| 1 |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
|
| 3 |
#ifndef lint |
| 4 |
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
#endif |
| 6 |
|
| 7 |
/* |
| 8 |
* genblind2.c - make some curved or flat venetian blinds. |
| 9 |
* |
| 10 |
* Jean-Louis Scartezzini and Greg Ward |
| 11 |
* |
| 12 |
* parameters: |
| 13 |
* depth - depth of blinds |
| 14 |
* width - width of slats |
| 15 |
* height - height of blinds |
| 16 |
* nslats - number of slats |
| 17 |
* angle - blind incidence angle ( in degrees ) |
| 18 |
* rcurv - curvature radius of slats (up:>0;down:<0;flat:=0) |
| 19 |
*/ |
| 20 |
|
| 21 |
#include <stdio.h> |
| 22 |
#include <math.h> |
| 23 |
|
| 24 |
#define PI 3.14159265358979323846 |
| 25 |
#define DELTA 10. /* MINIMAL SUSTAINED ANGLE IN DEGREES */ |
| 26 |
|
| 27 |
double baseflat[4][3], baseblind[4][3][180]; |
| 28 |
double A[3],X[3]; |
| 29 |
char *material, *name; |
| 30 |
double height; |
| 31 |
int nslats, nsurf; |
| 32 |
|
| 33 |
#ifdef DCL_ATOF |
| 34 |
extern double atof(); |
| 35 |
#endif |
| 36 |
|
| 37 |
|
| 38 |
main(argc, argv) |
| 39 |
int argc; |
| 40 |
char *argv[]; |
| 41 |
{ |
| 42 |
double width, delem, depth, rcurv = 0.0, angle; |
| 43 |
double beta, gamma, theta, chi; |
| 44 |
int i, j, k, l; |
| 45 |
|
| 46 |
|
| 47 |
if (argc != 8 && argc != 10) |
| 48 |
goto userr; |
| 49 |
material = argv[1]; |
| 50 |
name = argv[2]; |
| 51 |
depth = atof(argv[3]); |
| 52 |
width = atof(argv[4]); |
| 53 |
height = atof(argv[5]); |
| 54 |
nslats = atoi(argv[6]); |
| 55 |
angle = atof(argv[7]); |
| 56 |
if (argc == 10) |
| 57 |
if (!strcmp(argv[8], "-r")) |
| 58 |
rcurv = atof(argv[9]); |
| 59 |
else if (!strcmp(argv[8], "+r")) |
| 60 |
rcurv = -atof(argv[9]); |
| 61 |
else |
| 62 |
goto userr; |
| 63 |
|
| 64 |
/* CURVED BLIND CALCULATION */ |
| 65 |
|
| 66 |
if (rcurv != 0) { |
| 67 |
|
| 68 |
/* BLINDS SUSTAINED ANGLE */ |
| 69 |
|
| 70 |
theta = 2*asin(depth/(2*fabs(rcurv))); |
| 71 |
|
| 72 |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
| 73 |
|
| 74 |
nsurf = (theta / ((PI/180.)*DELTA)); |
| 75 |
|
| 76 |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
| 77 |
|
| 78 |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
| 79 |
|
| 80 |
beta = (PI-theta)/2.; |
| 81 |
gamma = beta -((PI/180.)*angle); |
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
if (rcurv < 0) { |
| 86 |
A[0]=fabs(rcurv)*cos(gamma); |
| 87 |
A[0] *= -1; |
| 88 |
A[1]=0.; |
| 89 |
A[2]=fabs(rcurv)*sin(gamma); |
| 90 |
} |
| 91 |
if (rcurv > 0) { |
| 92 |
A[0]=fabs(rcurv)*cos(gamma+theta); |
| 93 |
A[1]=0.; |
| 94 |
A[2]=fabs(rcurv)*sin(gamma+theta); |
| 95 |
A[2] *= -1; |
| 96 |
} |
| 97 |
|
| 98 |
for (k=0; k < nsurf; k++) { |
| 99 |
if (rcurv < 0) { |
| 100 |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
| 101 |
} |
| 102 |
if (rcurv > 0) { |
| 103 |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
| 104 |
((180.-DELTA)/2.); |
| 105 |
} |
| 106 |
makeflat(width, delem, chi); |
| 107 |
if (rcurv < 0.) { |
| 108 |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
| 109 |
X[1]=0.; |
| 110 |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
| 111 |
} |
| 112 |
if (rcurv > 0.) { |
| 113 |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
| 114 |
X[1]=0.; |
| 115 |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
| 116 |
} |
| 117 |
|
| 118 |
for (i=0; i < 4; i++) { |
| 119 |
for (j=0; j < 3; j++) { |
| 120 |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
| 121 |
} |
| 122 |
} |
| 123 |
} |
| 124 |
} |
| 125 |
|
| 126 |
/* FLAT BLINDS CALCULATION */ |
| 127 |
|
| 128 |
if (rcurv == 0.) { |
| 129 |
|
| 130 |
nsurf=1; |
| 131 |
makeflat(width,depth,angle*(PI/180.)); |
| 132 |
for (i=0; i < 4; i++) { |
| 133 |
for (j=0; j < 3; j++) { |
| 134 |
baseblind[i][j][0] = baseflat[i][j]; |
| 135 |
} |
| 136 |
} |
| 137 |
} |
| 138 |
|
| 139 |
printhead(argc, argv); |
| 140 |
|
| 141 |
|
| 142 |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
| 143 |
|
| 144 |
for (l = 1; l <= nslats; l++) |
| 145 |
printslat(l); |
| 146 |
exit(0); |
| 147 |
userr: |
| 148 |
fprintf(stderr, |
| 149 |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
| 150 |
argv[0]); |
| 151 |
exit(1); |
| 152 |
} |
| 153 |
|
| 154 |
|
| 155 |
makeflat(w,d,a) |
| 156 |
double w, d, a; |
| 157 |
{ |
| 158 |
double h; |
| 159 |
|
| 160 |
h = d*sin(a); |
| 161 |
d *= cos(a); |
| 162 |
baseflat[0][0] = 0.0; |
| 163 |
baseflat[0][1] = 0.0; |
| 164 |
baseflat[0][2] = 0.0; |
| 165 |
baseflat[1][0] = 0.0; |
| 166 |
baseflat[1][1] = w; |
| 167 |
baseflat[1][2] = 0.0; |
| 168 |
baseflat[2][0] = d; |
| 169 |
baseflat[2][1] = w; |
| 170 |
baseflat[2][2] = h; |
| 171 |
baseflat[3][0] = d; |
| 172 |
baseflat[3][1] = 0.0; |
| 173 |
baseflat[3][2] = h; |
| 174 |
|
| 175 |
} |
| 176 |
|
| 177 |
|
| 178 |
printslat(n) /* print slat # n */ |
| 179 |
int n; |
| 180 |
{ |
| 181 |
register int i, k; |
| 182 |
|
| 183 |
for (k=0; k < nsurf; k++) { |
| 184 |
printf("\n%s polygon %s.%d.%d\n", material, name, n, k); |
| 185 |
printf("0\n0\n12\n"); |
| 186 |
for (i = 0; i < 4; i++) |
| 187 |
printf("\t%18.12g\t%18.12g\t%18.12g\n", |
| 188 |
baseblind[i][0][k], |
| 189 |
baseblind[i][1][k], |
| 190 |
baseblind[i][2][k] + height*(n-.5)/nslats); |
| 191 |
} |
| 192 |
} |
| 193 |
|
| 194 |
|
| 195 |
printhead(ac, av) /* print command header */ |
| 196 |
register int ac; |
| 197 |
register char **av; |
| 198 |
{ |
| 199 |
putchar('#'); |
| 200 |
while (ac--) { |
| 201 |
putchar(' '); |
| 202 |
fputs(*av++, stdout); |
| 203 |
} |
| 204 |
putchar('\n'); |
| 205 |
} |