| 4 |
|
* Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France |
| 5 |
|
* *BOUYGUES |
| 6 |
|
* 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France |
| 7 |
+ |
* print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018 |
| 8 |
|
*/ |
| 9 |
|
|
| 10 |
+ |
#define _USE_MATH_DEFINES |
| 11 |
|
#include <stdio.h> |
| 12 |
|
#include <string.h> |
| 13 |
|
#include <math.h> |
| 54 |
|
90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, |
| 55 |
|
80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, |
| 56 |
|
240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0}; |
| 57 |
+ |
/* default values for Berlin */ |
| 58 |
+ |
float locus[] = { |
| 59 |
+ |
-4.843e9,2.5568e6,0.24282e3,0.23258,-4.843e9,2.5568e6,0.24282e3,0.23258,-1.2848,1.7519,-0.093786}; |
| 60 |
|
|
| 61 |
|
|
| 62 |
|
|
| 63 |
< |
/* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */ |
| 63 |
> |
/* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */ |
| 64 |
|
double sky_brightness(); |
| 65 |
|
double sky_clearness(); |
| 66 |
|
|
| 93 |
|
void check_sun_position(); |
| 94 |
|
void computesky(); |
| 95 |
|
void printhead(int ac, char** av); |
| 96 |
< |
void userror(char* msg); |
| 96 |
> |
void usage_error(char* msg); |
| 97 |
|
void printsky(); |
| 98 |
|
|
| 99 |
|
FILE * frlibopen(char* fname); |
| 102 |
|
double get_eccentricity(); |
| 103 |
|
double air_mass(); |
| 104 |
|
|
| 105 |
< |
double solar_sunset(); |
| 106 |
< |
double solar_sunrise(); |
| 102 |
< |
double stadj(); |
| 103 |
< |
int jdate(int month, int day); |
| 105 |
> |
double solar_sunset(int month, int day); |
| 106 |
> |
double solar_sunrise(int month, int day); |
| 107 |
|
|
| 105 |
– |
|
| 106 |
– |
|
| 107 |
– |
/* sun calculation constants */ |
| 108 |
– |
extern double s_latitude; |
| 109 |
– |
extern double s_longitude; |
| 110 |
– |
extern double s_meridian; |
| 111 |
– |
|
| 108 |
|
const double AU = 149597890E3; |
| 109 |
|
const double solar_constant_e = 1367; /* solar constant W/m^2 */ |
| 110 |
< |
const double solar_constant_l = 127.5; /* solar constant klux */ |
| 110 |
> |
const double solar_constant_l = 127500; /* solar constant lux */ |
| 111 |
|
|
| 112 |
|
const double half_sun_angle = 0.2665; |
| 113 |
|
const double half_direct_angle = 2.85; |
| 114 |
|
|
| 115 |
< |
const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */ |
| 116 |
< |
const double skyclearsup = 12.1; |
| 115 |
> |
const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */ |
| 116 |
> |
const double skyclearsup = 12.01; |
| 117 |
|
const double skybriginf = 0.01; |
| 118 |
|
const double skybrigsup = 0.6; |
| 119 |
|
|
| 120 |
|
|
| 121 |
|
|
| 122 |
|
/* required values */ |
| 123 |
+ |
int year = 0; /* year (optional) */ |
| 124 |
|
int month, day; /* date */ |
| 125 |
|
double hour; /* time */ |
| 126 |
|
int tsolar; /* 0=standard, 1=solar */ |
| 143 |
|
int output=0; /* define the unit of the output (sky luminance or radiance): */ |
| 144 |
|
/* visible watt=0, solar watt=1, lumen=2 */ |
| 145 |
|
int input=0; /* define the input for the calulation */ |
| 146 |
< |
|
| 146 |
> |
int color_output=0; |
| 147 |
|
int suppress_warnings=0; |
| 148 |
|
|
| 149 |
|
/* default values */ |
| 154 |
|
double gprefl = 0.2; |
| 155 |
|
int S_INTER=0; |
| 156 |
|
|
| 157 |
+ |
|
| 158 |
|
/* computed values */ |
| 159 |
|
double sundir[3]; |
| 160 |
|
double groundbr = 0; |
| 166 |
|
char *progname; |
| 167 |
|
char errmsg[128]; |
| 168 |
|
|
| 169 |
+ |
double st; |
| 170 |
|
|
| 171 |
|
|
| 173 |
– |
|
| 172 |
|
int main(int argc, char** argv) |
| 173 |
|
{ |
| 174 |
|
int i; |
| 179 |
|
return 0; |
| 180 |
|
} |
| 181 |
|
if (argc < 4) |
| 182 |
< |
userror("arg count"); |
| 182 |
> |
usage_error("arg count"); |
| 183 |
|
if (!strcmp(argv[1], "-ang")) { |
| 184 |
|
altitude = atof(argv[2]) * (M_PI/180); |
| 185 |
|
azimuth = atof(argv[3]) * (M_PI/180); |
| 187 |
|
} else { |
| 188 |
|
month = atoi(argv[1]); |
| 189 |
|
if (month < 1 || month > 12) |
| 190 |
< |
userror("bad month"); |
| 190 |
> |
usage_error("bad month"); |
| 191 |
|
day = atoi(argv[2]); |
| 192 |
|
if (day < 1 || day > 31) |
| 193 |
< |
userror("bad day"); |
| 193 |
> |
usage_error("bad day"); |
| 194 |
|
hour = atof(argv[3]); |
| 195 |
|
if (hour < 0 || hour >= 24) |
| 196 |
< |
userror("bad hour"); |
| 196 |
> |
usage_error("bad hour"); |
| 197 |
|
tsolar = argv[3][0] == '+'; |
| 198 |
|
} |
| 199 |
|
for (i = 4; i < argc; i++) |
| 203 |
|
cloudy = 0; |
| 204 |
|
dosun = argv[i][0] == '+'; |
| 205 |
|
break; |
| 206 |
+ |
case 'y': |
| 207 |
+ |
year = atoi(argv[++i]); |
| 208 |
+ |
break; |
| 209 |
|
case 'R': |
| 210 |
|
u_solar = argv[i][1] == 'R' ? -1 : 1; |
| 211 |
|
solarbr = atof(argv[++i]); |
| 214 |
|
cloudy = argv[i][0] == '+' ? 2 : 1; |
| 215 |
|
dosun = 0; |
| 216 |
|
break; |
| 217 |
+ |
case 'C': |
| 218 |
+ |
if (argv[i][2] == 'I' && argv[i][3] == 'E' ) { |
| 219 |
+ |
locus[0] = -4.607e9; |
| 220 |
+ |
locus[1] = 2.9678e6; |
| 221 |
+ |
locus[2] = 0.09911e3; |
| 222 |
+ |
locus[3] = 0.244063; |
| 223 |
+ |
locus[4] = -2.0064e9; |
| 224 |
+ |
locus[5] = 1.9018e6; |
| 225 |
+ |
locus[6] = 0.24748e3; |
| 226 |
+ |
locus[7] = 0.23704; |
| 227 |
+ |
locus[8] = -3.0; |
| 228 |
+ |
locus[9] = 2.87; |
| 229 |
+ |
locus[10] = -0.275; |
| 230 |
+ |
}else{ color_output = 1; |
| 231 |
+ |
} |
| 232 |
+ |
break; |
| 233 |
+ |
case 'l': |
| 234 |
+ |
locus[0] = atof(argv[++i]); |
| 235 |
+ |
locus[1] = atof(argv[++i]); |
| 236 |
+ |
locus[2] = atof(argv[++i]); |
| 237 |
+ |
locus[3] = atof(argv[++i]); |
| 238 |
+ |
locus[4] = locus[0]; |
| 239 |
+ |
locus[5] = locus[1]; |
| 240 |
+ |
locus[6] = locus[2]; |
| 241 |
+ |
locus[7] = locus[3]; |
| 242 |
+ |
locus[8] = atof(argv[++i]); |
| 243 |
+ |
locus[9] = atof(argv[++i]); |
| 244 |
+ |
locus[10] = atof(argv[++i]); |
| 245 |
+ |
break; |
| 246 |
+ |
|
| 247 |
|
case 't': |
| 248 |
|
betaturbidity = atof(argv[++i]); |
| 249 |
|
break; |
| 267 |
|
break; |
| 268 |
|
|
| 269 |
|
case 'O': |
| 270 |
< |
output = atof(argv[++i]); /*define the unit of the output of the program : |
| 271 |
< |
sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */ |
| 270 |
> |
output = atof(argv[++i]); /*define the unit of the output of the program: |
| 271 |
> |
sky and sun luminance/radiance |
| 272 |
> |
(0==W visible, 1==W solar radiation, 2==lm) */ |
| 273 |
|
break; |
| 274 |
|
|
| 275 |
|
case 'P': |
| 301 |
|
globalirradiance = atof(argv[++i]); |
| 302 |
|
break; |
| 303 |
|
|
| 272 |
– |
/* |
| 273 |
– |
case 'l': |
| 274 |
– |
sunaltitude_border = atof(argv[++i]); |
| 275 |
– |
break; |
| 276 |
– |
*/ |
| 277 |
– |
|
| 304 |
|
case 'i': |
| 305 |
|
timeinterval = atof(argv[++i]); |
| 306 |
|
break; |
| 308 |
|
|
| 309 |
|
default: |
| 310 |
|
sprintf(errmsg, "unknown option: %s", argv[i]); |
| 311 |
< |
userror(errmsg); |
| 311 |
> |
usage_error(errmsg); |
| 312 |
|
} |
| 313 |
|
else |
| 314 |
< |
userror("bad option"); |
| 314 |
> |
usage_error("bad option"); |
| 315 |
|
|
| 316 |
< |
if (fabs(s_meridian-s_longitude) > 30*M_PI/180) |
| 317 |
< |
fprintf(stderr, |
| 292 |
< |
"%s: warning: %.1f hours btwn. standard meridian and longitude\n", |
| 316 |
> |
if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*M_PI/180) |
| 317 |
> |
fprintf(stderr,"%s: warning: %.1f hours btwn. standard meridian and longitude\n", |
| 318 |
|
progname, (s_longitude-s_meridian)*12/M_PI); |
| 319 |
|
|
| 320 |
|
|
| 321 |
|
/* dynamic memory allocation for the pointers */ |
| 297 |
– |
|
| 322 |
|
if ( (c_perez = calloc(5, sizeof(double))) == NULL ) |
| 323 |
< |
{ |
| 300 |
< |
fprintf(stderr,"Out of memory error in function main"); |
| 301 |
< |
return 1; |
| 302 |
< |
} |
| 323 |
> |
{ fprintf(stderr,"Out of memory error in function main"); return 1; } |
| 324 |
|
|
| 325 |
+ |
|
| 326 |
|
printhead(argc, argv); |
| 327 |
|
computesky(); |
| 306 |
– |
|
| 307 |
– |
if(*(c_perez+1)>0) |
| 308 |
– |
{ |
| 309 |
– |
fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1)); |
| 310 |
– |
print_error_sky(); |
| 311 |
– |
exit(1); |
| 312 |
– |
} |
| 313 |
– |
|
| 328 |
|
printsky(); |
| 329 |
|
return 0; |
| 330 |
+ |
|
| 331 |
|
} |
| 332 |
|
|
| 333 |
|
|
| 334 |
|
|
| 335 |
|
|
| 336 |
|
|
| 322 |
– |
|
| 323 |
– |
|
| 324 |
– |
|
| 337 |
|
void computesky() |
| 338 |
|
{ |
| 339 |
|
|
| 349 |
|
/* compute solar direction */ |
| 350 |
|
|
| 351 |
|
if (month) { /* from date and time */ |
| 352 |
< |
int jd; |
| 341 |
< |
double sd, st; |
| 352 |
> |
double sd; |
| 353 |
|
|
| 354 |
< |
jd = jdate(month, day); /* Julian date */ |
| 355 |
< |
sd = sdec(jd); /* solar declination */ |
| 356 |
< |
if (tsolar) /* solar time */ |
| 357 |
< |
st = hour; |
| 358 |
< |
else |
| 359 |
< |
st = hour + stadj(jd); |
| 360 |
< |
|
| 361 |
< |
|
| 362 |
< |
if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) { |
| 363 |
< |
print_error_sky(); |
| 364 |
< |
exit(1); |
| 354 |
> |
st = hour; |
| 355 |
> |
if (year) { /* Michalsky algorithm? */ |
| 356 |
> |
double mjd = mjdate(year, month, day, hour); |
| 357 |
> |
if (tsolar) |
| 358 |
> |
sd = msdec(mjd, NULL); |
| 359 |
> |
else |
| 360 |
> |
sd = msdec(mjd, &st); |
| 361 |
> |
} else { |
| 362 |
> |
int jd = jdate(month, day); /* Julian date */ |
| 363 |
> |
sd = sdec(jd); /* solar declination */ |
| 364 |
> |
if (!tsolar) /* get solar time? */ |
| 365 |
> |
st = hour + stadj(jd); |
| 366 |
|
} |
| 367 |
< |
|
| 356 |
< |
|
| 367 |
> |
|
| 368 |
|
if(timeinterval) { |
| 369 |
|
|
| 370 |
|
if(timeinterval<0) { |
| 371 |
|
fprintf(stderr, "time interval negative\n"); |
| 372 |
|
exit(1); |
| 373 |
|
} |
| 374 |
< |
|
| 375 |
< |
if(fabs(solar_sunrise(month,day)-st)<timeinterval/60) { |
| 376 |
< |
|
| 377 |
< |
fprintf(stderr, "Solar position corrected at %d %d %.3f\n",month,day,hour); |
| 378 |
< |
st= (st+timeinterval/120+solar_sunrise(month,day))/2; |
| 374 |
> |
|
| 375 |
> |
if(fabs(solar_sunrise(month,day)-st)<=timeinterval/120) { |
| 376 |
> |
st= (st+timeinterval/120+solar_sunrise(month,day))/2; |
| 377 |
> |
if(suppress_warnings==0) |
| 378 |
> |
{ fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); } |
| 379 |
|
} |
| 380 |
|
|
| 381 |
< |
if(fabs(solar_sunset(month,day)-st)<timeinterval/60) { |
| 382 |
< |
fprintf(stderr, "Solar position corrected at %d %d %.3f\n",month,day,hour); |
| 383 |
< |
st= (st-timeinterval/120+solar_sunset(month,day))/2; |
| 381 |
> |
if(fabs(solar_sunset(month,day)-st)<timeinterval/120) { |
| 382 |
> |
st= (st-timeinterval/120+solar_sunset(month,day))/2; |
| 383 |
> |
if(suppress_warnings==0) |
| 384 |
> |
{ fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); } |
| 385 |
|
} |
| 386 |
+ |
|
| 387 |
+ |
if((st<solar_sunrise(month,day)-timeinterval/120) || (st>solar_sunset(month,day)+timeinterval/120)) { |
| 388 |
+ |
if(suppress_warnings==0) |
| 389 |
+ |
{ fprintf(stderr, "Warning: sun position too low, printing error sky at %d %d %.3f\n",month,day,hour); } |
| 390 |
+ |
altitude = salt(sd, st); |
| 391 |
+ |
azimuth = sazi(sd, st); |
| 392 |
+ |
print_error_sky(); |
| 393 |
+ |
exit(0); |
| 394 |
+ |
} |
| 395 |
|
} |
| 396 |
+ |
else |
| 397 |
|
|
| 398 |
+ |
if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) { |
| 399 |
+ |
if(suppress_warnings==0) |
| 400 |
+ |
{ fprintf(stderr, "Warning: sun altitude below zero at time step %i %i %.2f, printing error sky\n",month,day,hour); } |
| 401 |
+ |
altitude = salt(sd, st); |
| 402 |
+ |
azimuth = sazi(sd, st); |
| 403 |
+ |
print_error_sky(); |
| 404 |
+ |
exit(0); |
| 405 |
+ |
} |
| 406 |
|
|
| 407 |
|
altitude = salt(sd, st); |
| 408 |
|
azimuth = sazi(sd, st); |
| 414 |
|
|
| 415 |
|
|
| 416 |
|
|
| 387 |
– |
/* if loop for the -l option. W.Sprenger (01/2013) */ |
| 388 |
– |
/* |
| 389 |
– |
if (altitude*180/M_PI < sunaltitude_border) { |
| 390 |
– |
|
| 391 |
– |
if (suppress_warnings==0) { |
| 392 |
– |
fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border); |
| 393 |
– |
} |
| 394 |
– |
print_error_sky(); |
| 395 |
– |
exit(1); |
| 396 |
– |
} |
| 397 |
– |
*/ |
| 398 |
– |
|
| 417 |
|
|
| 418 |
|
if (!cloudy && altitude > 87.*M_PI/180.) { |
| 419 |
|
|
| 425 |
|
altitude = 87.*M_PI/180.; |
| 426 |
|
} |
| 427 |
|
|
| 428 |
+ |
|
| 429 |
+ |
|
| 430 |
|
sundir[0] = -sin(azimuth)*cos(altitude); |
| 431 |
|
sundir[1] = -cos(azimuth)*cos(altitude); |
| 432 |
|
sundir[2] = sin(altitude); |
| 434 |
|
|
| 435 |
|
/* calculation for the new functions */ |
| 436 |
|
sunzenith = 90 - altitude*180/M_PI; |
| 437 |
< |
|
| 418 |
< |
|
| 437 |
> |
|
| 438 |
|
|
| 439 |
|
/* compute the inputs for the calculation of the light distribution over the sky*/ |
| 440 |
|
if (input==0) /* P */ |
| 458 |
|
check_irradiances(); |
| 459 |
|
skybrightness = sky_brightness(); |
| 460 |
|
skyclearness = sky_clearness(); |
| 461 |
+ |
|
| 462 |
|
check_parametrization(); |
| 463 |
< |
|
| 463 |
> |
|
| 464 |
|
if (output==0 || output==2) |
| 465 |
|
{ |
| 466 |
|
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ |
| 484 |
|
if (altitude<=0) |
| 485 |
|
{ |
| 486 |
|
if (suppress_warnings==0) |
| 487 |
< |
fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n"); |
| 487 |
> |
fprintf(stderr, "Warning: sun altitude < 0, proceed with irradiance values of zero\n"); |
| 488 |
|
directirradiance = 0; |
| 489 |
|
diffuseirradiance = 0; |
| 490 |
|
} else { |
| 524 |
|
{ |
| 525 |
|
if (suppress_warnings==0) |
| 526 |
|
fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n"); |
| 507 |
– |
|
| 527 |
|
globalirradiance=erbs_s0*0.999; |
| 528 |
|
} |
| 529 |
|
|
| 536 |
|
directirradiance=globalirradiance-diffuseirradiance; |
| 537 |
|
|
| 538 |
|
printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance); |
| 539 |
< |
printf("# WARNING: the -E option is only recommended for a rough estimation!"); |
| 539 |
> |
printf("# WARNING: the -E option is only recommended for a rough estimation!\n"); |
| 540 |
|
|
| 541 |
|
directirradiance=directirradiance/sin(altitude); |
| 542 |
|
|
| 559 |
|
|
| 560 |
|
|
| 561 |
|
|
| 562 |
< |
else {fprintf(stderr,"error at the input arguments"); exit(1);} |
| 562 |
> |
else { fprintf(stderr,"error at the input arguments"); exit(1); } |
| 563 |
|
|
| 564 |
|
|
| 565 |
|
|
| 581 |
|
|
| 582 |
|
|
| 583 |
|
|
| 565 |
– |
|
| 566 |
– |
|
| 584 |
|
/*calculation of the modelled luminance */ |
| 585 |
|
for (j=0;j<145;j++) |
| 586 |
|
{ |
| 626 |
|
else |
| 627 |
|
solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180))); |
| 628 |
|
|
| 612 |
– |
|
| 629 |
|
|
| 630 |
|
|
| 631 |
< |
/* Compute the ground radiance */ |
| 632 |
< |
zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez); |
| 633 |
< |
zenithbr*=diffnormalization; |
| 631 |
> |
/* Compute the ground radiance */ |
| 632 |
> |
zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez); |
| 633 |
> |
zenithbr*=diffnormalization; |
| 634 |
|
|
| 635 |
< |
if (skyclearness==1) |
| 635 |
> |
if (skyclearness==1) |
| 636 |
|
normfactor = 0.777778; |
| 637 |
|
|
| 638 |
< |
if (skyclearness>=6) |
| 638 |
> |
if (skyclearness>=6) |
| 639 |
|
{ |
| 640 |
|
F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]); |
| 641 |
|
normfactor = normsc()/F2/M_PI; |
| 642 |
|
} |
| 643 |
|
|
| 644 |
< |
if ( (skyclearness>1) && (skyclearness<6) ) |
| 644 |
> |
if ( (skyclearness>1) && (skyclearness<6) ) |
| 645 |
|
{ |
| 646 |
|
S_INTER=1; |
| 647 |
|
F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude)); |
| 648 |
|
normfactor = normsc()/F2/M_PI; |
| 649 |
|
} |
| 650 |
|
|
| 651 |
< |
groundbr = zenithbr*normfactor; |
| 651 |
> |
groundbr = zenithbr*normfactor; |
| 652 |
|
|
| 653 |
< |
if (dosun&&(skyclearness>1)) |
| 653 |
> |
if (dosun&&(skyclearness>1)) |
| 654 |
|
groundbr += 6.8e-5/M_PI*solarradiance*sundir[2]; |
| 655 |
|
|
| 656 |
< |
groundbr *= gprefl; |
| 656 |
> |
groundbr *= gprefl; |
| 657 |
|
|
| 658 |
|
|
| 659 |
+ |
|
| 660 |
+ |
if(*(c_perez+1)>0) |
| 661 |
+ |
{ |
| 662 |
+ |
if(suppress_warnings==0) |
| 663 |
+ |
{ fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));} |
| 664 |
+ |
print_error_sky(); |
| 665 |
+ |
exit(0); |
| 666 |
+ |
} |
| 667 |
|
|
| 668 |
+ |
|
| 669 |
|
return; |
| 670 |
|
} |
| 671 |
|
|
| 672 |
|
|
| 673 |
|
|
| 674 |
|
|
| 650 |
– |
void print_error_sky() |
| 651 |
– |
{ |
| 652 |
– |
sundir[0] = -sin(azimuth)*cos(altitude); |
| 653 |
– |
sundir[1] = -cos(azimuth)*cos(altitude); |
| 654 |
– |
sundir[2] = sin(altitude); |
| 655 |
– |
|
| 656 |
– |
printf("\nvoid brightfunc skyfunc\n"); |
| 657 |
– |
printf("2 skybright perezlum.cal\n"); |
| 658 |
– |
printf("0\n"); |
| 659 |
– |
printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]); |
| 660 |
– |
} |
| 661 |
– |
|
| 675 |
|
|
| 663 |
– |
|
| 664 |
– |
|
| 665 |
– |
|
| 666 |
– |
|
| 667 |
– |
|
| 676 |
|
double solar_sunset(int month,int day) |
| 677 |
|
{ |
| 678 |
|
float W; |
| 682 |
|
} |
| 683 |
|
|
| 684 |
|
|
| 685 |
+ |
|
| 686 |
+ |
|
| 687 |
|
double solar_sunrise(int month,int day) |
| 688 |
|
{ |
| 689 |
|
float W; |
| 695 |
|
|
| 696 |
|
|
| 697 |
|
|
| 698 |
+ |
void printsky() |
| 699 |
+ |
{ |
| 700 |
+ |
|
| 701 |
+ |
printf("# Local solar time: %.2f\n", st); |
| 702 |
+ |
printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI); |
| 703 |
|
|
| 704 |
|
|
| 690 |
– |
|
| 691 |
– |
|
| 692 |
– |
|
| 693 |
– |
|
| 694 |
– |
|
| 695 |
– |
void printsky() /* print out sky */ |
| 696 |
– |
{ |
| 705 |
|
if (dosun&&(skyclearness>1)) |
| 706 |
|
{ |
| 707 |
|
printf("\nvoid light solar\n"); |
| 718 |
|
printf("0\n0\n"); |
| 719 |
|
printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle); |
| 720 |
|
} |
| 721 |
+ |
/* print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018 */ |
| 722 |
+ |
if (color_output==1 && skyclearness < 4.5 && skyclearness >1.065 ) |
| 723 |
+ |
{ |
| 724 |
+ |
fprintf(stderr, " warning: sky clearness(epsilon)= %f \n",skyclearness); |
| 725 |
+ |
fprintf(stderr, " warning: intermediate sky!! \n"); |
| 726 |
+ |
fprintf(stderr, " warning: color model for intermediate sky pending \n"); |
| 727 |
+ |
fprintf(stderr, " warning: no color output ! \n"); |
| 728 |
+ |
color_output=0; |
| 729 |
+ |
} |
| 730 |
+ |
if (color_output==1) |
| 731 |
+ |
{ |
| 732 |
+ |
printf("\nvoid colorfunc skyfunc\n"); |
| 733 |
+ |
printf("4 skybright_r skybright_g skybright_b perezlum_c.cal\n"); |
| 734 |
+ |
printf("0\n"); |
| 735 |
+ |
printf("22 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n", diffnormalization, groundbr, |
| 736 |
+ |
*(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4), |
| 737 |
+ |
sundir[0], sundir[1], sundir[2],skyclearness,locus[0],locus[1],locus[2],locus[3],locus[4],locus[5],locus[6],locus[7],locus[8],locus[9],locus[10]); |
| 738 |
+ |
}else{ |
| 739 |
+ |
printf("\nvoid brightfunc skyfunc\n"); |
| 740 |
+ |
printf("2 skybright perezlum.cal\n"); |
| 741 |
+ |
printf("0\n"); |
| 742 |
+ |
printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr, |
| 743 |
+ |
*(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4), |
| 744 |
+ |
sundir[0], sundir[1], sundir[2]); |
| 745 |
+ |
} |
| 746 |
|
|
| 747 |
+ |
} |
| 748 |
|
|
| 749 |
+ |
|
| 750 |
+ |
|
| 751 |
+ |
void print_error_sky() |
| 752 |
+ |
{ |
| 753 |
+ |
|
| 754 |
+ |
|
| 755 |
+ |
sundir[0] = -sin(azimuth)*cos(altitude); |
| 756 |
+ |
sundir[1] = -cos(azimuth)*cos(altitude); |
| 757 |
+ |
sundir[2] = sin(altitude); |
| 758 |
+ |
|
| 759 |
+ |
printf("# Local solar time: %.2f\n", st); |
| 760 |
+ |
printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI); |
| 761 |
+ |
|
| 762 |
|
printf("\nvoid brightfunc skyfunc\n"); |
| 763 |
|
printf("2 skybright perezlum.cal\n"); |
| 764 |
|
printf("0\n"); |
| 765 |
< |
printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr, |
| 719 |
< |
*(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4), |
| 720 |
< |
sundir[0], sundir[1], sundir[2]); |
| 721 |
< |
|
| 765 |
> |
printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]); |
| 766 |
|
} |
| 767 |
+ |
|
| 768 |
|
|
| 769 |
|
|
| 770 |
+ |
|
| 771 |
+ |
|
| 772 |
|
void printdefaults() /* print default values */ |
| 773 |
|
{ |
| 774 |
|
printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl); |
| 782 |
|
} |
| 783 |
|
|
| 784 |
|
|
| 785 |
< |
void userror(char* msg) /* print usage error and quit */ |
| 785 |
> |
|
| 786 |
> |
|
| 787 |
> |
void usage_error(char* msg) /* print usage error and quit */ |
| 788 |
|
{ |
| 789 |
|
if (msg != NULL) |
| 790 |
|
fprintf(stderr, "%s: Use error - %s\n\n", progname, msg); |
| 801 |
|
fprintf(stderr, " -E global-horizontal-irradiance (W/m^2)\n\n"); |
| 802 |
|
fprintf(stderr, " Output specification with option:\n"); |
| 803 |
|
fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n"); |
| 804 |
< |
fprintf(stderr, " gendaylit version 2.3 (2013/08/08) \n\n"); |
| 804 |
> |
fprintf(stderr, " gendaylit version 2.5 (2018/04/18) \n\n"); |
| 805 |
|
exit(1); |
| 806 |
|
} |
| 807 |
|
|
| 808 |
|
|
| 809 |
|
|
| 810 |
+ |
|
| 811 |
|
double normsc() /* compute normalization factor (E0*F2/L0) */ |
| 812 |
|
{ |
| 813 |
|
static double nfc[2][5] = { |
| 831 |
|
|
| 832 |
|
|
| 833 |
|
|
| 834 |
+ |
|
| 835 |
+ |
|
| 836 |
|
void printhead(int ac, char** av) /* print command header */ |
| 837 |
|
{ |
| 838 |
|
putchar('#'); |
| 846 |
|
|
| 847 |
|
|
| 848 |
|
|
| 849 |
+ |
|
| 850 |
+ |
|
| 851 |
|
/* Perez models */ |
| 852 |
|
|
| 853 |
|
/* Perez global horizontal luminous efficacy model */ |
| 919 |
|
|
| 920 |
|
|
| 921 |
|
|
| 868 |
– |
|
| 922 |
|
for (i=1; i<=category_total_number; i++) |
| 923 |
|
{ |
| 924 |
|
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) |
| 932 |
|
} |
| 933 |
|
|
| 934 |
|
|
| 935 |
+ |
|
| 936 |
+ |
|
| 937 |
|
/* global horizontal diffuse efficacy model, according to PEREZ */ |
| 938 |
|
double glob_h_diffuse_effi_PEREZ() |
| 939 |
|
{ |
| 941 |
|
double category_bounds[10], a[10], b[10], c[10], d[10]; |
| 942 |
|
int category_total_number, category_number, i; |
| 943 |
|
|
| 889 |
– |
|
| 890 |
– |
|
| 891 |
– |
|
| 944 |
|
check_parametrization(); |
| 945 |
|
|
| 946 |
|
|
| 947 |
|
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0) |
| 948 |
< |
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */ |
| 948 |
> |
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */ |
| 949 |
|
|
| 898 |
– |
|
| 899 |
– |
|
| 950 |
|
/* initialize category bounds (clearness index bounds) */ |
| 951 |
|
|
| 952 |
|
category_total_number = 8; |
| 1002 |
|
|
| 1003 |
|
|
| 1004 |
|
|
| 955 |
– |
|
| 1005 |
|
category_number = -1; |
| 1006 |
|
for (i=1; i<=category_total_number; i++) |
| 1007 |
|
{ |
| 1011 |
|
|
| 1012 |
|
if (category_number == -1) { |
| 1013 |
|
if (suppress_warnings==0) |
| 1014 |
< |
fprintf(stderr, "ERROR: Model parameters out of range, skyclearness = %lf \n", skyclearness); |
| 1014 |
> |
fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness); |
| 1015 |
|
print_error_sky(); |
| 1016 |
< |
exit(1); |
| 1016 |
> |
exit(0); |
| 1017 |
|
} |
| 1018 |
|
|
| 1019 |
|
|
| 1026 |
|
|
| 1027 |
|
|
| 1028 |
|
|
| 1029 |
+ |
|
| 1030 |
+ |
|
| 1031 |
+ |
|
| 1032 |
|
/* direct normal efficacy model, according to PEREZ */ |
| 1033 |
|
|
| 1034 |
|
double direct_n_effi_PEREZ() |
| 1039 |
|
int category_total_number, category_number, i; |
| 1040 |
|
|
| 1041 |
|
|
| 1042 |
< |
if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0) |
| 1043 |
< |
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n"); |
| 1042 |
> |
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0) |
| 1043 |
> |
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/ |
| 1044 |
|
|
| 1045 |
|
|
| 1046 |
|
/* initialize category bounds (clearness index bounds) */ |
| 1114 |
|
/*check the range of epsilon and delta indexes of the perez parametrization*/ |
| 1115 |
|
void check_parametrization() |
| 1116 |
|
{ |
| 1117 |
+ |
|
| 1118 |
|
if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) |
| 1119 |
|
{ |
| 1120 |
|
|
| 1121 |
|
/* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */ |
| 1122 |
+ |
|
| 1123 |
|
if (skyclearness<skyclearinf){ |
| 1124 |
< |
if (suppress_warnings==0) |
| 1125 |
< |
/* fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */ |
| 1124 |
> |
/* if (suppress_warnings==0) |
| 1125 |
> |
fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */ |
| 1126 |
|
skyclearness=skyclearinf; |
| 1127 |
|
} |
| 1128 |
|
if (skyclearness>skyclearsup){ |
| 1129 |
< |
if (suppress_warnings==0) |
| 1130 |
< |
/* fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */ |
| 1131 |
< |
skyclearness=skyclearsup-0.1; |
| 1129 |
> |
/* if (suppress_warnings==0) |
| 1130 |
> |
fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */ |
| 1131 |
> |
skyclearness=skyclearsup-0.001; |
| 1132 |
|
} |
| 1133 |
|
if (skybrightness<skybriginf){ |
| 1134 |
< |
if (suppress_warnings==0) |
| 1135 |
< |
/* fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */ |
| 1134 |
> |
/* if (suppress_warnings==0) |
| 1135 |
> |
fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */ |
| 1136 |
|
skybrightness=skybriginf; |
| 1137 |
|
} |
| 1138 |
|
if (skybrightness>skybrigsup){ |
| 1139 |
< |
if (suppress_warnings==0) |
| 1140 |
< |
/* fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */ |
| 1139 |
> |
/* if (suppress_warnings==0) |
| 1140 |
> |
fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */ |
| 1141 |
|
skybrightness=skybrigsup; |
| 1142 |
|
} |
| 1143 |
|
|
| 1146 |
|
} |
| 1147 |
|
|
| 1148 |
|
|
| 1149 |
+ |
|
| 1150 |
+ |
|
| 1151 |
+ |
|
| 1152 |
|
/* validity of the direct and diffuse components */ |
| 1153 |
|
void check_illuminances() |
| 1154 |
|
{ |
| 1155 |
|
if (directilluminance < 0) { |
| 1156 |
< |
fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n"); |
| 1156 |
> |
if(suppress_warnings==0) |
| 1157 |
> |
{ fprintf(stderr,"Warning: direct illuminance < 0. Using 0.0\n"); } |
| 1158 |
|
directilluminance = 0.0; |
| 1159 |
|
} |
| 1160 |
|
if (diffuseilluminance < 0) { |
| 1161 |
< |
fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n"); |
| 1161 |
> |
if(suppress_warnings==0) |
| 1162 |
> |
{ fprintf(stderr,"Warning: diffuse illuminance < 0. Using 0.0\n"); } |
| 1163 |
|
diffuseilluminance = 0.0; |
| 1164 |
|
} |
| 1165 |
< |
if (directilluminance > solar_constant_l*1000.0) { |
| 1166 |
< |
fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n"); |
| 1167 |
< |
exit(1); |
| 1165 |
> |
|
| 1166 |
> |
if (directilluminance+diffuseilluminance==0 && altitude > 0) { |
| 1167 |
> |
if(suppress_warnings==0) |
| 1168 |
> |
{ fprintf(stderr,"Warning: zero illuminance at sun altitude > 0, printing error sky\n"); } |
| 1169 |
> |
print_error_sky(); |
| 1170 |
> |
exit(0); |
| 1171 |
|
} |
| 1172 |
+ |
|
| 1173 |
+ |
if (directilluminance > solar_constant_l) { |
| 1174 |
+ |
if(suppress_warnings==0) |
| 1175 |
+ |
{ fprintf(stderr,"Warning: direct illuminance exceeds solar constant\n"); } |
| 1176 |
+ |
print_error_sky(); |
| 1177 |
+ |
exit(0); |
| 1178 |
+ |
} |
| 1179 |
|
} |
| 1180 |
|
|
| 1181 |
|
|
| 1182 |
|
void check_irradiances() |
| 1183 |
|
{ |
| 1184 |
|
if (directirradiance < 0) { |
| 1185 |
< |
fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n"); |
| 1185 |
> |
if(suppress_warnings==0) |
| 1186 |
> |
{ fprintf(stderr,"Warning: direct irradiance < 0. Using 0.0\n"); } |
| 1187 |
|
directirradiance = 0.0; |
| 1188 |
|
} |
| 1189 |
|
if (diffuseirradiance < 0) { |
| 1190 |
< |
fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n"); |
| 1190 |
> |
if(suppress_warnings==0) |
| 1191 |
> |
{ fprintf(stderr,"Warning: diffuse irradiance < 0. Using 0.0\n"); } |
| 1192 |
|
diffuseirradiance = 0.0; |
| 1193 |
|
} |
| 1194 |
+ |
|
| 1195 |
+ |
if (directirradiance+diffuseirradiance==0 && altitude > 0) { |
| 1196 |
+ |
if(suppress_warnings==0) |
| 1197 |
+ |
{ fprintf(stderr,"Warning: zero irradiance at sun altitude > 0, printing error sky\n"); } |
| 1198 |
+ |
print_error_sky(); |
| 1199 |
+ |
exit(0); |
| 1200 |
+ |
} |
| 1201 |
+ |
|
| 1202 |
|
if (directirradiance > solar_constant_e) { |
| 1203 |
< |
fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n"); |
| 1204 |
< |
exit(1); |
| 1203 |
> |
if(suppress_warnings==0) |
| 1204 |
> |
{ fprintf(stderr,"Warning: direct irradiance exceeds solar constant\n"); } |
| 1205 |
> |
print_error_sky(); |
| 1206 |
> |
exit(0); |
| 1207 |
|
} |
| 1208 |
|
} |
| 1209 |
|
|
| 1262 |
|
double test1=0.1, test2=0.1, d_eff; |
| 1263 |
|
int counter=0; |
| 1264 |
|
|
| 1265 |
< |
diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000); |
| 1266 |
< |
directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000); |
| 1265 |
> |
diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l); |
| 1266 |
> |
directirradiance = directilluminance*solar_constant_e/(solar_constant_l); |
| 1267 |
|
skyclearness = sky_clearness(); |
| 1268 |
|
skybrightness = sky_brightness(); |
| 1269 |
|
check_parametrization(); |
| 1291 |
|
skybrightness = sky_brightness(); |
| 1292 |
|
skyclearness = sky_clearness(); |
| 1293 |
|
check_parametrization(); |
| 1213 |
– |
|
| 1214 |
– |
/*fprintf(stderr,"skyclearness = %lf, skybrightness = %lf, directirradiance = %lf, diffuseirradiance = %lf\n",skyclearness, skybrightness, directirradiance, diffuseirradiance);*/ |
| 1294 |
|
|
| 1295 |
|
} |
| 1296 |
|
|
| 1327 |
|
|
| 1328 |
|
if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) |
| 1329 |
|
{ |
| 1330 |
< |
fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n"); |
| 1330 |
> |
fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n"); |
| 1331 |
|
exit(1); |
| 1332 |
|
} |
| 1333 |
|
|
| 1378 |
|
|
| 1379 |
|
if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) |
| 1380 |
|
{ |
| 1381 |
< |
fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n"); |
| 1381 |
> |
fprintf(stderr,"Error: epsilon out of range in function coeff_lum_perez!\n"); |
| 1382 |
|
exit(1); |
| 1383 |
|
} |
| 1384 |
|
|
| 1447 |
|
else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 ) |
| 1448 |
|
{ |
| 1449 |
|
printf("error in calculation of gamma (angle between point and sun"); |
| 1450 |
< |
exit(3); |
| 1450 |
> |
exit(1); |
| 1451 |
|
} |
| 1452 |
|
else |
| 1453 |
|
*gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)); |
| 1491 |
|
double m; |
| 1492 |
|
if (sunzenith>90) |
| 1493 |
|
{ |
| 1494 |
< |
fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n"); |
| 1495 |
< |
exit(1); |
| 1494 |
> |
if(suppress_warnings==0) |
| 1495 |
> |
{ fprintf(stderr, "Warning: air mass has reached the maximal value\n"); } |
| 1496 |
> |
sunzenith=90; |
| 1497 |
|
} |
| 1498 |
|
m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) ); |
| 1499 |
|
return(m); |