| 1 | #ifndef lint | 
| 2 | static const char RCSid[] = "$Id: gendaymtx.c,v 2.8 2013/02/05 06:00:19 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | *  gendaymtx.c | 
| 6 | * | 
| 7 | *  Generate a daylight matrix based on Perez Sky Model. | 
| 8 | * | 
| 9 | *  Most of this code is borrowed (see copyright below) from Ian Ashdown's | 
| 10 | *  excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c | 
| 11 | * | 
| 12 | *  Created by Greg Ward on 1/16/13. | 
| 13 | */ | 
| 14 |  | 
| 15 | /********************************************************************* | 
| 16 | * | 
| 17 | *  H32_gendaylit.CPP - Perez Sky Model Calculation | 
| 18 | * | 
| 19 | *  Version:    1.00A | 
| 20 | * | 
| 21 | *  History:    09/10/01 - Created. | 
| 22 | *                              11/10/08 - Modified for Unix compilation. | 
| 23 | *                              11/10/12 - Fixed conditional __max directive. | 
| 24 | *                              1/11/13 - Tweaks and optimizations (G.Ward) | 
| 25 | * | 
| 26 | *  Compilers:  Microsoft Visual C/C++ Professional V10.0 | 
| 27 | * | 
| 28 | *  Author:     Ian Ashdown, P.Eng. | 
| 29 | *              byHeart Consultants Limited | 
| 30 | *              620 Ballantree Road | 
| 31 | *              West Vancouver, B.C. | 
| 32 | *              Canada V7S 1W3 | 
| 33 | *              e-mail: [email protected] | 
| 34 | * | 
| 35 | *  References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. | 
| 36 | *                              Stewart. 1990. ìModeling Daylight Availability and | 
| 37 | *                              Irradiance Components from Direct and Global | 
| 38 | *                              Irradiance,î Solar Energy 44(5):271-289. | 
| 39 | * | 
| 40 | *                              Perez, R., R. Seals, and J. Michalsky. 1993. | 
| 41 | *                              ìAll-Weather Model for Sky Luminance Distribution - | 
| 42 | *                              Preliminary Configuration and Validation,î Solar Energy | 
| 43 | *                              50(3):235-245. | 
| 44 | * | 
| 45 | *                              Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to | 
| 46 | *                              All-Weather Model for Sky Luminance Distribution - | 
| 47 | *                              Preliminary Configuration and Validation,î Solar Energy | 
| 48 | *                              51(5):423. | 
| 49 | * | 
| 50 | *  NOTE:               This program is a completely rewritten version of | 
| 51 | *                              gendaylit.c written by Jean-Jacques Delaunay (1994). | 
| 52 | * | 
| 53 | *  Copyright 2009-2012 byHeart Consultants Limited. All rights | 
| 54 | *  reserved. | 
| 55 | * | 
| 56 | *  Redistribution and use in source and binary forms, with or without | 
| 57 | *  modification, are permitted for personal and commercial purposes | 
| 58 | *  provided that redistribution of source code must retain the above | 
| 59 | *  copyright notice, this list of conditions and the following | 
| 60 | *  disclaimer: | 
| 61 | * | 
| 62 | *    THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED | 
| 63 | *    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
| 64 | *    OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
| 65 | *    DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR | 
| 66 | *    ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 67 | *    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| 68 | *    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | 
| 69 | *    USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED | 
| 70 | *    AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
| 71 | *    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | 
| 72 | *    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
| 73 | *    POSSIBILITY OF SUCH DAMAGE. | 
| 74 | * | 
| 75 | *********************************************************************/ | 
| 76 |  | 
| 77 | /* Zenith is along the Z-axis */ | 
| 78 | /* X-axis points east */ | 
| 79 | /* Y-axis points north */ | 
| 80 | /* azimuth is measured as degrees or radians east of North */ | 
| 81 |  | 
| 82 | /* Include files */ | 
| 83 | #define _USE_MATH_DEFINES | 
| 84 | #include <stdio.h> | 
| 85 | #include <stdlib.h> | 
| 86 | #include <string.h> | 
| 87 | #include <ctype.h> | 
| 88 | #include "rtmath.h" | 
| 89 | #include "color.h" | 
| 90 |  | 
| 91 | char *progname;                                                         /* Program name */ | 
| 92 | char errmsg[128];                                                       /* Error message buffer */ | 
| 93 | const double DC_SolarConstantE = 1367.0;        /* Solar constant W/m^2 */ | 
| 94 | const double DC_SolarConstantL = 127.5;         /* Solar constant klux */ | 
| 95 |  | 
| 96 | double altitude;                        /* Solar altitude (radians) */ | 
| 97 | double azimuth;                         /* Solar azimuth (radians) */ | 
| 98 | double apwc;                            /* Atmospheric precipitable water content */ | 
| 99 | double dew_point = 11.0;                /* Surface dew point temperature (deg. C) */ | 
| 100 | double diff_illum;                      /* Diffuse illuminance */ | 
| 101 | double diff_irrad;                      /* Diffuse irradiance */ | 
| 102 | double dir_illum;                       /* Direct illuminance */ | 
| 103 | double dir_irrad;                       /* Direct irradiance */ | 
| 104 | int julian_date;                        /* Julian date */ | 
| 105 | double perez_param[5];                  /* Perez sky model parameters */ | 
| 106 | double sky_brightness;                  /* Sky brightness */ | 
| 107 | double sky_clearness;                   /* Sky clearness */ | 
| 108 | double solar_rad;                       /* Solar radiance */ | 
| 109 | double sun_zenith;                      /* Sun zenith angle (radians) */ | 
| 110 | int     input = 0;                              /* Input type */ | 
| 111 |  | 
| 112 | extern double dmax( double, double ); | 
| 113 | extern double CalcAirMass(); | 
| 114 | extern double CalcDiffuseIllumRatio( int ); | 
| 115 | extern double CalcDiffuseIrradiance(); | 
| 116 | extern double CalcDirectIllumRatio( int ); | 
| 117 | extern double CalcDirectIrradiance(); | 
| 118 | extern double CalcEccentricity(); | 
| 119 | extern double CalcPrecipWater( double ); | 
| 120 | extern double CalcRelHorzIllum( float *parr ); | 
| 121 | extern double CalcRelLuminance( double, double ); | 
| 122 | extern double CalcSkyBrightness(); | 
| 123 | extern double CalcSkyClearness(); | 
| 124 | extern int CalcSkyParamFromIllum(); | 
| 125 | extern int GetCategoryIndex(); | 
| 126 | extern void CalcPerezParam( double, double, double, int ); | 
| 127 | extern void CalcSkyPatchLumin( float *parr ); | 
| 128 | extern void ComputeSky( float *parr ); | 
| 129 |  | 
| 130 | /* Degrees into radians */ | 
| 131 | #define DegToRad(deg)   ((deg)*(PI/180.)) | 
| 132 |  | 
| 133 | /* Radiuans into degrees */ | 
| 134 | #define RadToDeg(rad)   ((rad)*(180./PI)) | 
| 135 |  | 
| 136 |  | 
| 137 | /* Perez sky model coefficients */ | 
| 138 |  | 
| 139 | /* Reference:   Perez, R., R. Seals, and J. Michalsky, 1993. "All- */ | 
| 140 | /*                              Weather Model for Sky Luminance Distribution - */ | 
| 141 | /*                              Preliminary Configuration and Validation," Solar */ | 
| 142 | /*                              Energy 50(3):235-245, Table 1. */ | 
| 143 |  | 
| 144 | static const double PerezCoeff[8][20] = | 
| 145 | { | 
| 146 | /* Sky clearness (epsilon): 1.000 to 1.065 */ | 
| 147 | {   1.3525,  -0.2576,  -0.2690,  -1.4366,   -0.7670, | 
| 148 | 0.0007,   1.2734,  -0.1233,   2.8000,    0.6004, | 
| 149 | 1.2375,   1.0000,   1.8734,   0.6297,    0.9738, | 
| 150 | 0.2809,   0.0356,  -0.1246,  -0.5718,    0.9938 }, | 
| 151 | /* Sky clearness (epsilon): 1.065 to 1.230 */ | 
| 152 | {  -1.2219,  -0.7730,   1.4148,   1.1016,   -0.2054, | 
| 153 | 0.0367,  -3.9128,   0.9156,   6.9750,    0.1774, | 
| 154 | 6.4477,  -0.1239,  -1.5798,  -0.5081,   -1.7812, | 
| 155 | 0.1080,   0.2624,   0.0672,  -0.2190,   -0.4285 }, | 
| 156 | /* Sky clearness (epsilon): 1.230 to 1.500 */ | 
| 157 | {  -1.1000,  -0.2515,   0.8952,   0.0156,    0.2782, | 
| 158 | -0.1812, - 4.5000,   1.1766,  24.7219,  -13.0812, | 
| 159 | -37.7000,  34.8438,  -5.0000,   1.5218,    3.9229, | 
| 160 | -2.6204,  -0.0156,   0.1597,   0.4199,   -0.5562 }, | 
| 161 | /* Sky clearness (epsilon): 1.500 to 1.950 */ | 
| 162 | {  -0.5484,  -0.6654,  -0.2672,   0.7117,   0.7234, | 
| 163 | -0.6219,  -5.6812,   2.6297,  33.3389, -18.3000, | 
| 164 | -62.2500,  52.0781,  -3.5000,   0.0016,   1.1477, | 
| 165 | 0.1062,   0.4659,  -0.3296,  -0.0876,  -0.0329 }, | 
| 166 | /* Sky clearness (epsilon): 1.950 to 2.800 */ | 
| 167 | {  -0.6000,  -0.3566,  -2.5000,   2.3250,   0.2937, | 
| 168 | 0.0496,  -5.6812,   1.8415,  21.0000,  -4.7656 , | 
| 169 | -21.5906,   7.2492,  -3.5000,  -0.1554,   1.4062, | 
| 170 | 0.3988,   0.0032,   0.0766,  -0.0656,  -0.1294 }, | 
| 171 | /* Sky clearness (epsilon): 2.800 to 4.500 */ | 
| 172 | {  -1.0156,  -0.3670,   1.0078,   1.4051,   0.2875, | 
| 173 | -0.5328,  -3.8500,   3.3750,  14.0000,  -0.9999, | 
| 174 | -7.1406,   7.5469,  -3.4000,  -0.1078,  -1.0750, | 
| 175 | 1.5702,  -0.0672,   0.4016,   0.3017,  -0.4844 }, | 
| 176 | /* Sky clearness (epsilon): 4.500 to 6.200 */ | 
| 177 | {  -1.0000,   0.0211,   0.5025,  -0.5119,  -0.3000, | 
| 178 | 0.1922,   0.7023,  -1.6317,  19.0000,  -5.0000, | 
| 179 | 1.2438,  -1.9094,  -4.0000,   0.0250,   0.3844, | 
| 180 | 0.2656,   1.0468,  -0.3788,  -2.4517,   1.4656 }, | 
| 181 | /* Sky clearness (epsilon): 6.200 to ... */ | 
| 182 | {  -1.0500,   0.0289,   0.4260,   0.3590,  -0.3250, | 
| 183 | 0.1156,   0.7781,   0.0025,  31.0625, -14.5000, | 
| 184 | -46.1148,  55.3750,  -7.2312,   0.4050,  13.3500, | 
| 185 | 0.6234,   1.5000,  -0.6426,   1.8564,   0.5636 } | 
| 186 | }; | 
| 187 |  | 
| 188 | /* Perez irradiance component model coefficients */ | 
| 189 |  | 
| 190 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 191 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 192 | /*                              Irradiance Components from Direct and Global */ | 
| 193 | /*                              Irradiance,î Solar Energy 44(5):271-289. */ | 
| 194 |  | 
| 195 | typedef struct | 
| 196 | { | 
| 197 | double lower;   /* Lower bound */ | 
| 198 | double upper;   /* Upper bound */ | 
| 199 | } CategoryBounds; | 
| 200 |  | 
| 201 | /* Perez sky clearness (epsilon) categories (Table 1) */ | 
| 202 | static const CategoryBounds SkyClearCat[8] = | 
| 203 | { | 
| 204 | { 1.000, 1.065 },       /* Overcast */ | 
| 205 | { 1.065, 1.230 }, | 
| 206 | { 1.230, 1.500 }, | 
| 207 | { 1.500, 1.950 }, | 
| 208 | { 1.950, 2.800 }, | 
| 209 | { 2.800, 4.500 }, | 
| 210 | { 4.500, 6.200 }, | 
| 211 | { 6.200, 12.00 }        /* Clear */ | 
| 212 | }; | 
| 213 |  | 
| 214 | /* Luminous efficacy model coefficients */ | 
| 215 | typedef struct | 
| 216 | { | 
| 217 | double a; | 
| 218 | double b; | 
| 219 | double c; | 
| 220 | double d; | 
| 221 | } ModelCoeff; | 
| 222 |  | 
| 223 | /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */ | 
| 224 | static const ModelCoeff DiffuseLumEff[8] = | 
| 225 | { | 
| 226 | {  97.24, -0.46,  12.00,  -8.91 }, | 
| 227 | { 107.22,  1.15,   0.59,  -3.95 }, | 
| 228 | { 104.97,  2.96,  -5.53,  -8.77 }, | 
| 229 | { 102.39,  5.59, -13.95, -13.90 }, | 
| 230 | { 100.71,  5.94, -22.75, -23.74 }, | 
| 231 | { 106.42,  3.83, -36.15, -28.83 }, | 
| 232 | { 141.88,  1.90, -53.24, -14.03 }, | 
| 233 | { 152.23,  0.35, -45.27,  -7.98 } | 
| 234 | }; | 
| 235 |  | 
| 236 | /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */ | 
| 237 | static const ModelCoeff DirectLumEff[8] = | 
| 238 | { | 
| 239 | {  57.20, -4.55, -2.98, 117.12 }, | 
| 240 | {  98.99, -3.46, -1.21,  12.38 }, | 
| 241 | { 109.83, -4.90, -1.71,  -8.81 }, | 
| 242 | { 110.34, -5.84, -1.99,  -4.56 }, | 
| 243 | { 106.36, -3.97, -1.75,  -6.16 }, | 
| 244 | { 107.19, -1.25, -1.51, -26.73 }, | 
| 245 | { 105.75,  0.77, -1.26, -34.44 }, | 
| 246 | { 101.18,  1.58, -1.10,  -8.29 } | 
| 247 | }; | 
| 248 |  | 
| 249 | #ifndef NSUNPATCH | 
| 250 | #define NSUNPATCH       4               /* # patches to spread sun into */ | 
| 251 | #endif | 
| 252 |  | 
| 253 | extern int jdate(int month, int day); | 
| 254 | extern double stadj(int  jd); | 
| 255 | extern double sdec(int  jd); | 
| 256 | extern double salt(double sd, double st); | 
| 257 | extern double sazi(double sd, double st); | 
| 258 | /* sun calculation constants */ | 
| 259 | extern double  s_latitude; | 
| 260 | extern double  s_longitude; | 
| 261 | extern double  s_meridian; | 
| 262 |  | 
| 263 | int             verbose = 0;            /* progress reports to stderr? */ | 
| 264 |  | 
| 265 | int             outfmt = 'a';           /* output format */ | 
| 266 |  | 
| 267 | int             rhsubdiv = 1;           /* Reinhart sky subdivisions */ | 
| 268 |  | 
| 269 | COLOR           skycolor = {.96, 1.004, 1.118}; /* sky coloration */ | 
| 270 | COLOR           suncolor = {1., 1., 1.};        /* sun color */ | 
| 271 | COLOR           grefl = {.2, .2, .2};           /* ground reflectance */ | 
| 272 |  | 
| 273 | int             nskypatch;              /* number of Reinhart patches */ | 
| 274 | float           *rh_palt;               /* sky patch altitudes (radians) */ | 
| 275 | float           *rh_pazi;               /* sky patch azimuths (radians) */ | 
| 276 | float           *rh_dom;                /* sky patch solid angle (sr) */ | 
| 277 |  | 
| 278 | #define         vector(v,alt,azi)       (       (v)[1] = tcos(alt), \ | 
| 279 | (v)[0] = (v)[1]*tsin(azi), \ | 
| 280 | (v)[1] *= tcos(azi), \ | 
| 281 | (v)[2] = tsin(alt) ) | 
| 282 |  | 
| 283 | #define         rh_vector(v,i)          vector(v,rh_palt[i],rh_pazi[i]) | 
| 284 |  | 
| 285 | #define         rh_cos(i)               tsin(rh_palt[i]) | 
| 286 |  | 
| 287 | extern int      rh_init(void); | 
| 288 | extern float *  resize_dmatrix(float *mtx_data, int nsteps, int npatch); | 
| 289 | extern void     AddDirect(float *parr); | 
| 290 |  | 
| 291 | int | 
| 292 | main(int argc, char *argv[]) | 
| 293 | { | 
| 294 | char    buf[256]; | 
| 295 | double  rotation = 0;           /* site rotation (degrees) */ | 
| 296 | double  elevation;              /* site elevation (meters) */ | 
| 297 | int     dir_is_horiz;           /* direct is meas. on horizontal? */ | 
| 298 | float   *mtx_data = NULL;       /* our matrix data */ | 
| 299 | int     ntsteps = 0;            /* number of rows in matrix */ | 
| 300 | int     last_monthly = 0;       /* month of last report */ | 
| 301 | int     mo, da;                 /* month (1-12) and day (1-31) */ | 
| 302 | double  hr;                     /* hour (local standard time) */ | 
| 303 | double  dir, dif;               /* direct and diffuse values */ | 
| 304 | int     mtx_offset; | 
| 305 | int     i, j; | 
| 306 |  | 
| 307 | progname = argv[0]; | 
| 308 | /* get options */ | 
| 309 | for (i = 1; i < argc && argv[i][0] == '-'; i++) | 
| 310 | switch (argv[i][1]) { | 
| 311 | case 'g':                       /* ground reflectance */ | 
| 312 | grefl[0] = atof(argv[++i]); | 
| 313 | grefl[1] = atof(argv[++i]); | 
| 314 | grefl[2] = atof(argv[++i]); | 
| 315 | break; | 
| 316 | case 'v':                       /* verbose progress reports */ | 
| 317 | verbose++; | 
| 318 | break; | 
| 319 | case 'o':                       /* output format */ | 
| 320 | switch (argv[i][2]) { | 
| 321 | case 'f': | 
| 322 | case 'd': | 
| 323 | case 'a': | 
| 324 | outfmt = argv[i][2]; | 
| 325 | break; | 
| 326 | default: | 
| 327 | goto userr; | 
| 328 | } | 
| 329 | break; | 
| 330 | case 'm':                       /* Reinhart subdivisions */ | 
| 331 | rhsubdiv = atoi(argv[++i]); | 
| 332 | break; | 
| 333 | case 'c':                       /* sky color */ | 
| 334 | skycolor[0] = atof(argv[++i]); | 
| 335 | skycolor[1] = atof(argv[++i]); | 
| 336 | skycolor[2] = atof(argv[++i]); | 
| 337 | break; | 
| 338 | case 'd':                       /* solar (direct) only */ | 
| 339 | skycolor[0] = skycolor[1] = skycolor[2] = 0; | 
| 340 | if (suncolor[1] <= 1e-4) | 
| 341 | suncolor[0] = suncolor[1] = suncolor[2] = 1; | 
| 342 | break; | 
| 343 | case 's':                       /* sky only (no direct) */ | 
| 344 | suncolor[0] = suncolor[1] = suncolor[2] = 0; | 
| 345 | if (skycolor[1] <= 1e-4) | 
| 346 | skycolor[0] = skycolor[1] = skycolor[2] = 1; | 
| 347 | break; | 
| 348 | case 'r':                       /* rotate distribution */ | 
| 349 | if (argv[i][2] && argv[i][2] != 'z') | 
| 350 | goto userr; | 
| 351 | rotation = atof(argv[++i]); | 
| 352 | break; | 
| 353 | default: | 
| 354 | goto userr; | 
| 355 | } | 
| 356 | if (i < argc-1) | 
| 357 | goto userr; | 
| 358 | if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) { | 
| 359 | fprintf(stderr, "%s: cannot open '%s' for input\n", | 
| 360 | progname, argv[i]); | 
| 361 | exit(1); | 
| 362 | } | 
| 363 | if (verbose) { | 
| 364 | if (i == argc-1) | 
| 365 | fprintf(stderr, "%s: reading weather tape '%s'\n", | 
| 366 | progname, argv[i]); | 
| 367 | else | 
| 368 | fprintf(stderr, "%s: reading weather tape from <stdin>\n", | 
| 369 | progname); | 
| 370 | } | 
| 371 | /* read weather tape header */ | 
| 372 | if (scanf("place %[^\r\n] ", buf) != 1) | 
| 373 | goto fmterr; | 
| 374 | if (scanf("latitude %lf\n", &s_latitude) != 1) | 
| 375 | goto fmterr; | 
| 376 | if (scanf("longitude %lf\n", &s_longitude) != 1) | 
| 377 | goto fmterr; | 
| 378 | if (scanf("time_zone %lf\n", &s_meridian) != 1) | 
| 379 | goto fmterr; | 
| 380 | if (scanf("site_elevation %lf\n", &elevation) != 1) | 
| 381 | goto fmterr; | 
| 382 | if (scanf("weather_data_file_units %d\n", &input) != 1) | 
| 383 | goto fmterr; | 
| 384 | switch (input) {                /* translate units */ | 
| 385 | case 1: | 
| 386 | input = 1;              /* radiometric quantities */ | 
| 387 | dir_is_horiz = 0;       /* direct is perpendicular meas. */ | 
| 388 | break; | 
| 389 | case 2: | 
| 390 | input = 1;              /* radiometric quantities */ | 
| 391 | dir_is_horiz = 1;       /* solar measured horizontally */ | 
| 392 | break; | 
| 393 | case 3: | 
| 394 | input = 2;              /* photometric quantities */ | 
| 395 | dir_is_horiz = 0;       /* direct is perpendicular meas. */ | 
| 396 | break; | 
| 397 | default: | 
| 398 | goto fmterr; | 
| 399 | } | 
| 400 | rh_init();                      /* initialize sky patches */ | 
| 401 | if (verbose) { | 
| 402 | fprintf(stderr, "%s: location '%s'\n", progname, buf); | 
| 403 | fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", | 
| 404 | progname, s_latitude, s_longitude); | 
| 405 | fprintf(stderr, "%s: %d sky patches per time step\n", | 
| 406 | progname, nskypatch); | 
| 407 | if (rotation != 0) | 
| 408 | fprintf(stderr, "%s: rotating output %.0f degrees\n", | 
| 409 | progname, rotation); | 
| 410 | } | 
| 411 | /* convert quantities to radians */ | 
| 412 | s_latitude = DegToRad(s_latitude); | 
| 413 | s_longitude = DegToRad(s_longitude); | 
| 414 | s_meridian = DegToRad(s_meridian); | 
| 415 | /* process each time step in tape */ | 
| 416 | while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) { | 
| 417 | double          sda, sta; | 
| 418 | /* make space for next time step */ | 
| 419 | mtx_offset = 3*nskypatch*ntsteps++; | 
| 420 | mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch); | 
| 421 | if (dif <= 1e-4) { | 
| 422 | memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); | 
| 423 | continue; | 
| 424 | } | 
| 425 | if (verbose && mo != last_monthly) | 
| 426 | fprintf(stderr, "%s: stepping through month %d...\n", | 
| 427 | progname, last_monthly=mo); | 
| 428 | /* compute solar position */ | 
| 429 | julian_date = jdate(mo, da); | 
| 430 | sda = sdec(julian_date); | 
| 431 | sta = stadj(julian_date); | 
| 432 | altitude = salt(sda, hr+sta); | 
| 433 | azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation); | 
| 434 | /* convert measured values */ | 
| 435 | if (dir_is_horiz && altitude > 0.) | 
| 436 | dir /= sin(altitude); | 
| 437 | if (input == 1) { | 
| 438 | dir_irrad = dir; | 
| 439 | diff_irrad = dif; | 
| 440 | } else /* input == 2 */ { | 
| 441 | dir_illum = dir; | 
| 442 | diff_illum = dif; | 
| 443 | } | 
| 444 | /* compute sky patch values */ | 
| 445 | ComputeSky(mtx_data+mtx_offset); | 
| 446 | AddDirect(mtx_data+mtx_offset); | 
| 447 | } | 
| 448 | /* check for junk at end */ | 
| 449 | while ((i = fgetc(stdin)) != EOF) | 
| 450 | if (!isspace(i)) { | 
| 451 | fprintf(stderr, "%s: warning - unexpected data past EOT: ", | 
| 452 | progname); | 
| 453 | buf[0] = i; buf[1] = '\0'; | 
| 454 | fgets(buf+1, sizeof(buf)-1, stdin); | 
| 455 | fputs(buf, stderr); fputc('\n', stderr); | 
| 456 | break; | 
| 457 | } | 
| 458 | /* write out matrix */ | 
| 459 | #ifdef getc_unlocked | 
| 460 | flockfile(stdout); | 
| 461 | #endif | 
| 462 | if (verbose) | 
| 463 | fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", | 
| 464 | progname, outfmt=='a' ? "" : "binary ", ntsteps); | 
| 465 | /* patches are rows (outer sort) */ | 
| 466 | for (i = 0; i < nskypatch; i++) { | 
| 467 | mtx_offset = 3*i; | 
| 468 | switch (outfmt) { | 
| 469 | case 'a': | 
| 470 | for (j = 0; j < ntsteps; j++) { | 
| 471 | printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset], | 
| 472 | mtx_data[mtx_offset+1], | 
| 473 | mtx_data[mtx_offset+2]); | 
| 474 | mtx_offset += 3*nskypatch; | 
| 475 | } | 
| 476 | if (ntsteps > 1) | 
| 477 | fputc('\n', stdout); | 
| 478 | break; | 
| 479 | case 'f': | 
| 480 | for (j = 0; j < ntsteps; j++) { | 
| 481 | fwrite(mtx_data+mtx_offset, sizeof(float), 3, | 
| 482 | stdout); | 
| 483 | mtx_offset += 3*nskypatch; | 
| 484 | } | 
| 485 | break; | 
| 486 | case 'd': | 
| 487 | for (j = 0; j < ntsteps; j++) { | 
| 488 | double  ment[3]; | 
| 489 | ment[0] = mtx_data[mtx_offset]; | 
| 490 | ment[1] = mtx_data[mtx_offset+1]; | 
| 491 | ment[2] = mtx_data[mtx_offset+2]; | 
| 492 | fwrite(ment, sizeof(double), 3, stdout); | 
| 493 | mtx_offset += 3*nskypatch; | 
| 494 | } | 
| 495 | break; | 
| 496 | } | 
| 497 | if (ferror(stdout)) | 
| 498 | goto writerr; | 
| 499 | } | 
| 500 | if (fflush(stdout) == EOF) | 
| 501 | goto writerr; | 
| 502 | if (verbose) | 
| 503 | fprintf(stderr, "%s: done.\n", progname); | 
| 504 | exit(0); | 
| 505 | userr: | 
| 506 | fprintf(stderr, "Usage: %s [-v][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}] [tape.wea]\n", | 
| 507 | progname); | 
| 508 | exit(1); | 
| 509 | fmterr: | 
| 510 | fprintf(stderr, "%s: input weather tape format error\n", progname); | 
| 511 | exit(1); | 
| 512 | writerr: | 
| 513 | fprintf(stderr, "%s: write error on output\n", progname); | 
| 514 | exit(1); | 
| 515 | } | 
| 516 |  | 
| 517 | /* Return maximum of two doubles */ | 
| 518 | double dmax( double a, double b ) | 
| 519 | { return (a > b) ? a : b; } | 
| 520 |  | 
| 521 | /* Compute sky patch radiance values (modified by GW) */ | 
| 522 | void | 
| 523 | ComputeSky(float *parr) | 
| 524 | { | 
| 525 | int index;                      /* Category index */ | 
| 526 | double norm_diff_illum;         /* Normalized diffuse illuimnance */ | 
| 527 | int i; | 
| 528 |  | 
| 529 | /* Calculate atmospheric precipitable water content */ | 
| 530 | apwc = CalcPrecipWater(dew_point); | 
| 531 |  | 
| 532 | /* Calculate sun zenith angle (don't let it dip below horizon) */ | 
| 533 | /* Also limit minimum angle to keep circumsolar off zenith */ | 
| 534 | if (altitude <= 0.0) | 
| 535 | sun_zenith = DegToRad(90.0); | 
| 536 | else if (altitude >= DegToRad(87.0)) | 
| 537 | sun_zenith = DegToRad(3.0); | 
| 538 | else | 
| 539 | sun_zenith = DegToRad(90.0) - altitude; | 
| 540 |  | 
| 541 | /* Compute the inputs for the calculation of the sky distribution */ | 
| 542 |  | 
| 543 | if (input == 0)                                 /* XXX never used */ | 
| 544 | { | 
| 545 | /* Calculate irradiance */ | 
| 546 | diff_irrad = CalcDiffuseIrradiance(); | 
| 547 | dir_irrad = CalcDirectIrradiance(); | 
| 548 |  | 
| 549 | /* Calculate illuminance */ | 
| 550 | index = GetCategoryIndex(); | 
| 551 | diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); | 
| 552 | dir_illum = dir_irrad * CalcDirectIllumRatio(index); | 
| 553 | } | 
| 554 | else if (input == 1) | 
| 555 | { | 
| 556 | sky_brightness = CalcSkyBrightness(); | 
| 557 | sky_clearness =  CalcSkyClearness(); | 
| 558 |  | 
| 559 | /* Limit sky clearness */ | 
| 560 | if (sky_clearness > 11.9) | 
| 561 | sky_clearness = 11.9; | 
| 562 |  | 
| 563 | /* Limit sky brightness */ | 
| 564 | if (sky_brightness < 0.01) | 
| 565 | sky_brightness = 0.01; | 
| 566 |  | 
| 567 | /* Calculate illuminance */ | 
| 568 | index = GetCategoryIndex(); | 
| 569 | diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); | 
| 570 | dir_illum = dir_irrad * CalcDirectIllumRatio(index); | 
| 571 | } | 
| 572 | else if (input == 2) | 
| 573 | { | 
| 574 | /* Calculate sky brightness and clearness from illuminance values */ | 
| 575 | index = CalcSkyParamFromIllum(); | 
| 576 | } | 
| 577 |  | 
| 578 | if (bright(skycolor) <= 1e-4) {                 /* 0 sky component? */ | 
| 579 | memset(parr, 0, sizeof(float)*3*nskypatch); | 
| 580 | return; | 
| 581 | } | 
| 582 | /* Compute ground radiance (include solar contribution if any) */ | 
| 583 | parr[0] = diff_illum; | 
| 584 | if (altitude > 0) | 
| 585 | parr[0] += dir_illum * sin(altitude); | 
| 586 | parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY); | 
| 587 | multcolor(parr, grefl); | 
| 588 |  | 
| 589 | /* Calculate Perez sky model parameters */ | 
| 590 | CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index); | 
| 591 |  | 
| 592 | /* Calculate sky patch luminance values */ | 
| 593 | CalcSkyPatchLumin(parr); | 
| 594 |  | 
| 595 | /* Calculate relative horizontal illuminance */ | 
| 596 | norm_diff_illum = CalcRelHorzIllum(parr); | 
| 597 |  | 
| 598 | /* Normalization coefficient */ | 
| 599 | norm_diff_illum = diff_illum / norm_diff_illum; | 
| 600 |  | 
| 601 | /* Apply to sky patches to get absolute radiance values */ | 
| 602 | for (i = 1; i < nskypatch; i++) { | 
| 603 | scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY)); | 
| 604 | multcolor(parr+3*i, skycolor); | 
| 605 | } | 
| 606 | } | 
| 607 |  | 
| 608 | /* Add in solar direct to nearest sky patches (GW) */ | 
| 609 | void | 
| 610 | AddDirect(float *parr) | 
| 611 | { | 
| 612 | FVECT   svec; | 
| 613 | double  near_dprod[NSUNPATCH]; | 
| 614 | int     near_patch[NSUNPATCH]; | 
| 615 | double  wta[NSUNPATCH], wtot; | 
| 616 | int     i, j, p; | 
| 617 |  | 
| 618 | if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4) | 
| 619 | return; | 
| 620 | /* identify NSUNPATCH closest patches */ | 
| 621 | for (i = NSUNPATCH; i--; ) | 
| 622 | near_dprod[i] = -1.; | 
| 623 | vector(svec, altitude, azimuth); | 
| 624 | for (p = 1; p < nskypatch; p++) { | 
| 625 | FVECT   pvec; | 
| 626 | double  dprod; | 
| 627 | rh_vector(pvec, p); | 
| 628 | dprod = DOT(pvec, svec); | 
| 629 | for (i = 0; i < NSUNPATCH; i++) | 
| 630 | if (dprod > near_dprod[i]) { | 
| 631 | for (j = NSUNPATCH; --j > i; ) { | 
| 632 | near_dprod[j] = near_dprod[j-1]; | 
| 633 | near_patch[j] = near_patch[j-1]; | 
| 634 | } | 
| 635 | near_dprod[i] = dprod; | 
| 636 | near_patch[i] = p; | 
| 637 | break; | 
| 638 | } | 
| 639 | } | 
| 640 | wtot = 0;                       /* weight by proximity */ | 
| 641 | for (i = NSUNPATCH; i--; ) | 
| 642 | wtot += wta[i] = 1./(1.002 - near_dprod[i]); | 
| 643 | /* add to nearest patch radiances */ | 
| 644 | for (i = NSUNPATCH; i--; ) { | 
| 645 | float   *pdest = parr + 3*near_patch[i]; | 
| 646 | float   val_add = wta[i] * dir_illum / | 
| 647 | (WHTEFFICACY * wtot * rh_dom[near_patch[i]]); | 
| 648 | *pdest++ += val_add*suncolor[0]; | 
| 649 | *pdest++ += val_add*suncolor[1]; | 
| 650 | *pdest++ += val_add*suncolor[2]; | 
| 651 | } | 
| 652 | } | 
| 653 |  | 
| 654 | /* Initialize Reinhart sky patch positions (GW) */ | 
| 655 | int | 
| 656 | rh_init(void) | 
| 657 | { | 
| 658 | #define NROW    7 | 
| 659 | static const int        tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; | 
| 660 | const double            alpha = (PI/2.)/(NROW*rhsubdiv + .5); | 
| 661 | int                     p, i, j; | 
| 662 | /* allocate patch angle arrays */ | 
| 663 | nskypatch = 0; | 
| 664 | for (p = 0; p < NROW; p++) | 
| 665 | nskypatch += tnaz[p]; | 
| 666 | nskypatch *= rhsubdiv*rhsubdiv; | 
| 667 | nskypatch += 2; | 
| 668 | rh_palt = (float *)malloc(sizeof(float)*nskypatch); | 
| 669 | rh_pazi = (float *)malloc(sizeof(float)*nskypatch); | 
| 670 | rh_dom = (float *)malloc(sizeof(float)*nskypatch); | 
| 671 | if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { | 
| 672 | fprintf(stderr, "%s: out of memory in rh_init()\n", progname); | 
| 673 | exit(1); | 
| 674 | } | 
| 675 | rh_palt[0] = -PI/2.;            /* ground & zenith patches */ | 
| 676 | rh_pazi[0] = 0.; | 
| 677 | rh_dom[0] = 2.*PI; | 
| 678 | rh_palt[nskypatch-1] = PI/2.; | 
| 679 | rh_pazi[nskypatch-1] = 0.; | 
| 680 | rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5)); | 
| 681 | p = 1;                          /* "normal" patches */ | 
| 682 | for (i = 0; i < NROW*rhsubdiv; i++) { | 
| 683 | const float     ralt = alpha*(i + .5); | 
| 684 | const int       ninrow = tnaz[i/rhsubdiv]*rhsubdiv; | 
| 685 | const float     dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) / | 
| 686 | (double)ninrow; | 
| 687 | for (j = 0; j < ninrow; j++) { | 
| 688 | rh_palt[p] = ralt; | 
| 689 | rh_pazi[p] = 2.*PI * j / (double)ninrow; | 
| 690 | rh_dom[p++] = dom; | 
| 691 | } | 
| 692 | } | 
| 693 | return nskypatch; | 
| 694 | #undef NROW | 
| 695 | } | 
| 696 |  | 
| 697 | /* Resize daylight matrix (GW) */ | 
| 698 | float * | 
| 699 | resize_dmatrix(float *mtx_data, int nsteps, int npatch) | 
| 700 | { | 
| 701 | if (mtx_data == NULL) | 
| 702 | mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch); | 
| 703 | else | 
| 704 | mtx_data = (float *)realloc(mtx_data, | 
| 705 | sizeof(float)*3*nsteps*npatch); | 
| 706 | if (mtx_data == NULL) { | 
| 707 | fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", | 
| 708 | progname, nsteps, npatch); | 
| 709 | exit(1); | 
| 710 | } | 
| 711 | return(mtx_data); | 
| 712 | } | 
| 713 |  | 
| 714 | /* Determine category index */ | 
| 715 | int GetCategoryIndex() | 
| 716 | { | 
| 717 | int index;      /* Loop index */ | 
| 718 |  | 
| 719 | for (index = 0; index < 8; index++) | 
| 720 | if ((sky_clearness >= SkyClearCat[index].lower) && | 
| 721 | (sky_clearness < SkyClearCat[index].upper)) | 
| 722 | break; | 
| 723 |  | 
| 724 | return index; | 
| 725 | } | 
| 726 |  | 
| 727 | /* Calculate diffuse illuminance to diffuse irradiance ratio */ | 
| 728 |  | 
| 729 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 730 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 731 | /*                              Irradiance Components from Direct and Global */ | 
| 732 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */ | 
| 733 |  | 
| 734 | double CalcDiffuseIllumRatio( int index ) | 
| 735 | { | 
| 736 | ModelCoeff const *pnle; /* Category coefficient pointer */ | 
| 737 |  | 
| 738 | /* Get category coefficient pointer */ | 
| 739 | pnle = &(DiffuseLumEff[index]); | 
| 740 |  | 
| 741 | return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) + | 
| 742 | pnle->d * log(sky_brightness); | 
| 743 | } | 
| 744 |  | 
| 745 | /* Calculate direct illuminance to direct irradiance ratio */ | 
| 746 |  | 
| 747 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 748 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 749 | /*                              Irradiance Components from Direct and Global */ | 
| 750 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */ | 
| 751 |  | 
| 752 | double CalcDirectIllumRatio( int index ) | 
| 753 | { | 
| 754 | ModelCoeff const *pnle; /* Category coefficient pointer */ | 
| 755 |  | 
| 756 | /* Get category coefficient pointer */ | 
| 757 | pnle = &(DirectLumEff[index]); | 
| 758 |  | 
| 759 | /* Calculate direct illuminance from direct irradiance */ | 
| 760 |  | 
| 761 | return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 * | 
| 762 | sun_zenith - 5.0) + pnle->d * sky_brightness), | 
| 763 | 0.0); | 
| 764 | } | 
| 765 |  | 
| 766 | /* Calculate sky brightness */ | 
| 767 |  | 
| 768 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 769 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 770 | /*                              Irradiance Components from Direct and Global */ | 
| 771 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */ | 
| 772 |  | 
| 773 | double CalcSkyBrightness() | 
| 774 | { | 
| 775 | return diff_irrad * CalcAirMass() / (DC_SolarConstantE * | 
| 776 | CalcEccentricity()); | 
| 777 | } | 
| 778 |  | 
| 779 | /* Calculate sky clearness */ | 
| 780 |  | 
| 781 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 782 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 783 | /*                              Irradiance Components from Direct and Global */ | 
| 784 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */ | 
| 785 |  | 
| 786 | double CalcSkyClearness() | 
| 787 | { | 
| 788 | double sz_cubed;        /* Sun zenith angle cubed */ | 
| 789 |  | 
| 790 | /* Calculate sun zenith angle cubed */ | 
| 791 | sz_cubed = pow(sun_zenith, 3.0); | 
| 792 |  | 
| 793 | return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 * | 
| 794 | sz_cubed) / (1.0 + 1.041 * sz_cubed); | 
| 795 | } | 
| 796 |  | 
| 797 | /* Calculate diffuse horizontal irradiance from Perez sky brightness */ | 
| 798 |  | 
| 799 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 800 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 801 | /*                              Irradiance Components from Direct and Global */ | 
| 802 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */ | 
| 803 | /*                              (inverse). */ | 
| 804 |  | 
| 805 | double CalcDiffuseIrradiance() | 
| 806 | { | 
| 807 | return sky_brightness * DC_SolarConstantE * CalcEccentricity() / | 
| 808 | CalcAirMass(); | 
| 809 | } | 
| 810 |  | 
| 811 | /* Calculate direct normal irradiance from Perez sky clearness */ | 
| 812 |  | 
| 813 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 814 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 815 | /*                              Irradiance Components from Direct and Global */ | 
| 816 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */ | 
| 817 | /*                              (inverse). */ | 
| 818 |  | 
| 819 | double CalcDirectIrradiance() | 
| 820 | { | 
| 821 | return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041 | 
| 822 | * pow(sun_zenith, 3.0))); | 
| 823 | } | 
| 824 |  | 
| 825 | /* Calculate sky brightness and clearness from illuminance values */ | 
| 826 | int CalcSkyParamFromIllum() | 
| 827 | { | 
| 828 | double test1 = 0.1; | 
| 829 | double test2 = 0.1; | 
| 830 | int     counter = 0; | 
| 831 | int index = 0;                  /* Category index */ | 
| 832 |  | 
| 833 | /* Convert illuminance to irradiance */ | 
| 834 | diff_irrad = diff_illum * DC_SolarConstantE / | 
| 835 | (DC_SolarConstantL * 1000.0); | 
| 836 | dir_irrad = dir_illum * DC_SolarConstantE / | 
| 837 | (DC_SolarConstantL * 1000.0); | 
| 838 |  | 
| 839 | /* Calculate sky brightness and clearness */ | 
| 840 | sky_brightness = CalcSkyBrightness(); | 
| 841 | sky_clearness =  CalcSkyClearness(); | 
| 842 |  | 
| 843 | /* Limit sky clearness */ | 
| 844 | if (sky_clearness > 12.0) | 
| 845 | sky_clearness = 12.0; | 
| 846 |  | 
| 847 | /* Limit sky brightness */ | 
| 848 | if (sky_brightness < 0.01) | 
| 849 | sky_brightness = 0.01; | 
| 850 |  | 
| 851 | while (((fabs(diff_irrad - test1) > 10.0) || | 
| 852 | (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5)) | 
| 853 | { | 
| 854 | test1 = diff_irrad; | 
| 855 | test2 = dir_irrad; | 
| 856 | counter++; | 
| 857 |  | 
| 858 | /* Convert illuminance to irradiance */ | 
| 859 | index = GetCategoryIndex(); | 
| 860 | diff_irrad = diff_illum / CalcDiffuseIllumRatio(index); | 
| 861 | dir_irrad = dir_illum / CalcDirectIllumRatio(index); | 
| 862 |  | 
| 863 | /* Calculate sky brightness and clearness */ | 
| 864 | sky_brightness = CalcSkyBrightness(); | 
| 865 | sky_clearness =  CalcSkyClearness(); | 
| 866 |  | 
| 867 | /* Limit sky clearness */ | 
| 868 | if (sky_clearness > 12.0) | 
| 869 | sky_clearness = 12.0; | 
| 870 |  | 
| 871 | /* Limit sky brightness */ | 
| 872 | if (sky_brightness < 0.01) | 
| 873 | sky_brightness = 0.01; | 
| 874 | } | 
| 875 |  | 
| 876 | return GetCategoryIndex(); | 
| 877 | } | 
| 878 |  | 
| 879 | /* Calculate relative luminance */ | 
| 880 |  | 
| 881 | /* Reference:   Perez, R., R. Seals, and J. Michalsky. 1993. */ | 
| 882 | /*                              ìAll-Weather Model for Sky Luminance Distribution - */ | 
| 883 | /*                              Preliminary Configuration and Validation,î Solar Energy */ | 
| 884 | /*                              50(3):235-245, Eqn. 1. */ | 
| 885 |  | 
| 886 | double CalcRelLuminance( double gamma, double zeta ) | 
| 887 | { | 
| 888 | return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) * | 
| 889 | (1.0 + perez_param[2] * exp(perez_param[3] * gamma) + | 
| 890 | perez_param[4] * cos(gamma) * cos(gamma)); | 
| 891 | } | 
| 892 |  | 
| 893 | /* Calculate Perez sky model parameters */ | 
| 894 |  | 
| 895 | /* Reference:   Perez, R., R. Seals, and J. Michalsky. 1993. */ | 
| 896 | /*                              ìAll-Weather Model for Sky Luminance Distribution - */ | 
| 897 | /*                              Preliminary Configuration and Validation,î Solar Energy */ | 
| 898 | /*                              50(3):235-245, Eqns. 6 - 8. */ | 
| 899 |  | 
| 900 | void CalcPerezParam( double sz, double epsilon, double delta, | 
| 901 | int index ) | 
| 902 | { | 
| 903 | double x[5][4];         /* Coefficents a, b, c, d, e */ | 
| 904 | int i, j;                       /* Loop indices */ | 
| 905 |  | 
| 906 | /* Limit sky brightness */ | 
| 907 | if (epsilon > 1.065 && epsilon < 2.8) | 
| 908 | { | 
| 909 | if (delta < 0.2) | 
| 910 | delta = 0.2; | 
| 911 | } | 
| 912 |  | 
| 913 | /* Get Perez coefficients */ | 
| 914 | for (i = 0; i < 5; i++) | 
| 915 | for (j = 0; j < 4; j++) | 
| 916 | x[i][j] = PerezCoeff[index][4 * i + j]; | 
| 917 |  | 
| 918 | if (index != 0) | 
| 919 | { | 
| 920 | /* Calculate parameter a, b, c, d and e (Eqn. 6) */ | 
| 921 | for (i = 0; i < 5; i++) | 
| 922 | perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] + | 
| 923 | x[i][3] * sz); | 
| 924 | } | 
| 925 | else | 
| 926 | { | 
| 927 | /* Parameters a, b and e (Eqn. 6) */ | 
| 928 | perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] + | 
| 929 | x[0][3] * sz); | 
| 930 | perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] + | 
| 931 | x[1][3] * sz); | 
| 932 | perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] + | 
| 933 | x[4][3] * sz); | 
| 934 |  | 
| 935 | /* Parameter c (Eqn. 7) */ | 
| 936 | perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz), | 
| 937 | x[2][2])) - x[2][3]; | 
| 938 |  | 
| 939 | /* Parameter d (Eqn. 8) */ | 
| 940 | perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) + | 
| 941 | x[3][2] + delta * x[3][3]; | 
| 942 | } | 
| 943 | } | 
| 944 |  | 
| 945 | /* Calculate relative horizontal illuminance (modified by GW) */ | 
| 946 |  | 
| 947 | /* Reference:   Perez, R., R. Seals, and J. Michalsky. 1993. */ | 
| 948 | /*                              ìAll-Weather Model for Sky Luminance Distribution - */ | 
| 949 | /*                              Preliminary Configuration and Validation,î Solar Energy */ | 
| 950 | /*                              50(3):235-245, Eqn. 3. */ | 
| 951 |  | 
| 952 | double CalcRelHorzIllum( float *parr ) | 
| 953 | { | 
| 954 | int i; | 
| 955 | double rh_illum = 0.0;  /* Relative horizontal illuminance */ | 
| 956 |  | 
| 957 | for (i = 1; i < nskypatch; i++) | 
| 958 | rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i]; | 
| 959 |  | 
| 960 | return rh_illum; | 
| 961 | } | 
| 962 |  | 
| 963 | /* Calculate earth orbit eccentricity correction factor */ | 
| 964 |  | 
| 965 | /* Reference:   Sen, Z. 2008. Solar Energy Fundamental and Modeling  */ | 
| 966 | /*                              Techniques. Springer, p. 72. */ | 
| 967 |  | 
| 968 | double CalcEccentricity() | 
| 969 | { | 
| 970 | double day_angle;       /* Day angle (radians) */ | 
| 971 | double E0;                      /* Eccentricity */ | 
| 972 |  | 
| 973 | /* Calculate day angle */ | 
| 974 | day_angle  = (julian_date - 1.0) * (2.0 * PI / 365.0); | 
| 975 |  | 
| 976 | /* Calculate eccentricity */ | 
| 977 | E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle) | 
| 978 | + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 * | 
| 979 | day_angle); | 
| 980 |  | 
| 981 | return E0; | 
| 982 | } | 
| 983 |  | 
| 984 | /* Calculate atmospheric precipitable water content */ | 
| 985 |  | 
| 986 | /* Reference:   Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ | 
| 987 | /*                              Stewart. 1990. ìModeling Daylight Availability and */ | 
| 988 | /*                              Irradiance Components from Direct and Global */ | 
| 989 | /*                              Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */ | 
| 990 |  | 
| 991 | /* Note:        The default surface dew point temperature is 11 deg. C */ | 
| 992 | /*                      (52 deg. F). Typical values are: */ | 
| 993 |  | 
| 994 | /*                      Celsius         Fahrenheit              Human Perception */ | 
| 995 | /*                      > 24            > 75                    Extremely uncomfortable */ | 
| 996 | /*                      21 - 24         70 - 74                 Very humid */ | 
| 997 | /*                      18 - 21         65 - 69                 Somewhat uncomfortable */ | 
| 998 | /*                      16 - 18         60 - 64                 OK for most people */ | 
| 999 | /*                      13 - 16         55 - 59                 Comfortable */ | 
| 1000 | /*                      10 - 12         50 - 54                 Very comfortable */ | 
| 1001 | /*                      < 10            < 49                    A bit dry for some */ | 
| 1002 |  | 
| 1003 | double CalcPrecipWater( double dpt ) | 
| 1004 | { return exp(0.07 * dpt - 0.075); } | 
| 1005 |  | 
| 1006 | /* Calculate relative air mass */ | 
| 1007 |  | 
| 1008 | /* Reference:   Kasten, F. 1966. "A New Table and Approximation Formula */ | 
| 1009 | /*                              for the Relative Optical Air Mass," Arch. Meteorol. */ | 
| 1010 | /*                              Geophys. Bioklimataol. Ser. B14, pp. 206-233. */ | 
| 1011 |  | 
| 1012 | /* Note:                More sophisticated relative air mass models are */ | 
| 1013 | /*                              available, but they differ significantly only for */ | 
| 1014 | /*                              sun zenith angles greater than 80 degrees. */ | 
| 1015 |  | 
| 1016 | double CalcAirMass() | 
| 1017 | { | 
| 1018 | return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 - | 
| 1019 | RadToDeg(sun_zenith), -1.253))); | 
| 1020 | } | 
| 1021 |  | 
| 1022 | /* Calculate Perez All-Weather sky patch luminances (modified by GW) */ | 
| 1023 |  | 
| 1024 | /* NOTE: The sky patches centers are determined in accordance with the */ | 
| 1025 | /*       BRE-IDMP sky luminance measurement procedures. (See for example */ | 
| 1026 | /*       Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */ | 
| 1027 | /*       for the Validation of Illuminance Prediction Techniques," */ | 
| 1028 | /*       Lighting Research & Technology 33(2):117-136.) */ | 
| 1029 |  | 
| 1030 | void CalcSkyPatchLumin( float *parr ) | 
| 1031 | { | 
| 1032 | int i; | 
| 1033 | double aas;                             /* Sun-sky point azimuthal angle */ | 
| 1034 | double sspa;                    /* Sun-sky point angle */ | 
| 1035 | double zsa;                             /* Zenithal sun angle */ | 
| 1036 |  | 
| 1037 | for (i = 1; i < nskypatch; i++) | 
| 1038 | { | 
| 1039 | /* Calculate sun-sky point azimuthal angle */ | 
| 1040 | aas = fabs(rh_pazi[i] - azimuth); | 
| 1041 |  | 
| 1042 | /* Calculate zenithal sun angle */ | 
| 1043 | zsa = PI * 0.5 - rh_palt[i]; | 
| 1044 |  | 
| 1045 | /* Calculate sun-sky point angle (Equation 8-20) */ | 
| 1046 | sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) * | 
| 1047 | sin(zsa) * cos(aas)); | 
| 1048 |  | 
| 1049 | /* Calculate patch luminance */ | 
| 1050 | parr[3*i] = CalcRelLuminance(sspa, zsa); | 
| 1051 | if (parr[3*i] < 0) parr[3*i] = 0; | 
| 1052 | parr[3*i+2] = parr[3*i+1] = parr[3*i]; | 
| 1053 | } | 
| 1054 | } |