| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: gensky.c,v 2.23 2004/09/10 18:19:24 greg Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* gensky.c - program to generate sky functions. |
| 6 |
* Our zenith is along the Z-axis, the X-axis |
| 7 |
* points east, and the Y-axis points north. |
| 8 |
* Radiance is in watts/steradian/sq. meter. |
| 9 |
* |
| 10 |
* 3/26/86 |
| 11 |
*/ |
| 12 |
|
| 13 |
#include <stdio.h> |
| 14 |
#include <stdlib.h> |
| 15 |
#include <string.h> |
| 16 |
#include <math.h> |
| 17 |
#include <ctype.h> |
| 18 |
|
| 19 |
#include "color.h" |
| 20 |
|
| 21 |
extern int jdate(int month, int day); |
| 22 |
extern double stadj(int jd); |
| 23 |
extern double sdec(int jd); |
| 24 |
extern double salt(double sd, double st); |
| 25 |
extern double sazi(double sd, double st); |
| 26 |
|
| 27 |
#ifndef PI |
| 28 |
#define PI 3.14159265358979323846 |
| 29 |
#endif |
| 30 |
|
| 31 |
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) |
| 32 |
|
| 33 |
#define S_CLEAR 1 |
| 34 |
#define S_OVER 2 |
| 35 |
#define S_UNIF 3 |
| 36 |
#define S_INTER 4 |
| 37 |
|
| 38 |
#define overcast ((skytype==S_OVER)|(skytype==S_UNIF)) |
| 39 |
|
| 40 |
double normsc(); |
| 41 |
/* sun calculation constants */ |
| 42 |
extern double s_latitude; |
| 43 |
extern double s_longitude; |
| 44 |
extern double s_meridian; |
| 45 |
|
| 46 |
#undef toupper |
| 47 |
#define toupper(c) ((c) & ~0x20) /* ASCII trick to convert case */ |
| 48 |
|
| 49 |
/* European and North American zones */ |
| 50 |
struct { |
| 51 |
char zname[8]; /* time zone name (all caps) */ |
| 52 |
float zmer; /* standard meridian */ |
| 53 |
} tzone[] = { |
| 54 |
{"YST", 135}, {"YDT", 120}, |
| 55 |
{"PST", 120}, {"PDT", 105}, |
| 56 |
{"MST", 105}, {"MDT", 90}, |
| 57 |
{"CST", 90}, {"CDT", 75}, |
| 58 |
{"EST", 75}, {"EDT", 60}, |
| 59 |
{"AST", 60}, {"ADT", 45}, |
| 60 |
{"NST", 52.5}, {"NDT", 37.5}, |
| 61 |
{"GMT", 0}, {"BST", -15}, |
| 62 |
{"CET", -15}, {"CEST", -30}, |
| 63 |
{"EET", -30}, {"EEST", -45}, |
| 64 |
{"AST", -45}, {"ADT", -60}, |
| 65 |
{"GST", -60}, {"GDT", -75}, |
| 66 |
{"IST", -82.5}, {"IDT", -97.5}, |
| 67 |
{"JST", -135}, {"NDT", -150}, |
| 68 |
{"NZST", -180}, {"NZDT", -195}, |
| 69 |
{"", 0} |
| 70 |
}; |
| 71 |
/* required values */ |
| 72 |
int month, day; /* date */ |
| 73 |
double hour; /* time */ |
| 74 |
int tsolar; /* 0=standard, 1=solar */ |
| 75 |
double altitude, azimuth; /* or solar angles */ |
| 76 |
/* default values */ |
| 77 |
int skytype = S_CLEAR; /* sky type */ |
| 78 |
int dosun = 1; |
| 79 |
double zenithbr = 0.0; |
| 80 |
int u_zenith = 0; /* -1=irradiance, 1=radiance */ |
| 81 |
double turbidity = 2.45; |
| 82 |
double gprefl = 0.2; |
| 83 |
/* computed values */ |
| 84 |
double sundir[3]; |
| 85 |
double groundbr; |
| 86 |
double F2; |
| 87 |
double solarbr = 0.0; |
| 88 |
int u_solar = 0; /* -1=irradiance, 1=radiance */ |
| 89 |
|
| 90 |
char *progname; |
| 91 |
char errmsg[128]; |
| 92 |
|
| 93 |
void computesky(void); |
| 94 |
void printsky(void); |
| 95 |
void printdefaults(void); |
| 96 |
void userror(char *msg); |
| 97 |
double normsc(void); |
| 98 |
int cvthour(char *hs); |
| 99 |
void printhead(register int ac, register char **av); |
| 100 |
|
| 101 |
|
| 102 |
int |
| 103 |
main(argc, argv) |
| 104 |
int argc; |
| 105 |
char *argv[]; |
| 106 |
{ |
| 107 |
int got_meridian = 0; |
| 108 |
int i; |
| 109 |
|
| 110 |
progname = argv[0]; |
| 111 |
if (argc == 2 && !strcmp(argv[1], "-defaults")) { |
| 112 |
printdefaults(); |
| 113 |
exit(0); |
| 114 |
} |
| 115 |
if (argc < 4) |
| 116 |
userror("arg count"); |
| 117 |
if (!strcmp(argv[1], "-ang")) { |
| 118 |
altitude = atof(argv[2]) * (PI/180); |
| 119 |
azimuth = atof(argv[3]) * (PI/180); |
| 120 |
month = 0; |
| 121 |
} else { |
| 122 |
month = atoi(argv[1]); |
| 123 |
if (month < 1 || month > 12) |
| 124 |
userror("bad month"); |
| 125 |
day = atoi(argv[2]); |
| 126 |
if (day < 1 || day > 31) |
| 127 |
userror("bad day"); |
| 128 |
got_meridian = cvthour(argv[3]); |
| 129 |
} |
| 130 |
for (i = 4; i < argc; i++) |
| 131 |
if (argv[i][0] == '-' || argv[i][0] == '+') |
| 132 |
switch (argv[i][1]) { |
| 133 |
case 's': |
| 134 |
skytype = S_CLEAR; |
| 135 |
dosun = argv[i][0] == '+'; |
| 136 |
break; |
| 137 |
case 'r': |
| 138 |
case 'R': |
| 139 |
u_solar = argv[i][1]=='R' ? -1 : 1; |
| 140 |
solarbr = atof(argv[++i]); |
| 141 |
break; |
| 142 |
case 'c': |
| 143 |
skytype = S_OVER; |
| 144 |
break; |
| 145 |
case 'u': |
| 146 |
skytype = S_UNIF; |
| 147 |
break; |
| 148 |
case 'i': |
| 149 |
skytype = S_INTER; |
| 150 |
dosun = argv[i][0] == '+'; |
| 151 |
break; |
| 152 |
case 't': |
| 153 |
turbidity = atof(argv[++i]); |
| 154 |
break; |
| 155 |
case 'b': |
| 156 |
case 'B': |
| 157 |
u_zenith = argv[i][1]=='B' ? -1 : 1; |
| 158 |
zenithbr = atof(argv[++i]); |
| 159 |
break; |
| 160 |
case 'g': |
| 161 |
gprefl = atof(argv[++i]); |
| 162 |
break; |
| 163 |
case 'a': |
| 164 |
s_latitude = atof(argv[++i]) * (PI/180); |
| 165 |
break; |
| 166 |
case 'o': |
| 167 |
s_longitude = atof(argv[++i]) * (PI/180); |
| 168 |
break; |
| 169 |
case 'm': |
| 170 |
if (got_meridian) { |
| 171 |
++i; |
| 172 |
break; /* time overrides */ |
| 173 |
} |
| 174 |
s_meridian = atof(argv[++i]) * (PI/180); |
| 175 |
break; |
| 176 |
default: |
| 177 |
sprintf(errmsg, "unknown option: %s", argv[i]); |
| 178 |
userror(errmsg); |
| 179 |
} |
| 180 |
else |
| 181 |
userror("bad option"); |
| 182 |
|
| 183 |
if (fabs(s_meridian-s_longitude) > 45*PI/180) |
| 184 |
fprintf(stderr, |
| 185 |
"%s: warning: %.1f hours btwn. standard meridian and longitude\n", |
| 186 |
progname, (s_longitude-s_meridian)*12/PI); |
| 187 |
|
| 188 |
printhead(argc, argv); |
| 189 |
|
| 190 |
computesky(); |
| 191 |
printsky(); |
| 192 |
|
| 193 |
exit(0); |
| 194 |
} |
| 195 |
|
| 196 |
|
| 197 |
void |
| 198 |
computesky(void) /* compute sky parameters */ |
| 199 |
{ |
| 200 |
double normfactor; |
| 201 |
/* compute solar direction */ |
| 202 |
if (month) { /* from date and time */ |
| 203 |
int jd; |
| 204 |
double sd, st; |
| 205 |
|
| 206 |
jd = jdate(month, day); /* Julian date */ |
| 207 |
sd = sdec(jd); /* solar declination */ |
| 208 |
if (tsolar) /* solar time */ |
| 209 |
st = hour; |
| 210 |
else |
| 211 |
st = hour + stadj(jd); |
| 212 |
altitude = salt(sd, st); |
| 213 |
azimuth = sazi(sd, st); |
| 214 |
printf("# Local solar time: %.2f\n", st); |
| 215 |
printf("# Solar altitude and azimuth: %.1f %.1f\n", |
| 216 |
180./PI*altitude, 180./PI*azimuth); |
| 217 |
} |
| 218 |
if (!overcast && altitude > 87.*PI/180.) { |
| 219 |
fprintf(stderr, |
| 220 |
"%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n", |
| 221 |
progname); |
| 222 |
printf( |
| 223 |
"# warning - sun too close to zenith, reducing altitude to 87 degrees\n"); |
| 224 |
altitude = 87.*PI/180.; |
| 225 |
} |
| 226 |
sundir[0] = -sin(azimuth)*cos(altitude); |
| 227 |
sundir[1] = -cos(azimuth)*cos(altitude); |
| 228 |
sundir[2] = sin(altitude); |
| 229 |
|
| 230 |
/* Compute normalization factor */ |
| 231 |
switch (skytype) { |
| 232 |
case S_UNIF: |
| 233 |
normfactor = 1.0; |
| 234 |
break; |
| 235 |
case S_OVER: |
| 236 |
normfactor = 0.777778; |
| 237 |
break; |
| 238 |
case S_CLEAR: |
| 239 |
F2 = 0.274*(0.91 + 10.0*exp(-3.0*(PI/2.0-altitude)) + |
| 240 |
0.45*sundir[2]*sundir[2]); |
| 241 |
normfactor = normsc()/F2/PI; |
| 242 |
break; |
| 243 |
case S_INTER: |
| 244 |
F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * |
| 245 |
exp(-(PI/2.0-altitude)*(.4441+1.48*altitude)); |
| 246 |
normfactor = normsc()/F2/PI; |
| 247 |
break; |
| 248 |
} |
| 249 |
/* Compute zenith brightness */ |
| 250 |
if (u_zenith == -1) |
| 251 |
zenithbr /= normfactor*PI; |
| 252 |
else if (u_zenith == 0) { |
| 253 |
if (overcast) |
| 254 |
zenithbr = 8.6*sundir[2] + .123; |
| 255 |
else |
| 256 |
zenithbr = (1.376*turbidity-1.81)*tan(altitude)+0.38; |
| 257 |
if (skytype == S_INTER) |
| 258 |
zenithbr = (zenithbr + 8.6*sundir[2] + .123)/2.0; |
| 259 |
if (zenithbr < 0.0) |
| 260 |
zenithbr = 0.0; |
| 261 |
else |
| 262 |
zenithbr *= 1000.0/SKYEFFICACY; |
| 263 |
} |
| 264 |
/* Compute horizontal radiance */ |
| 265 |
groundbr = zenithbr*normfactor; |
| 266 |
printf("# Ground ambient level: %.1f\n", groundbr); |
| 267 |
if (!overcast && sundir[2] > 0.0 && (!u_solar || solarbr > 0.0)) { |
| 268 |
if (u_solar == -1) |
| 269 |
solarbr /= 6e-5*sundir[2]; |
| 270 |
else if (u_solar == 0) { |
| 271 |
solarbr = 1.5e9/SUNEFFICACY * |
| 272 |
(1.147 - .147/(sundir[2]>.16?sundir[2]:.16)); |
| 273 |
if (skytype == S_INTER) |
| 274 |
solarbr *= 0.15; /* fudge factor! */ |
| 275 |
} |
| 276 |
groundbr += 6e-5/PI*solarbr*sundir[2]; |
| 277 |
} else |
| 278 |
dosun = 0; |
| 279 |
groundbr *= gprefl; |
| 280 |
} |
| 281 |
|
| 282 |
|
| 283 |
void |
| 284 |
printsky(void) /* print out sky */ |
| 285 |
{ |
| 286 |
if (dosun) { |
| 287 |
printf("\nvoid light solar\n"); |
| 288 |
printf("0\n0\n"); |
| 289 |
printf("3 %.2e %.2e %.2e\n", solarbr, solarbr, solarbr); |
| 290 |
printf("\nsolar source sun\n"); |
| 291 |
printf("0\n0\n"); |
| 292 |
printf("4 %f %f %f 0.5\n", sundir[0], sundir[1], sundir[2]); |
| 293 |
} |
| 294 |
|
| 295 |
printf("\nvoid brightfunc skyfunc\n"); |
| 296 |
printf("2 skybr skybright.cal\n"); |
| 297 |
printf("0\n"); |
| 298 |
if (overcast) |
| 299 |
printf("3 %d %.2e %.2e\n", skytype, zenithbr, groundbr); |
| 300 |
else |
| 301 |
printf("7 %d %.2e %.2e %.2e %f %f %f\n", |
| 302 |
skytype, zenithbr, groundbr, F2, |
| 303 |
sundir[0], sundir[1], sundir[2]); |
| 304 |
} |
| 305 |
|
| 306 |
|
| 307 |
void |
| 308 |
printdefaults(void) /* print default values */ |
| 309 |
{ |
| 310 |
switch (skytype) { |
| 311 |
case S_OVER: |
| 312 |
printf("-c\t\t\t\t# Cloudy sky\n"); |
| 313 |
break; |
| 314 |
case S_UNIF: |
| 315 |
printf("-u\t\t\t\t# Uniform cloudy sky\n"); |
| 316 |
break; |
| 317 |
case S_INTER: |
| 318 |
if (dosun) |
| 319 |
printf("+i\t\t\t\t# Intermediate sky with sun\n"); |
| 320 |
else |
| 321 |
printf("-i\t\t\t\t# Intermediate sky without sun\n"); |
| 322 |
break; |
| 323 |
case S_CLEAR: |
| 324 |
if (dosun) |
| 325 |
printf("+s\t\t\t\t# Sunny sky with sun\n"); |
| 326 |
else |
| 327 |
printf("-s\t\t\t\t# Sunny sky without sun\n"); |
| 328 |
break; |
| 329 |
} |
| 330 |
printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl); |
| 331 |
if (zenithbr > 0.0) |
| 332 |
printf("-b %f\t\t\t# Zenith radiance (watts/ster/m2\n", zenithbr); |
| 333 |
else |
| 334 |
printf("-t %f\t\t\t# Atmospheric turbidity\n", turbidity); |
| 335 |
printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/PI)); |
| 336 |
printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/PI)); |
| 337 |
printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/PI)); |
| 338 |
} |
| 339 |
|
| 340 |
|
| 341 |
void |
| 342 |
userror( /* print usage error and quit */ |
| 343 |
char *msg |
| 344 |
) |
| 345 |
{ |
| 346 |
if (msg != NULL) |
| 347 |
fprintf(stderr, "%s: Use error - %s\n", progname, msg); |
| 348 |
fprintf(stderr, "Usage: %s month day hour [options]\n", progname); |
| 349 |
fprintf(stderr, " Or: %s -ang altitude azimuth [options]\n", progname); |
| 350 |
fprintf(stderr, " Or: %s -defaults\n", progname); |
| 351 |
exit(1); |
| 352 |
} |
| 353 |
|
| 354 |
|
| 355 |
double |
| 356 |
normsc(void) /* compute normalization factor (E0*F2/L0) */ |
| 357 |
{ |
| 358 |
static double nfc[2][5] = { |
| 359 |
/* clear sky approx. */ |
| 360 |
{2.766521, 0.547665, -0.369832, 0.009237, 0.059229}, |
| 361 |
/* intermediate sky approx. */ |
| 362 |
{3.5556, -2.7152, -1.3081, 1.0660, 0.60227}, |
| 363 |
}; |
| 364 |
register double *nf; |
| 365 |
double x, nsc; |
| 366 |
register int i; |
| 367 |
/* polynomial approximation */ |
| 368 |
nf = nfc[skytype==S_INTER]; |
| 369 |
x = (altitude - PI/4.0)/(PI/4.0); |
| 370 |
nsc = nf[i=4]; |
| 371 |
while (i--) |
| 372 |
nsc = nsc*x + nf[i]; |
| 373 |
|
| 374 |
return(nsc); |
| 375 |
} |
| 376 |
|
| 377 |
|
| 378 |
int |
| 379 |
cvthour( /* convert hour string */ |
| 380 |
char *hs |
| 381 |
) |
| 382 |
{ |
| 383 |
register char *cp = hs; |
| 384 |
register int i, j; |
| 385 |
|
| 386 |
if ( (tsolar = *cp == '+') ) cp++; /* solar time? */ |
| 387 |
while (isdigit(*cp)) cp++; |
| 388 |
if (*cp == ':') |
| 389 |
hour = atoi(hs) + atoi(++cp)/60.0; |
| 390 |
else { |
| 391 |
hour = atof(hs); |
| 392 |
if (*cp == '.') cp++; |
| 393 |
} |
| 394 |
while (isdigit(*cp)) cp++; |
| 395 |
if (!*cp) |
| 396 |
return(0); |
| 397 |
if (tsolar || !isalpha(*cp)) { |
| 398 |
fprintf(stderr, "%s: bad time format: %s\n", progname, hs); |
| 399 |
exit(1); |
| 400 |
} |
| 401 |
i = 0; |
| 402 |
do { |
| 403 |
for (j = 0; cp[j]; j++) |
| 404 |
if (toupper(cp[j]) != tzone[i].zname[j]) |
| 405 |
break; |
| 406 |
if (!cp[j] && !tzone[i].zname[j]) { |
| 407 |
s_meridian = tzone[i].zmer * (PI/180); |
| 408 |
return(1); |
| 409 |
} |
| 410 |
} while (tzone[i++].zname[0]); |
| 411 |
|
| 412 |
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp); |
| 413 |
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname); |
| 414 |
for (i = 1; tzone[i].zname[0]; i++) |
| 415 |
fprintf(stderr, " %s", tzone[i].zname); |
| 416 |
putc('\n', stderr); |
| 417 |
exit(1); |
| 418 |
} |
| 419 |
|
| 420 |
|
| 421 |
void |
| 422 |
printhead( /* print command header */ |
| 423 |
register int ac, |
| 424 |
register char **av |
| 425 |
) |
| 426 |
{ |
| 427 |
putchar('#'); |
| 428 |
while (ac--) { |
| 429 |
putchar(' '); |
| 430 |
fputs(*av++, stdout); |
| 431 |
} |
| 432 |
putchar('\n'); |
| 433 |
} |