| 21 |
|
#include "sun.h" |
| 22 |
|
#include "loadEPW.h" |
| 23 |
|
|
| 24 |
– |
#ifndef M_PI |
| 25 |
– |
#define M_PI 3.14159265358579 |
| 26 |
– |
#endif |
| 24 |
|
|
| 25 |
< |
#define vector(v, alt, azi) \ |
| 26 |
< |
((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \ |
| 27 |
< |
(v)[2] = sin(alt)) |
| 25 |
> |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
| 26 |
> |
const double ARCTIC_LAT = 67.; |
| 27 |
> |
const double TROPIC_LAT = 23.; |
| 28 |
> |
const int SUMMER_START = 4; |
| 29 |
> |
const int SUMMER_END = 9; |
| 30 |
> |
const double GNORM = 0.777778; |
| 31 |
|
|
| 32 |
– |
#define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i]) |
| 33 |
– |
|
| 34 |
– |
#define rh_cos(i) tsin(rh_palt[i]) |
| 35 |
– |
|
| 36 |
– |
#define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5)) |
| 37 |
– |
|
| 38 |
– |
|
| 39 |
– |
char *progname; |
| 40 |
– |
|
| 41 |
– |
double altitude; /* Solar altitude (radians) */ |
| 42 |
– |
double azimuth; /* Solar azimuth (radians) */ |
| 43 |
– |
int julian_date; /* Julian date */ |
| 44 |
– |
double sun_zenith; /* Sun zenith angle (radians) */ |
| 45 |
– |
int input = 0; /* Input type */ |
| 46 |
– |
int output = 0; /* Output type */ |
| 47 |
– |
FVECT sundir; |
| 48 |
– |
|
| 49 |
– |
const double ARCTIC_LAT = 67.; |
| 50 |
– |
const double TROPIC_LAT = 23.; |
| 51 |
– |
const int SUMMER_START = 4; |
| 52 |
– |
const int SUMMER_END = 9; |
| 53 |
– |
const double GNORM = 0.777778; |
| 54 |
– |
|
| 55 |
– |
const double D65EFF = 203.; /* standard illuminant D65 */ |
| 56 |
– |
|
| 32 |
|
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
| 33 |
< |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
| 34 |
< |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
| 35 |
< |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
| 36 |
< |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
| 37 |
< |
/* Degrees into radians */ |
| 63 |
< |
#define DegToRad(deg) ((deg) * (PI / 180.)) |
| 33 |
> |
const double D6415[NSSAMP] = { |
| 34 |
> |
0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
| 35 |
> |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
| 36 |
> |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
| 37 |
> |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
| 38 |
|
|
| 39 |
< |
/* Radiuans into degrees */ |
| 40 |
< |
#define RadToDeg(rad) ((rad) * (180. / PI)) |
| 39 |
> |
enum { |
| 40 |
> |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
| 41 |
> |
}; |
| 42 |
|
|
| 43 |
< |
#ifndef NSUNPATCH |
| 44 |
< |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
| 45 |
< |
#endif |
| 43 |
> |
char *progname; |
| 44 |
> |
double altitude; /* Solar altitude (radians) */ |
| 45 |
> |
double azimuth; /* Solar azimuth (radians) */ |
| 46 |
> |
int julian_date; /* Julian date */ |
| 47 |
> |
double sun_zenith; /* Sun zenith angle (radians) */ |
| 48 |
> |
int nskypatch; /* number of Reinhart patches */ |
| 49 |
> |
float *rh_palt; /* sky patch altitudes (radians) */ |
| 50 |
> |
float *rh_pazi; /* sky patch azimuths (radians) */ |
| 51 |
> |
float *rh_dom; /* sky patch solid angle (sr) */ |
| 52 |
> |
FVECT sundir; |
| 53 |
> |
double sun_ct; /* cos(theta) of sun altitude angle */ |
| 54 |
|
|
| 55 |
< |
#define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */ |
| 55 |
> |
int input = 0; /* Input type */ |
| 56 |
> |
int output = 0; /* Output type */ |
| 57 |
> |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 58 |
> |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 59 |
> |
int verbose = 0; /* progress reports to stderr? */ |
| 60 |
> |
int outfmt = 'a'; /* output format */ |
| 61 |
> |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
| 62 |
> |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
| 63 |
> |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
| 64 |
> |
double grefl = .2; /* ground reflectance */ |
| 65 |
|
|
| 74 |
– |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 75 |
– |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 66 |
|
|
| 67 |
< |
int verbose = 0; /* progress reports to stderr? */ |
| 67 |
> |
static inline double deg_to_rad(double deg) |
| 68 |
> |
{ |
| 69 |
> |
return deg * (PI / 180.); |
| 70 |
> |
} |
| 71 |
|
|
| 72 |
< |
int outfmt = 'a'; /* output format */ |
| 72 |
> |
static inline double rad_to_deg(double rad) |
| 73 |
> |
{ |
| 74 |
> |
return rad * (180. / PI); |
| 75 |
> |
} |
| 76 |
|
|
| 77 |
< |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
| 77 |
> |
static inline void vectorize(double altitude, double azimuth, FVECT v) |
| 78 |
> |
{ |
| 79 |
> |
v[1] = cos(altitude); |
| 80 |
> |
v[0] = (v)[1] * sin(azimuth); |
| 81 |
> |
v[1] *= cos(azimuth); |
| 82 |
> |
v[2] = sin(altitude); |
| 83 |
> |
} |
| 84 |
|
|
| 85 |
< |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
| 86 |
< |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
| 87 |
< |
double grefl = .2; /* ground reflectance */ |
| 85 |
> |
static inline double wmean2(const double a, const double b, const double x) |
| 86 |
> |
{ |
| 87 |
> |
return a * (1 - x) + b * x; |
| 88 |
> |
} |
| 89 |
|
|
| 90 |
< |
int nskypatch; /* number of Reinhart patches */ |
| 91 |
< |
float *rh_palt; /* sky patch altitudes (radians) */ |
| 92 |
< |
float *rh_pazi; /* sky patch azimuths (radians) */ |
| 93 |
< |
float *rh_dom; /* sky patch solid angle (sr) */ |
| 94 |
< |
|
| 92 |
< |
double sun_ct; |
| 93 |
< |
|
| 94 |
< |
inline void vectorize(double altitude, double azimuth, FVECT v) { |
| 95 |
< |
v[1] = cos(altitude); |
| 96 |
< |
v[0] = (v)[1] * sin(azimuth); |
| 97 |
< |
v[1] *= cos(azimuth); |
| 98 |
< |
v[2] = sin(altitude); |
| 90 |
> |
static inline double wmean( |
| 91 |
> |
const double a, const double x, |
| 92 |
> |
const double b, const double y) |
| 93 |
> |
{ |
| 94 |
> |
return (a * x + b * y) / (a + b); |
| 95 |
|
} |
| 96 |
|
|
| 97 |
< |
static int make_directory(const char *path) { |
| 97 |
> |
static int make_directory(const char *path) |
| 98 |
> |
{ |
| 99 |
|
#ifdef _WIN32 |
| 100 |
< |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
| 101 |
< |
return 1; |
| 102 |
< |
} |
| 103 |
< |
return 0; |
| 100 |
> |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
| 101 |
> |
return 1; |
| 102 |
> |
} |
| 103 |
> |
return 0; |
| 104 |
|
#else |
| 105 |
< |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
| 106 |
< |
return 1; |
| 107 |
< |
} |
| 108 |
< |
return 0; |
| 105 |
> |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
| 106 |
> |
return 1; |
| 107 |
> |
} |
| 108 |
> |
return 0; |
| 109 |
|
#endif |
| 110 |
|
} |
| 111 |
|
|
| 112 |
< |
static const char *getfmtname(int fmt) { |
| 113 |
< |
switch (fmt) { |
| 114 |
< |
case 'a': |
| 115 |
< |
return ("ascii"); |
| 116 |
< |
case 'f': |
| 117 |
< |
return ("float"); |
| 118 |
< |
case 'd': |
| 119 |
< |
return ("double"); |
| 120 |
< |
} |
| 121 |
< |
return ("unknown"); |
| 112 |
> |
static const char *getfmtname(int fmt) |
| 113 |
> |
{ |
| 114 |
> |
switch (fmt) { |
| 115 |
> |
case 'a': |
| 116 |
> |
return ("ascii"); |
| 117 |
> |
case 'f': |
| 118 |
> |
return ("float"); |
| 119 |
> |
case 'd': |
| 120 |
> |
return ("double"); |
| 121 |
> |
} |
| 122 |
> |
return ("unknown"); |
| 123 |
|
} |
| 124 |
|
|
| 127 |
– |
static inline double wmean2(const double a, const double b, const double x) { |
| 128 |
– |
return a * (1 - x) + b * x; |
| 129 |
– |
} |
| 125 |
|
|
| 126 |
< |
static inline double wmean(const double a, const double x, const double b, |
| 127 |
< |
const double y) { |
| 128 |
< |
return (a * x + b * y) / (a + b); |
| 126 |
> |
static double get_overcast_zenith_brightness(const double sundir[3]) |
| 127 |
> |
{ |
| 128 |
> |
double zenithbr; |
| 129 |
> |
if (sundir[2] < 0) { |
| 130 |
> |
zenithbr = 0; |
| 131 |
> |
} else { |
| 132 |
> |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFFICACY; |
| 133 |
> |
} |
| 134 |
> |
return zenithbr; |
| 135 |
|
} |
| 136 |
|
|
| 137 |
|
|
| 137 |
– |
static double get_overcast_zenith_brightness(const double sundir[3]) { |
| 138 |
– |
double zenithbr; |
| 139 |
– |
if (sundir[2] < 0) { |
| 140 |
– |
zenithbr = 0; |
| 141 |
– |
} else { |
| 142 |
– |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
| 143 |
– |
} |
| 144 |
– |
return zenithbr; |
| 145 |
– |
} |
| 146 |
– |
|
| 138 |
|
/* from gensky.c */ |
| 139 |
< |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
| 139 |
> |
static double get_overcast_brightness(const double dz, const double zenithbr) |
| 140 |
> |
{ |
| 141 |
|
double groundbr = zenithbr * GNORM; |
| 142 |
< |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
| 143 |
< |
pow(dz + 1.01, -10), groundbr); |
| 142 |
> |
return wmean(pow(dz + 1.01, 10), |
| 143 |
> |
zenithbr * (1 + 2 * dz) / 3, |
| 144 |
> |
pow(dz + 1.01, -10), groundbr); |
| 145 |
|
} |
| 146 |
|
|
| 147 |
< |
double |
| 155 |
< |
solar_sunset(int month, int day) |
| 147 |
> |
double solar_sunset(int month, int day) |
| 148 |
|
{ |
| 149 |
|
float W; |
| 150 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
| 151 |
< |
return(12 + (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
| 151 |
> |
return 12 + (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
| 152 |
|
} |
| 153 |
|
|
| 154 |
|
|
| 155 |
< |
double |
| 164 |
< |
solar_sunrise(int month, int day) |
| 155 |
> |
double solar_sunrise(int month, int day) |
| 156 |
|
{ |
| 157 |
|
float W; |
| 158 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
| 159 |
< |
return(12 - (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
| 159 |
> |
return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
| 160 |
|
} |
| 161 |
|
|
| 162 |
< |
int rh_init(void) { |
| 162 |
> |
int rh_init(void) |
| 163 |
> |
{ |
| 164 |
|
#define NROW 7 |
| 165 |
< |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
| 166 |
< |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
| 167 |
< |
int p, i, j; |
| 168 |
< |
/* allocate patch angle arrays */ |
| 169 |
< |
nskypatch = 0; |
| 170 |
< |
for (p = 0; p < NROW; p++) |
| 171 |
< |
nskypatch += tnaz[p]; |
| 172 |
< |
nskypatch *= rhsubdiv * rhsubdiv; |
| 173 |
< |
nskypatch += 2; |
| 174 |
< |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
| 175 |
< |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
| 176 |
< |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
| 177 |
< |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
| 178 |
< |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
| 179 |
< |
exit(1); |
| 180 |
< |
} |
| 181 |
< |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
| 182 |
< |
rh_pazi[0] = 0.; |
| 183 |
< |
rh_dom[0] = 2. * PI; |
| 184 |
< |
rh_palt[nskypatch - 1] = PI / 2.; |
| 185 |
< |
rh_pazi[nskypatch - 1] = 0.; |
| 186 |
< |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
| 187 |
< |
p = 1; /* "normal" patches */ |
| 188 |
< |
for (i = 0; i < NROW * rhsubdiv; i++) { |
| 189 |
< |
const float ralt = alpha * (i + .5); |
| 190 |
< |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
| 191 |
< |
const float dom = |
| 192 |
< |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
| 193 |
< |
for (j = 0; j < ninrow; j++) { |
| 194 |
< |
rh_palt[p] = ralt; |
| 195 |
< |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
| 196 |
< |
rh_dom[p++] = dom; |
| 197 |
< |
} |
| 198 |
< |
} |
| 199 |
< |
return nskypatch; |
| 165 |
> |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
| 166 |
> |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
| 167 |
> |
int p, i, j; |
| 168 |
> |
/* allocate patch angle arrays */ |
| 169 |
> |
nskypatch = 0; |
| 170 |
> |
for (p = 0; p < NROW; p++) |
| 171 |
> |
nskypatch += tnaz[p]; |
| 172 |
> |
nskypatch *= rhsubdiv * rhsubdiv; |
| 173 |
> |
nskypatch += 2; |
| 174 |
> |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
| 175 |
> |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
| 176 |
> |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
| 177 |
> |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
| 178 |
> |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
| 179 |
> |
exit(1); |
| 180 |
> |
} |
| 181 |
> |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
| 182 |
> |
rh_pazi[0] = 0.; |
| 183 |
> |
rh_dom[0] = 2. * PI; |
| 184 |
> |
rh_palt[nskypatch - 1] = PI / 2.; |
| 185 |
> |
rh_pazi[nskypatch - 1] = 0.; |
| 186 |
> |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
| 187 |
> |
p = 1; /* "normal" patches */ |
| 188 |
> |
for (i = 0; i < NROW * rhsubdiv; i++) { |
| 189 |
> |
const float ralt = alpha * (i + .5); |
| 190 |
> |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
| 191 |
> |
const float dom = |
| 192 |
> |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
| 193 |
> |
for (j = 0; j < ninrow; j++) { |
| 194 |
> |
rh_palt[p] = ralt; |
| 195 |
> |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
| 196 |
> |
rh_dom[p++] = dom; |
| 197 |
> |
} |
| 198 |
> |
} |
| 199 |
> |
return nskypatch; |
| 200 |
|
#undef NROW |
| 201 |
|
} |
| 202 |
|
|
| 203 |
|
/* Resize daylight matrix (GW) */ |
| 204 |
< |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) { |
| 205 |
< |
if (mtx_data == NULL) |
| 206 |
< |
mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
| 207 |
< |
else |
| 208 |
< |
mtx_data = |
| 209 |
< |
(float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch); |
| 210 |
< |
if (mtx_data == NULL) { |
| 211 |
< |
fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, |
| 212 |
< |
nsteps, npatch); |
| 213 |
< |
exit(1); |
| 204 |
> |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) |
| 205 |
> |
{ |
| 206 |
> |
if (mtx_data == NULL) |
| 207 |
> |
mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
| 208 |
> |
else |
| 209 |
> |
mtx_data = (float * ) realloc(mtx_data, |
| 210 |
> |
sizeof(float) * NSSAMP * nsteps * npatch); |
| 211 |
> |
if (mtx_data == NULL) { |
| 212 |
> |
fprintf(stderr, |
| 213 |
> |
"%s: out of memory in resize_dmatrix(%d,%d)\n", |
| 214 |
> |
progname, nsteps, npatch); |
| 215 |
> |
exit(1); |
| 216 |
|
} |
| 217 |
< |
return (mtx_data); |
| 217 |
> |
return mtx_data; |
| 218 |
|
} |
| 219 |
|
|
| 220 |
< |
static Atmosphere init_atmos(const double aod, const double grefl) { |
| 221 |
< |
Atmosphere atmos = {.ozone_density = {.layers = |
| 222 |
< |
{ |
| 223 |
< |
{.width = 25000.0, |
| 224 |
< |
.exp_term = 0.0, |
| 225 |
< |
.exp_scale = 0.0, |
| 226 |
< |
.linear_term = 1.0 / 15000.0, |
| 227 |
< |
.constant_term = -2.0 / 3.0}, |
| 228 |
< |
{.width = AH, |
| 229 |
< |
.exp_term = 0.0, |
| 230 |
< |
.exp_scale = 0.0, |
| 231 |
< |
.linear_term = -1.0 / 15000.0, |
| 232 |
< |
.constant_term = 8.0 / 3.0}, |
| 233 |
< |
}}, |
| 234 |
< |
.rayleigh_density = {.layers = |
| 235 |
< |
{ |
| 236 |
< |
{.width = AH, |
| 237 |
< |
.exp_term = 1.0, |
| 238 |
< |
.exp_scale = -1.0 / HR_MS, |
| 239 |
< |
.linear_term = 0.0, |
| 240 |
< |
.constant_term = 0.0}, |
| 241 |
< |
}}, |
| 242 |
< |
.beta_r0 = BR0_MS, |
| 243 |
< |
.beta_scale = aod / AOD0_CA, |
| 244 |
< |
.beta_m = NULL, |
| 245 |
< |
.grefl = grefl}; |
| 246 |
< |
return atmos; |
| 220 |
> |
static Atmosphere init_atmos(const double aod, const double grefl) |
| 221 |
> |
{ |
| 222 |
> |
Atmosphere atmos = { |
| 223 |
> |
.ozone_density = { |
| 224 |
> |
.layers = { |
| 225 |
> |
{ |
| 226 |
> |
.width = 25000.0, |
| 227 |
> |
.exp_term = 0.0, |
| 228 |
> |
.exp_scale = 0.0, |
| 229 |
> |
.linear_term = 1.0 / 15000.0, |
| 230 |
> |
.constant_term = -2.0 / 3.0 |
| 231 |
> |
}, |
| 232 |
> |
{ |
| 233 |
> |
.width = AH, |
| 234 |
> |
.exp_term = 0.0, |
| 235 |
> |
.exp_scale = 0.0, |
| 236 |
> |
.linear_term = -1.0 / 15000.0, |
| 237 |
> |
.constant_term = 8.0 / 3.0 |
| 238 |
> |
}, |
| 239 |
> |
} |
| 240 |
> |
}, |
| 241 |
> |
.rayleigh_density = { |
| 242 |
> |
.layers = { |
| 243 |
> |
{ |
| 244 |
> |
.width = AH, |
| 245 |
> |
.exp_term = 1.0, |
| 246 |
> |
.exp_scale = -1.0 / HR_MS, |
| 247 |
> |
.linear_term = 0.0, |
| 248 |
> |
.constant_term = 0.0 |
| 249 |
> |
}, |
| 250 |
> |
} |
| 251 |
> |
}, |
| 252 |
> |
.beta_r0 = BR0_MS, |
| 253 |
> |
.beta_scale = aod / AOD0_CA, |
| 254 |
> |
.beta_m = NULL, |
| 255 |
> |
.grefl = grefl |
| 256 |
> |
}; |
| 257 |
> |
return atmos; |
| 258 |
|
} |
| 259 |
|
|
| 260 |
< |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
| 261 |
< |
const char *tag) { |
| 262 |
< |
DpPaths paths; |
| 260 |
> |
static DpPaths get_dppaths(const char *dir, const double aod, |
| 261 |
> |
const char *mname, const char *tag) |
| 262 |
> |
{ |
| 263 |
> |
DpPaths paths; |
| 264 |
|
|
| 265 |
< |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 266 |
< |
mname, aod); |
| 267 |
< |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 268 |
< |
mname, aod); |
| 269 |
< |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
| 270 |
< |
tag, mname, aod); |
| 271 |
< |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 272 |
< |
mname, aod); |
| 265 |
> |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", |
| 266 |
> |
dir, DIRSEP, tag, mname, aod); |
| 267 |
> |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", |
| 268 |
> |
dir, DIRSEP, tag, mname, aod); |
| 269 |
> |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", |
| 270 |
> |
dir, DIRSEP, tag, mname, aod); |
| 271 |
> |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", |
| 272 |
> |
dir, DIRSEP, tag, mname, aod); |
| 273 |
|
|
| 274 |
< |
return paths; |
| 274 |
> |
return paths; |
| 275 |
|
} |
| 276 |
|
|
| 277 |
< |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
| 278 |
< |
const int is_summer, |
| 279 |
< |
const double s_latitude) { |
| 280 |
< |
/* Set rayleigh density profile */ |
| 281 |
< |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
| 282 |
< |
tag[0] = 's'; |
| 283 |
< |
if (is_summer) { |
| 284 |
< |
tag[1] = 's'; |
| 285 |
< |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
| 286 |
< |
atmos->beta_r0 = BR0_SS; |
| 287 |
< |
} else { |
| 288 |
< |
tag[1] = 'w'; |
| 289 |
< |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
| 290 |
< |
atmos->beta_r0 = BR0_SW; |
| 291 |
< |
} |
| 292 |
< |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
| 293 |
< |
tag[0] = 'm'; |
| 294 |
< |
if (is_summer) { |
| 295 |
< |
tag[1] = 's'; |
| 296 |
< |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
| 297 |
< |
atmos->beta_r0 = BR0_MS; |
| 298 |
< |
} else { |
| 299 |
< |
tag[1] = 'w'; |
| 300 |
< |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
| 301 |
< |
atmos->beta_r0 = BR0_MW; |
| 302 |
< |
} |
| 303 |
< |
} else { |
| 304 |
< |
tag[0] = 't'; |
| 305 |
< |
tag[1] = 'r'; |
| 306 |
< |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
| 307 |
< |
atmos->beta_r0 = BR0_T; |
| 308 |
< |
} |
| 309 |
< |
tag[2] = '\0'; |
| 277 |
> |
|
| 278 |
> |
static void set_rayleigh_density_profile(Atmosphere *atmos, |
| 279 |
> |
char *tag, const int is_summer, const double s_latitude) |
| 280 |
> |
{ |
| 281 |
> |
/* Set rayleigh density profile */ |
| 282 |
> |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
| 283 |
> |
tag[0] = 's'; |
| 284 |
> |
if (is_summer) { |
| 285 |
> |
tag[1] = 's'; |
| 286 |
> |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
| 287 |
> |
atmos->beta_r0 = BR0_SS; |
| 288 |
> |
} else { |
| 289 |
> |
tag[1] = 'w'; |
| 290 |
> |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
| 291 |
> |
atmos->beta_r0 = BR0_SW; |
| 292 |
> |
} |
| 293 |
> |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
| 294 |
> |
tag[0] = 'm'; |
| 295 |
> |
if (is_summer) { |
| 296 |
> |
tag[1] = 's'; |
| 297 |
> |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
| 298 |
> |
atmos->beta_r0 = BR0_MS; |
| 299 |
> |
} else { |
| 300 |
> |
tag[1] = 'w'; |
| 301 |
> |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
| 302 |
> |
atmos->beta_r0 = BR0_MW; |
| 303 |
> |
} |
| 304 |
> |
} else { |
| 305 |
> |
tag[0] = 't'; |
| 306 |
> |
tag[1] = 'r'; |
| 307 |
> |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
| 308 |
> |
atmos->beta_r0 = BR0_T; |
| 309 |
> |
} |
| 310 |
> |
tag[2] = '\0'; |
| 311 |
|
} |
| 312 |
|
|
| 313 |
+ |
|
| 314 |
|
/* Add in solar direct to nearest sky patches (GW) */ |
| 315 |
< |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
| 316 |
< |
DATARRAY *irrad, double ccover, double dirnorm, float *parr) { |
| 317 |
< |
FVECT svec; |
| 318 |
< |
double near_dprod[NSUNPATCH]; |
| 319 |
< |
int near_patch[NSUNPATCH]; |
| 320 |
< |
double wta[NSUNPATCH], wtot; |
| 321 |
< |
int i, j, p; |
| 315 |
> |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, |
| 316 |
> |
double ccover, double dirnorm, float *parr) |
| 317 |
> |
{ |
| 318 |
> |
FVECT svec; |
| 319 |
> |
double near_dprod[NSUNPATCH]; |
| 320 |
> |
int near_patch[NSUNPATCH]; |
| 321 |
> |
double wta[NSUNPATCH], wtot; |
| 322 |
> |
int i, j, p; |
| 323 |
|
|
| 324 |
< |
/* identify nsuns closest patches */ |
| 325 |
< |
for (i = nsuns; i--;) |
| 326 |
< |
near_dprod[i] = -1.; |
| 327 |
< |
vectorize(altitude, azimuth, svec); |
| 328 |
< |
for (p = 1; p < nskypatch; p++) { |
| 329 |
< |
FVECT pvec; |
| 330 |
< |
double dprod; |
| 331 |
< |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
| 332 |
< |
dprod = DOT(pvec, svec); |
| 333 |
< |
for (i = 0; i < nsuns; i++) |
| 334 |
< |
if (dprod > near_dprod[i]) { |
| 335 |
< |
for (j = nsuns; --j > i;) { |
| 336 |
< |
near_dprod[j] = near_dprod[j - 1]; |
| 337 |
< |
near_patch[j] = near_patch[j - 1]; |
| 338 |
< |
} |
| 339 |
< |
near_dprod[i] = dprod; |
| 340 |
< |
near_patch[i] = p; |
| 341 |
< |
break; |
| 342 |
< |
} |
| 343 |
< |
} |
| 344 |
< |
/* Get solar radiance */ |
| 345 |
< |
double sun_radiance[NSSAMP] = {0}; |
| 346 |
< |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
| 347 |
< |
if (ccover > 0) { |
| 348 |
< |
double zenithbr = get_overcast_zenith_brightness(sundir); |
| 349 |
< |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
| 350 |
< |
int l; |
| 351 |
< |
for (l = 0; l < NSSAMP; ++l) { |
| 352 |
< |
sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
| 353 |
< |
} |
| 354 |
< |
} |
| 355 |
< |
/* Normalize */ |
| 356 |
< |
double sum = 0.0; |
| 357 |
< |
for (i = 0; i < NSSAMP; ++i) { |
| 358 |
< |
sum += sun_radiance[i]; |
| 359 |
< |
} |
| 360 |
< |
double mean = sum / NSSAMP; |
| 324 |
> |
/* identify nsuns closest patches */ |
| 325 |
> |
for (i = nsuns; i--;) |
| 326 |
> |
near_dprod[i] = -1.; |
| 327 |
> |
vectorize(altitude, azimuth, svec); |
| 328 |
> |
for (p = 1; p < nskypatch; p++) { |
| 329 |
> |
FVECT pvec; |
| 330 |
> |
double dprod; |
| 331 |
> |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
| 332 |
> |
dprod = DOT(pvec, svec); |
| 333 |
> |
for (i = 0; i < nsuns; i++) |
| 334 |
> |
if (dprod > near_dprod[i]) { |
| 335 |
> |
for (j = nsuns; --j > i;) { |
| 336 |
> |
near_dprod[j] = near_dprod[j - 1]; |
| 337 |
> |
near_patch[j] = near_patch[j - 1]; |
| 338 |
> |
} |
| 339 |
> |
near_dprod[i] = dprod; |
| 340 |
> |
near_patch[i] = p; |
| 341 |
> |
break; |
| 342 |
> |
} |
| 343 |
> |
} |
| 344 |
> |
/* Get solar radiance */ |
| 345 |
> |
double sun_radiance[NSSAMP] = {0}; |
| 346 |
> |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
| 347 |
> |
if (ccover > 0) { |
| 348 |
> |
double zenithbr = get_overcast_zenith_brightness(sundir); |
| 349 |
> |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
| 350 |
> |
int l; |
| 351 |
> |
for (l = 0; l < NSSAMP; ++l) { |
| 352 |
> |
sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
| 353 |
> |
} |
| 354 |
> |
} |
| 355 |
> |
/* Normalize */ |
| 356 |
> |
double sum = 0.0; |
| 357 |
> |
for (i = 0; i < NSSAMP; ++i) { |
| 358 |
> |
sum += sun_radiance[i]; |
| 359 |
> |
} |
| 360 |
> |
double mean = sum / NSSAMP; |
| 361 |
|
|
| 362 |
< |
double intensity = mean * WVLSPAN; |
| 363 |
< |
if (dirnorm > 0) { |
| 364 |
< |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
| 365 |
< |
} |
| 366 |
< |
double dir_ratio = 1.; |
| 367 |
< |
if (mean > 0) |
| 368 |
< |
dir_ratio = intensity / mean; |
| 369 |
< |
for (i = 0; i < NSSAMP; ++i) { |
| 370 |
< |
sun_radiance[i] *= dir_ratio; |
| 371 |
< |
} |
| 362 |
> |
double intensity = mean * WVLSPAN; |
| 363 |
> |
if (dirnorm > 0) { |
| 364 |
> |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
| 365 |
> |
} |
| 366 |
> |
double dir_ratio = 1.; |
| 367 |
> |
if (mean > 0) |
| 368 |
> |
dir_ratio = intensity / mean; |
| 369 |
> |
for (i = 0; i < NSSAMP; ++i) { |
| 370 |
> |
sun_radiance[i] *= dir_ratio; |
| 371 |
> |
} |
| 372 |
|
|
| 373 |
< |
/* weight by proximity */ |
| 374 |
< |
wtot = 0; |
| 375 |
< |
for (i = nsuns; i--;) |
| 376 |
< |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
| 377 |
< |
/* add to nearest patch radiances */ |
| 378 |
< |
for (i = nsuns; i--;) { |
| 379 |
< |
float *pdest = parr + NSSAMP * near_patch[i]; |
| 380 |
< |
int k; |
| 381 |
< |
for (k = 0; k < NSSAMP; k++) { |
| 382 |
< |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
| 383 |
< |
} |
| 384 |
< |
} |
| 373 |
> |
/* weight by proximity */ |
| 374 |
> |
wtot = 0; |
| 375 |
> |
for (i = nsuns; i--;) |
| 376 |
> |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
| 377 |
> |
/* add to nearest patch radiances */ |
| 378 |
> |
for (i = nsuns; i--;) { |
| 379 |
> |
float *pdest = parr + NSSAMP * near_patch[i]; |
| 380 |
> |
int k; |
| 381 |
> |
for (k = 0; k < NSSAMP; k++) { |
| 382 |
> |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
| 383 |
> |
} |
| 384 |
> |
} |
| 385 |
|
} |
| 386 |
|
|
| 378 |
– |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad_clear, double ccover, double dif_ratio, |
| 379 |
– |
double overcast_zenithbr, float *parr) { |
| 380 |
– |
int i; |
| 381 |
– |
double mu_sky; /* Sun-sky point azimuthal angle */ |
| 382 |
– |
double sspa; /* Sun-sky point angle */ |
| 383 |
– |
FVECT view_point = {0, 0, ER}; |
| 384 |
– |
for (i = 1; i < nskypatch; i++) { |
| 385 |
– |
FVECT rdir_sky; |
| 386 |
– |
int k; |
| 387 |
– |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
| 388 |
– |
mu_sky = fdot(view_point, rdir_sky) / ER; |
| 389 |
– |
sspa = fdot(rdir_sky, sundir); |
| 390 |
– |
SCOLOR sky_radiance = {0}; |
| 387 |
|
|
| 388 |
< |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
| 389 |
< |
for (k = 0; k < NSSAMP; ++k) { |
| 390 |
< |
sky_radiance[k] *= WVLSPAN; |
| 391 |
< |
} |
| 388 |
> |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, |
| 389 |
> |
DATARRAY *irrad_clear, double ccover, double dif_ratio, |
| 390 |
> |
double overcast_zenithbr, FVECT view_point, float *parr) |
| 391 |
> |
{ |
| 392 |
> |
double mu_sky; /* Sun-sky point azimuthal angle */ |
| 393 |
> |
double sspa; /* Sun-sky point angle */ |
| 394 |
> |
int i; |
| 395 |
> |
for (i = 1; i < nskypatch; i++) { |
| 396 |
> |
FVECT rdir_sky; |
| 397 |
> |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
| 398 |
> |
mu_sky = fdot(view_point, rdir_sky) / ER; |
| 399 |
> |
sspa = fdot(rdir_sky, sundir); |
| 400 |
|
|
| 401 |
< |
if (ccover > 0) { |
| 402 |
< |
double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); |
| 403 |
< |
int k; |
| 404 |
< |
for (k = 0; k < NSSAMP; ++k) { |
| 405 |
< |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
| 406 |
< |
} |
| 403 |
< |
} |
| 401 |
> |
SCOLOR sky_radiance = {0}; |
| 402 |
> |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
| 403 |
> |
int k; |
| 404 |
> |
for (k = 0; k < NSSAMP; ++k) { |
| 405 |
> |
sky_radiance[k] *= WVLSPAN; |
| 406 |
> |
} |
| 407 |
|
|
| 408 |
< |
/* calibration */ |
| 409 |
< |
for (k = 0; k < NSSAMP; ++k) { |
| 410 |
< |
sky_radiance[k] *= dif_ratio; |
| 411 |
< |
} |
| 408 |
> |
if (ccover > 0) { |
| 409 |
> |
double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); |
| 410 |
> |
for (k = 0; k < NSSAMP; ++k) { |
| 411 |
> |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
| 412 |
> |
} |
| 413 |
> |
} |
| 414 |
|
|
| 415 |
< |
for (k = 0; k < NSSAMP; ++k) { |
| 416 |
< |
parr[NSSAMP * i + k] = sky_radiance[k]; |
| 417 |
< |
} |
| 418 |
< |
} |
| 415 |
> |
/* calibration */ |
| 416 |
> |
for (k = 0; k < NSSAMP; ++k) { |
| 417 |
> |
sky_radiance[k] *= dif_ratio; |
| 418 |
> |
} |
| 419 |
> |
|
| 420 |
> |
for (k = 0; k < NSSAMP; ++k) { |
| 421 |
> |
parr[NSSAMP * i + k] = sky_radiance[k]; |
| 422 |
> |
} |
| 423 |
> |
} |
| 424 |
|
} |
| 425 |
|
|
| 416 |
– |
/* Return maximum of two doubles */ |
| 417 |
– |
static inline double dmax(double a, double b) { return (a > b) ? a : b; } |
| 426 |
|
|
| 427 |
|
/* Compute sky patch radiance values (modified by GW) */ |
| 428 |
|
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
| 429 |
< |
DATARRAY *irrad, double ccover, double difhor, float *parr) { |
| 430 |
< |
float sun_zenith; |
| 431 |
< |
SCOLOR sky_radiance = {0}; |
| 432 |
< |
SCOLOR ground_radiance = {0}; |
| 433 |
< |
SCOLR sky_sclr = {0}; |
| 434 |
< |
SCOLR ground_sclr = {0}; |
| 435 |
< |
FVECT view_point = {0, 0, ER}; |
| 436 |
< |
const double radius = VLEN(view_point); |
| 437 |
< |
const double sun_ct = fdot(view_point, sundir) / radius; |
| 438 |
< |
const FVECT rdir_grnd = {0, 0, -1}; |
| 439 |
< |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
| 440 |
< |
const double nu_grnd = fdot(rdir_grnd, sundir); |
| 429 |
> |
DATARRAY *irrad, double ccover, double difhor, FVECT view_point, float *parr) |
| 430 |
> |
{ |
| 431 |
> |
float sun_zenith; |
| 432 |
> |
SCOLOR sky_radiance = {0}; |
| 433 |
> |
SCOLOR ground_radiance = {0}; |
| 434 |
> |
SCOLR sky_sclr = {0}; |
| 435 |
> |
SCOLR ground_sclr = {0}; |
| 436 |
> |
const double radius = VLEN(view_point); |
| 437 |
> |
const double sun_ct = fdot(view_point, sundir) / radius; |
| 438 |
> |
const FVECT rdir_grnd = {0, 0, -1}; |
| 439 |
> |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
| 440 |
> |
const double nu_grnd = fdot(rdir_grnd, sundir); |
| 441 |
|
|
| 442 |
< |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
| 443 |
< |
/* Also limit minimum angle to keep circumsolar off zenith */ |
| 444 |
< |
if (altitude <= 0.0) |
| 445 |
< |
sun_zenith = DegToRad(90.0); |
| 446 |
< |
else if (altitude >= DegToRad(87.0)) |
| 447 |
< |
sun_zenith = DegToRad(3.0); |
| 448 |
< |
else |
| 449 |
< |
sun_zenith = DegToRad(90.0) - altitude; |
| 442 |
> |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
| 443 |
> |
/* Also limit minimum angle to keep circumsolar off zenith */ |
| 444 |
> |
if (altitude <= 0.0) |
| 445 |
> |
sun_zenith = deg_to_rad(90.0); |
| 446 |
> |
else if (altitude >= deg_to_rad(87.0)) |
| 447 |
> |
sun_zenith = deg_to_rad(3.0); |
| 448 |
> |
else |
| 449 |
> |
sun_zenith = deg_to_rad(90.0) - altitude; |
| 450 |
|
|
| 451 |
< |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
| 451 |
> |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
| 452 |
|
|
| 453 |
< |
/* diffuse calibration factor */ |
| 454 |
< |
double dif_ratio = 1; |
| 455 |
< |
if (difhor > 0) { |
| 456 |
< |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); |
| 457 |
< |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
| 458 |
< |
double diffuse_irradiance = 0; |
| 459 |
< |
int l; |
| 460 |
< |
for (l = 0; l < NSSAMP; ++l) { |
| 461 |
< |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
| 462 |
< |
} |
| 463 |
< |
/* free(indirect_irradiance_clear); */ |
| 464 |
< |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
| 465 |
< |
if (diffuse_irradiance > 0) { |
| 466 |
< |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
| 467 |
< |
} |
| 468 |
< |
} |
| 453 |
> |
/* diffuse calibration factor */ |
| 454 |
> |
double dif_ratio = 1; |
| 455 |
> |
if (difhor > 0) { |
| 456 |
> |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); |
| 457 |
> |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
| 458 |
> |
double diffuse_irradiance = 0; |
| 459 |
> |
int l; |
| 460 |
> |
for (l = 0; l < NSSAMP; ++l) { |
| 461 |
> |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
| 462 |
> |
} |
| 463 |
> |
/* free(indirect_irradiance_clear); */ |
| 464 |
> |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
| 465 |
> |
if (diffuse_irradiance > 0) { |
| 466 |
> |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
| 467 |
> |
} |
| 468 |
> |
} |
| 469 |
|
|
| 470 |
< |
/* Compute ground radiance (include solar contribution if any) */ |
| 471 |
< |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
| 472 |
< |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
| 473 |
< |
int j; |
| 474 |
< |
for (j = 0; j < NSSAMP; j++) { |
| 475 |
< |
parr[j] *= WVLSPAN; |
| 476 |
< |
} |
| 477 |
< |
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, parr); |
| 470 |
> |
/* Compute ground radiance (include solar contribution if any) */ |
| 471 |
> |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
| 472 |
> |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
| 473 |
> |
int j; |
| 474 |
> |
for (j = 0; j < NSSAMP; j++) { |
| 475 |
> |
parr[j] *= WVLSPAN; |
| 476 |
> |
} |
| 477 |
> |
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); |
| 478 |
|
} |
| 479 |
|
|
| 480 |
< |
int main(int argc, char *argv[]) { |
| 480 |
> |
int main(int argc, char *argv[]) |
| 481 |
> |
{ |
| 482 |
> |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
| 483 |
> |
EPWrecord erec; /* current EPW/WEA input record */ |
| 484 |
> |
int doheader = 1; /* output header? */ |
| 485 |
> |
double rotation = 0.0; /* site rotation (degrees) */ |
| 486 |
> |
double elevation = 0; /* site elevation (meters) */ |
| 487 |
> |
int leap_day = 0; /* add leap day? */ |
| 488 |
> |
int sun_hours_only = 0; /* only output sun hours? */ |
| 489 |
> |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
| 490 |
> |
int ntsteps = 0; /* number of time steps */ |
| 491 |
> |
int tstorage = 0; /* number of allocated time steps */ |
| 492 |
> |
int nstored = 0; /* number of time steps in matrix */ |
| 493 |
> |
int last_monthly = 0; /* month of last report */ |
| 494 |
> |
double dni; /* direct normal illuminance */ |
| 495 |
> |
double dhi; /* diffuse horizontal illuminance */ |
| 496 |
|
|
| 497 |
< |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
| 498 |
< |
EPWrecord erec; /* current EPW/WEA input record */ |
| 499 |
< |
int doheader = 1; /* output header? */ |
| 500 |
< |
double rotation = 0.0; |
| 501 |
< |
double elevation = 0; |
| 502 |
< |
int leap_day = 0; /* add leap day? */ |
| 503 |
< |
int sun_hours_only = 0; /* only output sun hours? */ |
| 504 |
< |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
| 505 |
< |
float *mtx_data = NULL; |
| 506 |
< |
int ntsteps = 0; /* number of time steps */ |
| 507 |
< |
int tstorage = 0; /* number of allocated time steps */ |
| 508 |
< |
int nstored = 0; /* number of time steps in matrix */ |
| 509 |
< |
int last_monthly = 0; /* month of last report */ |
| 487 |
< |
double dni, dhi; |
| 488 |
< |
int mtx_offset = 0; |
| 489 |
< |
double timeinterval = 0; |
| 490 |
< |
char lstag[3]; |
| 491 |
< |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
| 492 |
< |
char *ddir = "."; |
| 493 |
< |
char mie_name[20] = "mie_ca"; |
| 494 |
< |
int num_threads = 1; |
| 495 |
< |
int sorder = 4; |
| 496 |
< |
int solar_only = 0; |
| 497 |
< |
int sky_only = 0; |
| 498 |
< |
FVECT view_point = {0, 0, ER}; |
| 499 |
< |
int i, j; |
| 497 |
> |
float *mtx_data = NULL; |
| 498 |
> |
int mtx_offset = 0; |
| 499 |
> |
double timeinterval = 0; |
| 500 |
> |
char lstag[3]; |
| 501 |
> |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
| 502 |
> |
char *ddir = "."; |
| 503 |
> |
char mie_name[20] = "mie_ca"; |
| 504 |
> |
int num_threads = 1; |
| 505 |
> |
int sorder = 4; |
| 506 |
> |
int solar_only = 0; |
| 507 |
> |
int sky_only = 0; |
| 508 |
> |
int i, j; |
| 509 |
> |
FVECT view_point = {0, 0, ER}; |
| 510 |
|
|
| 511 |
< |
progname = argv[0]; |
| 511 |
> |
progname = argv[0]; |
| 512 |
|
|
| 513 |
< |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
| 514 |
< |
switch (argv[i][1]) { |
| 515 |
< |
case 'd': /* solar (direct) only */ |
| 516 |
< |
solar_only = 1; |
| 517 |
< |
break; |
| 518 |
< |
case 's': /* sky only (no direct) */ |
| 519 |
< |
sky_only = 1; |
| 520 |
< |
break; |
| 521 |
< |
case 'g': |
| 522 |
< |
grefl = atof(argv[++i]); |
| 523 |
< |
break; |
| 524 |
< |
case 'm': |
| 525 |
< |
rhsubdiv = atoi(argv[++i]); |
| 526 |
< |
break; |
| 527 |
< |
case 'n': |
| 528 |
< |
num_threads = atoi(argv[++i]); |
| 529 |
< |
break; |
| 530 |
< |
case 'r': /* rotate distribution */ |
| 531 |
< |
if (argv[i][2] && argv[i][2] != 'z') |
| 532 |
< |
goto userr; |
| 533 |
< |
rotation = atof(argv[++i]); |
| 534 |
< |
break; |
| 535 |
< |
case 'u': /* solar hours only */ |
| 536 |
< |
sun_hours_only = 1; |
| 537 |
< |
break; |
| 538 |
< |
case 'p': |
| 539 |
< |
ddir = argv[++i]; |
| 540 |
< |
break; |
| 541 |
< |
case 'v': /* verbose progress reports */ |
| 542 |
< |
verbose++; |
| 543 |
< |
break; |
| 544 |
< |
case 'h': /* turn off header */ |
| 545 |
< |
doheader = 0; |
| 546 |
< |
break; |
| 547 |
< |
case '5': /* 5-phase calculation */ |
| 548 |
< |
nsuns = 1; |
| 549 |
< |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
| 550 |
< |
if (fixed_sun_sa <= 0) { |
| 551 |
< |
fprintf( |
| 552 |
< |
stderr, |
| 553 |
< |
"%s: missing solar disk size argument for '-5' option\n", |
| 554 |
< |
progname); |
| 555 |
< |
exit(1); |
| 556 |
< |
} |
| 557 |
< |
fixed_sun_sa *= fixed_sun_sa * PI; |
| 558 |
< |
break; |
| 559 |
< |
case 'i': |
| 560 |
< |
timeinterval = atof(argv[++i]); |
| 561 |
< |
break; |
| 562 |
< |
case 'o': /* output format */ |
| 563 |
< |
switch (argv[i][2]) { |
| 564 |
< |
case 'f': |
| 565 |
< |
case 'd': |
| 566 |
< |
case 'a': |
| 567 |
< |
outfmt = argv[i][2]; |
| 568 |
< |
break; |
| 569 |
< |
default: |
| 570 |
< |
goto userr; |
| 571 |
< |
} |
| 572 |
< |
break; |
| 573 |
< |
default: |
| 574 |
< |
goto userr; |
| 575 |
< |
} |
| 576 |
< |
} |
| 577 |
< |
if (i < argc - 1) |
| 578 |
< |
goto userr; |
| 513 |
> |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
| 514 |
> |
switch (argv[i][1]) { |
| 515 |
> |
case 'd': /* solar (direct) only */ |
| 516 |
> |
solar_only = 1; |
| 517 |
> |
break; |
| 518 |
> |
case 's': /* sky only (no direct) */ |
| 519 |
> |
sky_only = 1; |
| 520 |
> |
break; |
| 521 |
> |
case 'g': |
| 522 |
> |
grefl = atof(argv[++i]); |
| 523 |
> |
break; |
| 524 |
> |
case 'm': |
| 525 |
> |
rhsubdiv = atoi(argv[++i]); |
| 526 |
> |
break; |
| 527 |
> |
case 'n': |
| 528 |
> |
num_threads = atoi(argv[++i]); |
| 529 |
> |
break; |
| 530 |
> |
case 'r': /* rotate distribution */ |
| 531 |
> |
if (argv[i][2] && argv[i][2] != 'z') |
| 532 |
> |
goto userr; |
| 533 |
> |
rotation = atof(argv[++i]); |
| 534 |
> |
break; |
| 535 |
> |
case 'u': /* solar hours only */ |
| 536 |
> |
sun_hours_only = 1; |
| 537 |
> |
break; |
| 538 |
> |
case 'p': |
| 539 |
> |
ddir = argv[++i]; |
| 540 |
> |
break; |
| 541 |
> |
case 'v': /* verbose progress reports */ |
| 542 |
> |
verbose++; |
| 543 |
> |
break; |
| 544 |
> |
case 'h': /* turn off header */ |
| 545 |
> |
doheader = 0; |
| 546 |
> |
break; |
| 547 |
> |
case '5': /* 5-phase calculation */ |
| 548 |
> |
nsuns = 1; |
| 549 |
> |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
| 550 |
> |
if (fixed_sun_sa <= 0) { |
| 551 |
> |
fprintf( |
| 552 |
> |
stderr, |
| 553 |
> |
"%s: missing solar disk size argument for '-5' option\n", |
| 554 |
> |
progname); |
| 555 |
> |
exit(1); |
| 556 |
> |
} |
| 557 |
> |
fixed_sun_sa *= fixed_sun_sa * PI; |
| 558 |
> |
break; |
| 559 |
> |
case 'i': |
| 560 |
> |
timeinterval = atof(argv[++i]); |
| 561 |
> |
break; |
| 562 |
> |
case 'o': /* output format */ |
| 563 |
> |
switch (argv[i][2]) { |
| 564 |
> |
case 'f': |
| 565 |
> |
case 'd': |
| 566 |
> |
case 'a': |
| 567 |
> |
outfmt = argv[i][2]; |
| 568 |
> |
break; |
| 569 |
> |
default: |
| 570 |
> |
goto userr; |
| 571 |
> |
} |
| 572 |
> |
break; |
| 573 |
> |
default: |
| 574 |
> |
goto userr; |
| 575 |
> |
} |
| 576 |
> |
} |
| 577 |
> |
if (i < argc - 1) |
| 578 |
> |
goto userr; |
| 579 |
|
|
| 580 |
< |
epw = EPWopen(argv[i]); |
| 581 |
< |
if (epw == NULL) |
| 582 |
< |
exit(1); |
| 583 |
< |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
| 584 |
< |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
| 585 |
< |
exit(1); |
| 586 |
< |
} |
| 587 |
< |
if (verbose) { |
| 588 |
< |
if (i == argc - 1) |
| 589 |
< |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
| 590 |
< |
else |
| 591 |
< |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
| 592 |
< |
} |
| 593 |
< |
s_latitude = epw->loc.latitude; |
| 594 |
< |
s_longitude = -epw->loc.longitude; |
| 595 |
< |
s_meridian = -15.*epw->loc.timezone; |
| 596 |
< |
elevation = epw->loc.elevation; |
| 597 |
< |
switch (epw->isWEA) { /* translate units */ |
| 598 |
< |
case WEAnot: |
| 599 |
< |
case WEAradnorm: |
| 600 |
< |
input = 1; /* radiometric quantities */ |
| 601 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 602 |
< |
break; |
| 603 |
< |
case WEAradhoriz: |
| 604 |
< |
input = 1; /* radiometric quantities */ |
| 605 |
< |
dir_is_horiz = 1; /* solar measured horizontally */ |
| 606 |
< |
break; |
| 607 |
< |
case WEAphotnorm: |
| 608 |
< |
input = 2; /* photometric quantities */ |
| 609 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 610 |
< |
break; |
| 611 |
< |
default: |
| 612 |
< |
goto fmterr; |
| 613 |
< |
} |
| 580 |
> |
epw = EPWopen(argv[i]); |
| 581 |
> |
if (epw == NULL) |
| 582 |
> |
exit(1); |
| 583 |
> |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
| 584 |
> |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
| 585 |
> |
exit(1); |
| 586 |
> |
} |
| 587 |
> |
if (verbose) { |
| 588 |
> |
if (i == argc - 1) |
| 589 |
> |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
| 590 |
> |
else |
| 591 |
> |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
| 592 |
> |
} |
| 593 |
> |
s_latitude = epw->loc.latitude; |
| 594 |
> |
s_longitude = -epw->loc.longitude; |
| 595 |
> |
s_meridian = -15.*epw->loc.timezone; |
| 596 |
> |
elevation = epw->loc.elevation; |
| 597 |
> |
switch (epw->isWEA) { /* translate units */ |
| 598 |
> |
case WEAnot: |
| 599 |
> |
case WEAradnorm: |
| 600 |
> |
input = 1; /* radiometric quantities */ |
| 601 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 602 |
> |
break; |
| 603 |
> |
case WEAradhoriz: |
| 604 |
> |
input = 1; /* radiometric quantities */ |
| 605 |
> |
dir_is_horiz = 1; /* solar measured horizontally */ |
| 606 |
> |
break; |
| 607 |
> |
case WEAphotnorm: |
| 608 |
> |
input = 2; /* photometric quantities */ |
| 609 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 610 |
> |
break; |
| 611 |
> |
default: |
| 612 |
> |
goto fmterr; |
| 613 |
> |
} |
| 614 |
|
|
| 615 |
< |
rh_init(); |
| 615 |
> |
rh_init(); |
| 616 |
|
|
| 617 |
< |
if (verbose) { |
| 618 |
< |
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
| 619 |
< |
fprintf( |
| 620 |
< |
stderr, |
| 621 |
< |
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
| 622 |
< |
progname, s_latitude, s_longitude); |
| 623 |
< |
if (rotation != 0) |
| 624 |
< |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
| 625 |
< |
} |
| 617 |
> |
if (verbose) { |
| 618 |
> |
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
| 619 |
> |
fprintf( |
| 620 |
> |
stderr, |
| 621 |
> |
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
| 622 |
> |
progname, s_latitude, s_longitude); |
| 623 |
> |
if (rotation != 0) |
| 624 |
> |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
| 625 |
> |
} |
| 626 |
|
|
| 627 |
< |
s_latitude = DegToRad(s_latitude); |
| 628 |
< |
s_longitude = DegToRad(s_longitude); |
| 629 |
< |
s_meridian = DegToRad(s_meridian); |
| 630 |
< |
/* initial allocation */ |
| 631 |
< |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
| 627 |
> |
s_latitude = deg_to_rad(s_latitude); |
| 628 |
> |
s_longitude = deg_to_rad(s_longitude); |
| 629 |
> |
s_meridian = deg_to_rad(s_meridian); |
| 630 |
> |
/* initial allocation */ |
| 631 |
> |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
| 632 |
|
|
| 633 |
< |
/* Load mie density data */ |
| 634 |
< |
DATARRAY *mie_dp = getdata(mie_path); |
| 635 |
< |
if (mie_dp == NULL) { |
| 636 |
< |
fprintf(stderr, "Error reading mie data\n"); |
| 637 |
< |
return 0; |
| 638 |
< |
} |
| 633 |
> |
/* Load mie density data */ |
| 634 |
> |
DATARRAY *mie_dp = getdata(mie_path); |
| 635 |
> |
if (mie_dp == NULL) { |
| 636 |
> |
fprintf(stderr, "Error reading mie data\n"); |
| 637 |
> |
return 0; |
| 638 |
> |
} |
| 639 |
|
|
| 640 |
< |
if (epw->isWEA == WEAnot) { |
| 641 |
< |
fprintf(stderr, "EPW input\n"); |
| 642 |
< |
} else if (epw->isWEA != WEAphotnorm) { |
| 643 |
< |
fprintf(stderr, "need WEA in photopic unit\n"); |
| 644 |
< |
exit(1); |
| 645 |
< |
} |
| 640 |
> |
if (epw->isWEA == WEAnot) { |
| 641 |
> |
fprintf(stderr, "EPW input\n"); |
| 642 |
> |
} else if (epw->isWEA != WEAphotnorm) { |
| 643 |
> |
fprintf(stderr, "need WEA in photopic unit\n"); |
| 644 |
> |
exit(1); |
| 645 |
> |
} |
| 646 |
|
|
| 647 |
< |
while ((j = EPWread(epw, &erec)) > 0) { |
| 648 |
< |
const int mo = erec.date.month+1; |
| 649 |
< |
const int da = erec.date.day; |
| 650 |
< |
const double hr = erec.date.hour; |
| 651 |
< |
double aod = erec.optdepth; |
| 652 |
< |
double cc = erec.skycover; |
| 653 |
< |
double sda, sta, st; |
| 654 |
< |
int sun_in_sky; |
| 647 |
> |
while ((j = EPWread(epw, &erec)) > 0) { |
| 648 |
> |
const int mo = erec.date.month+1; |
| 649 |
> |
const int da = erec.date.day; |
| 650 |
> |
const double hr = erec.date.hour; |
| 651 |
> |
double aod = erec.optdepth; |
| 652 |
> |
double cc = erec.skycover; |
| 653 |
> |
double sda, sta, st; |
| 654 |
> |
int sun_in_sky; |
| 655 |
|
|
| 656 |
< |
if (aod == 0.0) { |
| 657 |
< |
aod = AOD0_CA; |
| 658 |
< |
fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); |
| 659 |
< |
} |
| 660 |
< |
/* compute solar position */ |
| 661 |
< |
if ((mo == 2) & (da == 29)) { |
| 662 |
< |
julian_date = 60; |
| 663 |
< |
leap_day = 1; |
| 664 |
< |
} else |
| 665 |
< |
julian_date = jdate(mo, da) + leap_day; |
| 666 |
< |
sda = sdec(julian_date); |
| 667 |
< |
sta = stadj(julian_date); |
| 668 |
< |
st = hr + sta; |
| 656 |
> |
if (aod == 0.0) { |
| 657 |
> |
aod = AOD0_CA; |
| 658 |
> |
fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); |
| 659 |
> |
} |
| 660 |
> |
/* compute solar position */ |
| 661 |
> |
if ((mo == 2) & (da == 29)) { |
| 662 |
> |
julian_date = 60; |
| 663 |
> |
leap_day = 1; |
| 664 |
> |
} else |
| 665 |
> |
julian_date = jdate(mo, da) + leap_day; |
| 666 |
> |
sda = sdec(julian_date); |
| 667 |
> |
sta = stadj(julian_date); |
| 668 |
> |
st = hr + sta; |
| 669 |
|
if (timeinterval > 0) { |
| 670 |
|
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
| 671 |
|
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
| 672 |
|
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
| 673 |
|
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
| 674 |
|
} |
| 675 |
< |
altitude = salt(sda, st); |
| 676 |
< |
sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.)); |
| 675 |
> |
altitude = salt(sda, st); |
| 676 |
> |
sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); |
| 677 |
|
|
| 678 |
< |
azimuth = sazi(sda, st) + PI - DegToRad(rotation); |
| 678 |
> |
azimuth = sazi(sda, st) + PI - deg_to_rad(rotation); |
| 679 |
|
|
| 680 |
< |
vectorize(altitude, azimuth, sundir); |
| 681 |
< |
if (sun_hours_only && !sun_in_sky) { |
| 682 |
< |
continue; /* skipping nighttime points */ |
| 683 |
< |
} |
| 684 |
< |
sun_ct = fdot(view_point, sundir) / ER; |
| 680 |
> |
vectorize(altitude, azimuth, sundir); |
| 681 |
> |
if (sun_hours_only && !sun_in_sky) { |
| 682 |
> |
continue; /* skipping nighttime points */ |
| 683 |
> |
} |
| 684 |
> |
sun_ct = fdot(view_point, sundir) / ER; |
| 685 |
|
|
| 686 |
< |
dni = erec.dirillum; |
| 687 |
< |
dhi = erec.diffillum; |
| 678 |
< |
printf("%d %d %f %f %f %f %f\n", mo, da, hr, dni, dhi, aod, cc); |
| 686 |
> |
dni = erec.dirillum; |
| 687 |
> |
dhi = erec.diffillum; |
| 688 |
|
|
| 689 |
< |
mtx_offset = NSSAMP * nskypatch * nstored; |
| 690 |
< |
nstored += 1; |
| 689 |
> |
mtx_offset = NSSAMP * nskypatch * nstored; |
| 690 |
> |
nstored += 1; |
| 691 |
|
|
| 692 |
< |
/* make space for next row */ |
| 693 |
< |
if (nstored > tstorage) { |
| 694 |
< |
tstorage += (tstorage >> 1) + nstored + 7; |
| 695 |
< |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
| 696 |
< |
} |
| 697 |
< |
ntsteps++; /* keep count of time steps */ |
| 692 |
> |
/* make space for next row */ |
| 693 |
> |
if (nstored > tstorage) { |
| 694 |
> |
tstorage += (tstorage >> 1) + nstored + 7; |
| 695 |
> |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
| 696 |
> |
} |
| 697 |
> |
ntsteps++; /* keep count of time steps */ |
| 698 |
|
|
| 699 |
< |
/* compute sky patch values */ |
| 700 |
< |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
| 701 |
< |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
| 702 |
< |
if (s_latitude < 0) { |
| 703 |
< |
is_summer = !is_summer; |
| 704 |
< |
} |
| 705 |
< |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
| 699 |
> |
/* compute sky patch values */ |
| 700 |
> |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
| 701 |
> |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
| 702 |
> |
if (s_latitude < 0) { |
| 703 |
> |
is_summer = !is_summer; |
| 704 |
> |
} |
| 705 |
> |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
| 706 |
|
|
| 707 |
< |
clear_atmos.beta_m = mie_dp; |
| 707 |
> |
clear_atmos.beta_m = mie_dp; |
| 708 |
|
|
| 709 |
< |
char gsdir[PATH_MAX]; |
| 710 |
< |
size_t siz = strlen(ddir); |
| 711 |
< |
if (ISDIRSEP(ddir[siz - 1])) |
| 712 |
< |
ddir[siz - 1] = '\0'; |
| 713 |
< |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
| 714 |
< |
if (!make_directory(gsdir)) { |
| 715 |
< |
fprintf(stderr, "Failed creating atmos_data directory"); |
| 716 |
< |
exit(1); |
| 717 |
< |
} |
| 718 |
< |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
| 709 |
> |
char gsdir[PATH_MAX]; |
| 710 |
> |
size_t siz = strlen(ddir); |
| 711 |
> |
if (ISDIRSEP(ddir[siz - 1])) |
| 712 |
> |
ddir[siz - 1] = '\0'; |
| 713 |
> |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
| 714 |
> |
if (!make_directory(gsdir)) { |
| 715 |
> |
fprintf(stderr, "Failed creating atmos_data directory"); |
| 716 |
> |
exit(1); |
| 717 |
> |
} |
| 718 |
> |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
| 719 |
|
|
| 720 |
< |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
| 721 |
< |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
| 722 |
< |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
| 723 |
< |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
| 724 |
< |
fprintf(stderr, "# Pre-computing...\n"); |
| 725 |
< |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
| 726 |
< |
fprintf(stderr, "Pre-compute failed\n"); |
| 727 |
< |
return 0; |
| 728 |
< |
} |
| 729 |
< |
} |
| 720 |
> |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
| 721 |
> |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
| 722 |
> |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
| 723 |
> |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
| 724 |
> |
fprintf(stderr, "# Pre-computing...\n"); |
| 725 |
> |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
| 726 |
> |
fprintf(stderr, "Pre-compute failed\n"); |
| 727 |
> |
return 0; |
| 728 |
> |
} |
| 729 |
> |
} |
| 730 |
|
|
| 731 |
< |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
| 732 |
< |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
| 733 |
< |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
| 734 |
< |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
| 731 |
> |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
| 732 |
> |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
| 733 |
> |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
| 734 |
> |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
| 735 |
|
|
| 736 |
< |
if (!solar_only) |
| 737 |
< |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 738 |
< |
cc, dhi, mtx_data + mtx_offset); |
| 739 |
< |
if (!sky_only) |
| 740 |
< |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 741 |
< |
cc, dni, mtx_data + mtx_offset); |
| 742 |
< |
/* monthly reporting */ |
| 743 |
< |
if (verbose && mo != last_monthly) |
| 744 |
< |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
| 745 |
< |
last_monthly = mo); |
| 746 |
< |
} |
| 747 |
< |
if (j != EOF) { |
| 748 |
< |
fprintf(stderr, "%s: error on input\n", progname); |
| 749 |
< |
exit(1); |
| 750 |
< |
} |
| 751 |
< |
EPWclose(epw); epw = NULL; |
| 752 |
< |
freedata(mie_dp); |
| 753 |
< |
if (!ntsteps) { |
| 754 |
< |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
| 755 |
< |
exit(1); |
| 756 |
< |
} |
| 757 |
< |
/* write out matrix */ |
| 758 |
< |
if (outfmt != 'a') |
| 759 |
< |
SET_FILE_BINARY(stdout); |
| 736 |
> |
if (!solar_only) |
| 737 |
> |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 738 |
> |
cc, dhi, view_point, mtx_data + mtx_offset); |
| 739 |
> |
if (!sky_only) |
| 740 |
> |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 741 |
> |
cc, dni, mtx_data + mtx_offset); |
| 742 |
> |
/* monthly reporting */ |
| 743 |
> |
if (verbose && mo != last_monthly) |
| 744 |
> |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
| 745 |
> |
last_monthly = mo); |
| 746 |
> |
} |
| 747 |
> |
if (j != EOF) { |
| 748 |
> |
fprintf(stderr, "%s: error on input\n", progname); |
| 749 |
> |
exit(1); |
| 750 |
> |
} |
| 751 |
> |
EPWclose(epw); epw = NULL; |
| 752 |
> |
freedata(mie_dp); |
| 753 |
> |
if (!ntsteps) { |
| 754 |
> |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
| 755 |
> |
exit(1); |
| 756 |
> |
} |
| 757 |
> |
/* write out matrix */ |
| 758 |
> |
if (outfmt != 'a') |
| 759 |
> |
SET_FILE_BINARY(stdout); |
| 760 |
|
#ifdef getc_unlocked |
| 761 |
< |
flockfile(stdout); |
| 761 |
> |
flockfile(stdout); |
| 762 |
|
#endif |
| 763 |
< |
if (verbose) |
| 764 |
< |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
| 765 |
< |
outfmt == 'a' ? "" : "binary ", nstored); |
| 766 |
< |
if (doheader) { |
| 767 |
< |
newheader("RADIANCE", stdout); |
| 768 |
< |
printargs(argc, argv, stdout); |
| 769 |
< |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
| 770 |
< |
-RadToDeg(s_longitude)); |
| 771 |
< |
printf("NROWS=%d\n", nskypatch); |
| 772 |
< |
printf("NCOLS=%d\n", nstored); |
| 773 |
< |
printf("NCOMP=%d\n", NSSAMP); |
| 774 |
< |
if ((outfmt == 'f') | (outfmt == 'd')) |
| 775 |
< |
fputendian(stdout); |
| 776 |
< |
fputformat((char *)getfmtname(outfmt), stdout); |
| 777 |
< |
putchar('\n'); |
| 778 |
< |
} |
| 779 |
< |
/* patches are rows (outer sort) */ |
| 780 |
< |
for (i = 0; i < nskypatch; i++) { |
| 781 |
< |
mtx_offset = NSSAMP * i; |
| 782 |
< |
switch (outfmt) { |
| 783 |
< |
case 'a': |
| 784 |
< |
for (j = 0; j < nstored; j++) { |
| 785 |
< |
int k; |
| 786 |
< |
for (k = 0; k < NSSAMP; k++) { |
| 787 |
< |
printf("%.3g ", mtx_data[mtx_offset + k]); |
| 788 |
< |
} |
| 789 |
< |
printf("\n"); |
| 790 |
< |
mtx_offset += NSSAMP * nskypatch; |
| 791 |
< |
} |
| 792 |
< |
if (nstored > 1) |
| 793 |
< |
fputc('\n', stdout); |
| 794 |
< |
break; |
| 795 |
< |
case 'f': |
| 796 |
< |
for (j = 0; j < nstored; j++) { |
| 797 |
< |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
| 798 |
< |
mtx_offset += NSSAMP * nskypatch; |
| 799 |
< |
} |
| 800 |
< |
break; |
| 801 |
< |
case 'd': |
| 802 |
< |
for (j = 0; j < nstored; j++) { |
| 803 |
< |
double ment[NSSAMP]; |
| 804 |
< |
for (j = 0; j < NSSAMP; j++) |
| 805 |
< |
ment[j] = mtx_data[mtx_offset + j]; |
| 806 |
< |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
| 807 |
< |
mtx_offset += NSSAMP * nskypatch; |
| 808 |
< |
} |
| 809 |
< |
break; |
| 810 |
< |
} |
| 811 |
< |
if (ferror(stdout)) |
| 812 |
< |
goto writerr; |
| 813 |
< |
} |
| 763 |
> |
if (verbose) |
| 764 |
> |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
| 765 |
> |
outfmt == 'a' ? "" : "binary ", nstored); |
| 766 |
> |
if (doheader) { |
| 767 |
> |
newheader("RADIANCE", stdout); |
| 768 |
> |
printargs(argc, argv, stdout); |
| 769 |
> |
printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), |
| 770 |
> |
-rad_to_deg(s_longitude)); |
| 771 |
> |
printf("NROWS=%d\n", nskypatch); |
| 772 |
> |
printf("NCOLS=%d\n", nstored); |
| 773 |
> |
printf("NCOMP=%d\n", NSSAMP); |
| 774 |
> |
float wvsplit[4] = {380, 480, 588, 780}; |
| 775 |
> |
fputwlsplit(wvsplit, stdout); |
| 776 |
> |
if ((outfmt == 'f') | (outfmt == 'd')) |
| 777 |
> |
fputendian(stdout); |
| 778 |
> |
fputformat((char *)getfmtname(outfmt), stdout); |
| 779 |
> |
putchar('\n'); |
| 780 |
> |
} |
| 781 |
> |
/* patches are rows (outer sort) */ |
| 782 |
> |
for (i = 0; i < nskypatch; i++) { |
| 783 |
> |
mtx_offset = NSSAMP * i; |
| 784 |
> |
switch (outfmt) { |
| 785 |
> |
case 'a': |
| 786 |
> |
for (j = 0; j < nstored; j++) { |
| 787 |
> |
int k; |
| 788 |
> |
for (k = 0; k < NSSAMP; k++) { |
| 789 |
> |
printf("%.3g ", mtx_data[mtx_offset + k]); |
| 790 |
> |
} |
| 791 |
> |
printf("\n"); |
| 792 |
> |
mtx_offset += NSSAMP * nskypatch; |
| 793 |
> |
} |
| 794 |
> |
if (nstored > 1) |
| 795 |
> |
fputc('\n', stdout); |
| 796 |
> |
break; |
| 797 |
> |
case 'f': |
| 798 |
> |
for (j = 0; j < nstored; j++) { |
| 799 |
> |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
| 800 |
> |
mtx_offset += NSSAMP * nskypatch; |
| 801 |
> |
} |
| 802 |
> |
break; |
| 803 |
> |
case 'd': |
| 804 |
> |
for (j = 0; j < nstored; j++) { |
| 805 |
> |
double ment[NSSAMP]; |
| 806 |
> |
for (j = 0; j < NSSAMP; j++) |
| 807 |
> |
ment[j] = mtx_data[mtx_offset + j]; |
| 808 |
> |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
| 809 |
> |
mtx_offset += NSSAMP * nskypatch; |
| 810 |
> |
} |
| 811 |
> |
break; |
| 812 |
> |
} |
| 813 |
> |
if (ferror(stdout)) |
| 814 |
> |
goto writerr; |
| 815 |
> |
} |
| 816 |
> |
return 0; |
| 817 |
|
userr: |
| 818 |
< |
fprintf(stderr, |
| 819 |
< |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
| 820 |
< |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 821 |
< |
progname); |
| 822 |
< |
exit(1); |
| 818 |
> |
fprintf(stderr, |
| 819 |
> |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
| 820 |
> |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 821 |
> |
progname); |
| 822 |
> |
exit(1); |
| 823 |
|
fmterr: |
| 824 |
< |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
| 825 |
< |
exit(1); |
| 824 |
> |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
| 825 |
> |
exit(1); |
| 826 |
|
writerr: |
| 827 |
< |
fprintf(stderr, "%s: write error on output\n", progname); |
| 828 |
< |
exit(1); |
| 827 |
> |
fprintf(stderr, "%s: write error on output\n", progname); |
| 828 |
> |
exit(1); |
| 829 |
|
} |