145 |
|
|
fvsum(v2, p1->p, p3->p, -1.0); |
| 146 |
|
|
fcross(vc2, v1, v2); |
| 147 |
|
|
ok2 = normalize(vc2) != 0.0; |
| 148 |
|
|
if (!(ok1 | ok2)) |
| 149 |
|
|
return; |
| 150 |
|
|
/* compute normal interpolation */ |
| 151 |
|
|
axis = norminterp(norm, p0, p1, p2, p3); |
| 152 |
|
|
|
| 153 |
|
|
/* put out quadrilateral? */ |
| 154 |
|
|
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
| 155 |
|
|
printf("\n%s ", modname); |
| 156 |
|
|
if (axis != -1) { |
| 157 |
|
|
printf("texfunc %s\n", texname); |
| 158 |
|
|
printf(tsargs); |
| 159 |
|
|
printf("0\n13\t%d\n", axis); |
| 160 |
|
|
pvect(norm[0]); |
| 161 |
|
|
pvect(norm[1]); |
| 162 |
|
|
pvect(norm[2]); |
| 163 |
|
|
fvsum(v1, norm[3], vc1, -0.5); |
| 164 |
|
|
fvsum(v1, v1, vc2, -0.5); |
| 165 |
|
|
pvect(v1); |
| 166 |
|
|
printf("\n%s ", texname); |
| 167 |
|
|
} |
| 168 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
| 169 |
|
|
printf("0\n0\n12\n"); |
| 170 |
|
|
pvect(p0->p); |
| 171 |
|
|
pvect(p1->p); |
| 172 |
|
|
pvect(p3->p); |
| 173 |
|
|
pvect(p2->p); |
| 174 |
|
|
return; |
| 175 |
|
|
} |
| 176 |
|
|
/* put out triangles? */ |
| 177 |
|
|
if (ok1) { |
| 178 |
|
|
printf("\n%s ", modname); |
| 179 |
|
|
if (axis != -1) { |
| 180 |
|
|
printf("texfunc %s\n", texname); |
| 181 |
|
|
printf(tsargs); |
| 182 |
|
|
printf("0\n13\t%d\n", axis); |
| 183 |
|
|
pvect(norm[0]); |
| 184 |
|
|
pvect(norm[1]); |
| 185 |
|
|
pvect(norm[2]); |
| 186 |
|
|
fvsum(v1, norm[3], vc1, -1.0); |
| 187 |
|
|
pvect(v1); |
| 188 |
|
|
printf("\n%s ", texname); |
| 189 |
|
|
} |
| 190 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
| 191 |
|
|
printf("0\n0\n9\n"); |
| 192 |
|
|
pvect(p0->p); |
| 193 |
|
|
pvect(p1->p); |
| 194 |
|
|
pvect(p2->p); |
| 195 |
|
|
} |
| 196 |
|
|
if (ok2) { |
| 197 |
|
|
printf("\n%s ", modname); |
| 198 |
|
|
if (axis != -1) { |
| 199 |
|
|
printf("texfunc %s\n", texname); |
| 200 |
|
|
printf(tsargs); |
| 201 |
|
|
printf("0\n13\t%d\n", axis); |
| 202 |
|
|
pvect(norm[0]); |
| 203 |
|
|
pvect(norm[1]); |
| 204 |
|
|
pvect(norm[2]); |
| 205 |
|
|
fvsum(v2, norm[3], vc2, -1.0); |
| 206 |
|
|
pvect(v2); |
| 207 |
|
|
printf("\n%s ", texname); |
| 208 |
|
|
} |
| 209 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
| 210 |
|
|
printf("0\n0\n9\n"); |
| 211 |
|
|
pvect(p2->p); |
| 212 |
|
|
pvect(p1->p); |
| 213 |
|
|
pvect(p3->p); |
| 214 |
|
|
} |
| 215 |
|
|
} |
| 216 |
|
|
|
| 217 |
|
|
|
| 218 |
greg |
1.1 |
comprow(s, row, siz) /* compute row of values */ |
| 219 |
|
|
double s; |
| 220 |
greg |
1.3 |
register POINT *row; |
| 221 |
greg |
1.1 |
int siz; |
| 222 |
|
|
{ |
| 223 |
greg |
1.4 |
double st[2]; |
| 224 |
greg |
1.8 |
int end; |
| 225 |
greg |
1.4 |
register int i; |
| 226 |
greg |
1.8 |
|
| 227 |
|
|
if (smooth) { |
| 228 |
|
|
i = -1; /* compute one past each end */ |
| 229 |
|
|
end = siz+1; |
| 230 |
|
|
} else { |
| 231 |
|
|
if (s < -FTINY || s > 1.0+FTINY) |
| 232 |
|
|
return; |
| 233 |
|
|
i = 0; |
| 234 |
|
|
end = siz; |
| 235 |
|
|
} |
| 236 |
greg |
1.1 |
st[0] = s; |
| 237 |
greg |
1.8 |
while (i <= end) { |
| 238 |
greg |
1.4 |
st[1] = (double)i/siz; |
| 239 |
|
|
row[i].p[0] = funvalue(XNAME, 2, st); |
| 240 |
|
|
row[i].p[1] = funvalue(YNAME, 2, st); |
| 241 |
|
|
row[i].p[2] = funvalue(ZNAME, 2, st); |
| 242 |
greg |
1.8 |
i++; |
| 243 |
greg |
1.1 |
} |
| 244 |
greg |
1.3 |
} |
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
compnorms(r0, r1, r2, siz) /* compute row of averaged normals */ |
| 248 |
|
|
register POINT *r0, *r1, *r2; |
| 249 |
|
|
int siz; |
| 250 |
|
|
{ |
| 251 |
greg |
1.11 |
FVECT v1, v2; |
| 252 |
greg |
1.4 |
register int i; |
| 253 |
greg |
1.3 |
|
| 254 |
|
|
if (!smooth) /* not needed if no smoothing */ |
| 255 |
|
|
return; |
| 256 |
|
|
/* compute middle points */ |
| 257 |
greg |
1.4 |
while (siz-- >= 0) { |
| 258 |
greg |
1.11 |
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
| 259 |
|
|
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
| 260 |
greg |
1.3 |
fcross(r1[0].n, v1, v2); |
| 261 |
|
|
normalize(r1[0].n); |
| 262 |
|
|
r0++; r1++; r2++; |
| 263 |
|
|
} |
| 264 |
|
|
} |
| 265 |
|
|
|
| 266 |
|
|
|
| 267 |
|
|
int |
| 268 |
|
|
norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */ |
| 269 |
|
|
register FVECT resmat[4]; |
| 270 |
|
|
POINT *p0, *p1, *p2, *p3; |
| 271 |
|
|
{ |
| 272 |
|
|
#define u ((ax+1)%3) |
| 273 |
|
|
#define v ((ax+2)%3) |
| 274 |
|
|
|
| 275 |
|
|
register int ax; |
| 276 |
greg |
1.12 |
MAT4 eqnmat; |
| 277 |
greg |
1.3 |
FVECT v1; |
| 278 |
|
|
register int i, j; |
| 279 |
|
|
|
| 280 |
|
|
if (!smooth) /* no interpolation if no smoothing */ |
| 281 |
|
|
return(-1); |
| 282 |
|
|
/* find dominant axis */ |
| 283 |
|
|
VCOPY(v1, p0->n); |
| 284 |
|
|
fvsum(v1, v1, p1->n, 1.0); |
| 285 |
|
|
fvsum(v1, v1, p2->n, 1.0); |
| 286 |
|
|
fvsum(v1, v1, p3->n, 1.0); |
| 287 |
greg |
1.4 |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; |
| 288 |
|
|
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; |
| 289 |
greg |
1.3 |
/* assign equation matrix */ |
| 290 |
|
|
eqnmat[0][0] = p0->p[u]*p0->p[v]; |
| 291 |
|
|
eqnmat[0][1] = p0->p[u]; |
| 292 |
|
|
eqnmat[0][2] = p0->p[v]; |
| 293 |
|
|
eqnmat[0][3] = 1.0; |
| 294 |
|
|
eqnmat[1][0] = p1->p[u]*p1->p[v]; |
| 295 |
|
|
eqnmat[1][1] = p1->p[u]; |
| 296 |
|
|
eqnmat[1][2] = p1->p[v]; |
| 297 |
|
|
eqnmat[1][3] = 1.0; |
| 298 |
|
|
eqnmat[2][0] = p2->p[u]*p2->p[v]; |
| 299 |
|
|
eqnmat[2][1] = p2->p[u]; |
| 300 |
|
|
eqnmat[2][2] = p2->p[v]; |
| 301 |
|
|
eqnmat[2][3] = 1.0; |
| 302 |
|
|
eqnmat[3][0] = p3->p[u]*p3->p[v]; |
| 303 |
|
|
eqnmat[3][1] = p3->p[u]; |
| 304 |
|
|
eqnmat[3][2] = p3->p[v]; |
| 305 |
|
|
eqnmat[3][3] = 1.0; |
| 306 |
|
|
/* invert matrix (solve system) */ |
| 307 |
greg |
1.4 |
if (!invmat(eqnmat, eqnmat)) |
| 308 |
greg |
1.3 |
return(-1); /* no solution */ |
| 309 |
|
|
/* compute result matrix */ |
| 310 |
|
|
for (j = 0; j < 4; j++) |
| 311 |
|
|
for (i = 0; i < 3; i++) |
| 312 |
greg |
1.4 |
resmat[j][i] = eqnmat[j][0]*p0->n[i] + |
| 313 |
|
|
eqnmat[j][1]*p1->n[i] + |
| 314 |
|
|
eqnmat[j][2]*p2->n[i] + |
| 315 |
|
|
eqnmat[j][3]*p3->n[i]; |
| 316 |
greg |
1.3 |
return(ax); |
| 317 |
|
|
|
| 318 |
|
|
#undef u |
| 319 |
|
|
#undef v |
| 320 |
|
|
} |
| 321 |
|
|
|
| 322 |
|
|
|
| 323 |
|
|
/* |
| 324 |
|
|
* invmat - computes the inverse of mat into inverse. Returns 1 |
| 325 |
|
|
* if there exists an inverse, 0 otherwise. It uses Gaussian Elimination |
| 326 |
|
|
* method. |
| 327 |
|
|
*/ |
| 328 |
|
|
|
| 329 |
|
|
invmat(inverse,mat) |
| 330 |
greg |
1.12 |
MAT4 inverse, mat; |
| 331 |
greg |
1.3 |
{ |
| 332 |
|
|
#define SWAP(a,b,t) (t=a,a=b,b=t) |
| 333 |
|
|
|
| 334 |
greg |
1.12 |
MAT4 m4tmp; |
| 335 |
greg |
1.3 |
register int i,j,k; |
| 336 |
|
|
register double temp; |
| 337 |
|
|
|
| 338 |
greg |
1.12 |
copymat4(m4tmp, mat); |
| 339 |
greg |
1.4 |
/* set inverse to identity */ |
| 340 |
|
|
for (i = 0; i < 4; i++) |
| 341 |
|
|
for (j = 0; j < 4; j++) |
| 342 |
|
|
inverse[i][j] = i==j ? 1.0 : 0.0; |
| 343 |
greg |
1.3 |
|
| 344 |
|
|
for(i = 0; i < 4; i++) { |
| 345 |
greg |
1.11 |
/* Look for row with largest pivot and swap rows */ |
| 346 |
greg |
1.4 |
temp = FTINY; j = -1; |
| 347 |
|
|
for(k = i; k < 4; k++) |
| 348 |
|
|
if(ABS(m4tmp[k][i]) > temp) { |
| 349 |
|
|
temp = ABS(m4tmp[k][i]); |
| 350 |
|
|
j = k; |
| 351 |
|
|
} |
| 352 |
greg |
1.11 |
if(j == -1) /* No replacing row -> no inverse */ |
| 353 |
greg |
1.4 |
return(0); |
| 354 |
|
|
if (j != i) |
| 355 |
|
|
for(k = 0; k < 4; k++) { |
| 356 |
|
|
SWAP(m4tmp[i][k],m4tmp[j][k],temp); |
| 357 |
|
|
SWAP(inverse[i][k],inverse[j][k],temp); |
| 358 |
|
|
} |
| 359 |
greg |
1.3 |
|
| 360 |
|
|
temp = m4tmp[i][i]; |
| 361 |
|
|
for(k = 0; k < 4; k++) { |
| 362 |
|
|
m4tmp[i][k] /= temp; |
| 363 |
|
|
inverse[i][k] /= temp; |
| 364 |
|
|
} |
| 365 |
|
|
for(j = 0; j < 4; j++) { |
| 366 |
|
|
if(j != i) { |
| 367 |
|
|
temp = m4tmp[j][i]; |
| 368 |
|
|
for(k = 0; k < 4; k++) { |
| 369 |
|
|
m4tmp[j][k] -= m4tmp[i][k]*temp; |
| 370 |
|
|
inverse[j][k] -= inverse[i][k]*temp; |
| 371 |
|
|
} |
| 372 |
|
|
} |
| 373 |
|
|
} |
| 374 |
|
|
} |
| 375 |
|
|
return(1); |
| 376 |
greg |
1.4 |
|
| 377 |
greg |
1.3 |
#undef SWAP |
| 378 |
greg |
1.1 |
} |
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
eputs(msg) |
| 382 |
|
|
char *msg; |
| 383 |
|
|
{ |
| 384 |
|
|
fputs(msg, stderr); |
| 385 |
|
|
} |
| 386 |
|
|
|
| 387 |
|
|
|
| 388 |
|
|
wputs(msg) |
| 389 |
|
|
char *msg; |
| 390 |
|
|
{ |
| 391 |
|
|
eputs(msg); |
| 392 |
|
|
} |
| 393 |
|
|
|
| 394 |
|
|
|
| 395 |
|
|
quit(code) |
| 396 |
|
|
{ |
| 397 |
|
|
exit(code); |
| 398 |
|
|
} |
| 399 |
|
|
|
| 400 |
|
|
|
| 401 |
|
|
printhead(ac, av) /* print command header */ |
| 402 |
|
|
register int ac; |
| 403 |
|
|
register char **av; |
| 404 |
|
|
{ |
| 405 |
|
|
putchar('#'); |
| 406 |
|
|
while (ac--) { |
| 407 |
|
|
putchar(' '); |
| 408 |
|
|
fputs(*av++, stdout); |
| 409 |
|
|
} |
| 410 |
|
|
putchar('\n'); |
| 411 |
|
|
} |
| 412 |
|
|
|
| 413 |
|
|
|
| 414 |
|
|
double |
| 415 |
|
|
l_hermite() |
| 416 |
|
|
{ |
| 417 |
|
|
double t; |
| 418 |
|
|
|
| 419 |
|
|
t = argument(5); |
| 420 |
|
|
return( argument(1)*((2.0*t-3.0)*t*t+1.0) + |
| 421 |
|
|
argument(2)*(-2.0*t+3.0)*t*t + |
| 422 |
|
|
argument(3)*((t-2.0)*t+1.0)*t + |
| 423 |
|
|
argument(4)*(t-1.0)*t*t ); |
| 424 |
greg |
1.6 |
} |
| 425 |
|
|
|
| 426 |
|
|
|
| 427 |
|
|
double |
| 428 |
|
|
l_bezier() |
| 429 |
|
|
{ |
| 430 |
|
|
double t; |
| 431 |
|
|
|
| 432 |
|
|
t = argument(5); |
| 433 |
|
|
return( argument(1) * (1.+t*(-3.+t*(3.-t))) + |
| 434 |
|
|
argument(2) * 3.*t*(1.+t*(-2.+t)) + |
| 435 |
|
|
argument(3) * 3.*t*t*(1.-t) + |
| 436 |
|
|
argument(4) * t*t*t ); |
| 437 |
greg |
1.7 |
} |
| 438 |
|
|
|
| 439 |
|
|
|
| 440 |
|
|
double |
| 441 |
|
|
l_bspline() |
| 442 |
|
|
{ |
| 443 |
|
|
double t; |
| 444 |
|
|
|
| 445 |
|
|
t = argument(5); |
| 446 |
|
|
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + |
| 447 |
|
|
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + |
| 448 |
|
|
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + |
| 449 |
|
|
argument(4) * (1./6.*t*t*t) ); |
| 450 |
greg |
1.1 |
} |