| 1 |
– |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* genblind2.c - make some curved or flat venetian blinds. |
| 6 |
|
* |
| 16 |
|
*/ |
| 17 |
|
|
| 18 |
|
#include <stdio.h> |
| 19 |
+ |
#include <stdlib.h> |
| 20 |
|
#include <math.h> |
| 21 |
+ |
#include <string.h> |
| 22 |
|
|
| 23 |
< |
#define PI 3.141592653589793 |
| 24 |
< |
#define DELTA 5. /* MINIMAL SUSTAINED ANGLE IN DEGREES */ |
| 23 |
> |
#define PI 3.14159265358979323846 |
| 24 |
> |
#define DELTA 3. /* MINIMAL SUSTAINED ANGLE IN DEGREES */ |
| 25 |
|
|
| 26 |
|
double baseflat[4][3], baseblind[4][3][180]; |
| 27 |
|
double A[3],X[3]; |
| 30 |
|
int nslats, nsurf; |
| 31 |
|
|
| 32 |
|
|
| 33 |
< |
main(argc, argv) |
| 34 |
< |
int argc; |
| 35 |
< |
char *argv[]; |
| 37 |
< |
{ |
| 38 |
< |
double atof(), fabs(); |
| 39 |
< |
double width, delem, depth, rcurv = 0.0, angle; |
| 40 |
< |
double beta, gamma, theta, chi; |
| 41 |
< |
int i, j, k, l; |
| 33 |
> |
static void makeflat(double w, double d, double a); |
| 34 |
> |
static void printslat(int n); |
| 35 |
> |
static void printhead(register int ac, register char **av); |
| 36 |
|
|
| 37 |
|
|
| 38 |
< |
if (argc != 8 && argc != 10) |
| 39 |
< |
goto userr; |
| 40 |
< |
material = argv[1]; |
| 41 |
< |
name = argv[2]; |
| 42 |
< |
depth = atof(argv[3]); |
| 43 |
< |
width = atof(argv[4]); |
| 50 |
< |
height = atof(argv[5]); |
| 51 |
< |
nslats = atoi(argv[6]); |
| 52 |
< |
angle = atof(argv[7]); |
| 53 |
< |
if (argc == 10) |
| 54 |
< |
if (!strcmp(argv[8], "-r")) |
| 55 |
< |
rcurv = atof(argv[8]); |
| 56 |
< |
else if (!strcmp(argv[8], "+r")) |
| 57 |
< |
rcurv = -atof(argv[8]); |
| 58 |
< |
else |
| 59 |
< |
goto userr; |
| 60 |
< |
|
| 61 |
< |
/* CURVED BLIND CALCULATION */ |
| 62 |
< |
|
| 63 |
< |
if (rcurv != 0) { |
| 64 |
< |
|
| 65 |
< |
/* BLINDS SUSTAINED ANGLE */ |
| 66 |
< |
|
| 67 |
< |
theta = 2*asin(depth/(2*fabs(rcurv))); |
| 68 |
< |
|
| 69 |
< |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
| 70 |
< |
|
| 71 |
< |
nsurf = (theta / ((PI/180.)*DELTA)); |
| 72 |
< |
|
| 73 |
< |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
| 74 |
< |
|
| 75 |
< |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
| 76 |
< |
|
| 77 |
< |
beta = (PI-theta)/2.; |
| 78 |
< |
gamma = beta -((PI/180.)*angle); |
| 79 |
< |
|
| 80 |
< |
|
| 81 |
< |
|
| 82 |
< |
if (rcurv < 0) { |
| 83 |
< |
A[0]=fabs(rcurv)*cos(gamma); |
| 84 |
< |
A[0] *= -1; |
| 85 |
< |
A[1]=0.; |
| 86 |
< |
A[2]=fabs(rcurv)*sin(gamma); |
| 87 |
< |
} |
| 88 |
< |
if (rcurv > 0) { |
| 89 |
< |
A[0]=fabs(rcurv)*cos(gamma+theta); |
| 90 |
< |
A[1]=0.; |
| 91 |
< |
A[2]=fabs(rcurv)*sin(gamma+theta); |
| 92 |
< |
A[2] *= -1; |
| 93 |
< |
} |
| 94 |
< |
|
| 95 |
< |
for (k=0; k < nsurf; k++) { |
| 96 |
< |
if (rcurv < 0) { |
| 97 |
< |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
| 98 |
< |
} |
| 99 |
< |
if (rcurv > 0) { |
| 100 |
< |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
| 101 |
< |
((180.-DELTA)/2.); |
| 102 |
< |
} |
| 103 |
< |
makeflat(width, delem, chi); |
| 104 |
< |
if (rcurv < 0.) { |
| 105 |
< |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
| 106 |
< |
X[1]=0.; |
| 107 |
< |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
| 108 |
< |
} |
| 109 |
< |
if (rcurv > 0.) { |
| 110 |
< |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
| 111 |
< |
X[1]=0.; |
| 112 |
< |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
| 113 |
< |
} |
| 114 |
< |
|
| 115 |
< |
for (i=0; i < 4; i++) { |
| 116 |
< |
for (j=0; j < 3; j++) { |
| 117 |
< |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
| 118 |
< |
} |
| 119 |
< |
} |
| 120 |
< |
} |
| 121 |
< |
} |
| 122 |
< |
|
| 123 |
< |
/* FLAT BLINDS CALCULATION */ |
| 124 |
< |
|
| 125 |
< |
if (rcurv == 0.) { |
| 126 |
< |
|
| 127 |
< |
nsurf=1; |
| 128 |
< |
makeflat(width,depth,angle*(PI/180.)); |
| 129 |
< |
for (i=0; i < 4; i++) { |
| 130 |
< |
for (j=0; j < 3; j++) { |
| 131 |
< |
baseblind[i][j][0] = baseflat[i][j]; |
| 132 |
< |
} |
| 133 |
< |
} |
| 134 |
< |
} |
| 135 |
< |
|
| 136 |
< |
printhead(argc, argv); |
| 137 |
< |
|
| 138 |
< |
|
| 139 |
< |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
| 140 |
< |
|
| 141 |
< |
for (l = 1; l <= nslats; l++) |
| 142 |
< |
printslat(l); |
| 143 |
< |
exit(0); |
| 144 |
< |
userr: |
| 145 |
< |
fprintf(stderr, |
| 146 |
< |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
| 147 |
< |
argv[0]); |
| 148 |
< |
exit(1); |
| 149 |
< |
} |
| 150 |
< |
|
| 151 |
< |
|
| 152 |
< |
makeflat(w,d,a) |
| 153 |
< |
double w, d, a; |
| 38 |
> |
void |
| 39 |
> |
makeflat( |
| 40 |
> |
double w, |
| 41 |
> |
double d, |
| 42 |
> |
double a |
| 43 |
> |
) |
| 44 |
|
{ |
| 155 |
– |
double sin(), cos(); |
| 45 |
|
double h; |
| 46 |
|
|
| 47 |
|
h = d*sin(a); |
| 62 |
|
} |
| 63 |
|
|
| 64 |
|
|
| 65 |
< |
printslat(n) /* print slat # n */ |
| 66 |
< |
int n; |
| 65 |
> |
void |
| 66 |
> |
printslat( /* print slat # n */ |
| 67 |
> |
int n |
| 68 |
> |
) |
| 69 |
|
{ |
| 70 |
|
register int i, k; |
| 71 |
|
|
| 81 |
|
} |
| 82 |
|
|
| 83 |
|
|
| 84 |
< |
printhead(ac, av) /* print command header */ |
| 85 |
< |
register int ac; |
| 86 |
< |
register char **av; |
| 84 |
> |
void |
| 85 |
> |
printhead( /* print command header */ |
| 86 |
> |
register int ac, |
| 87 |
> |
register char **av |
| 88 |
> |
) |
| 89 |
|
{ |
| 90 |
|
putchar('#'); |
| 91 |
|
while (ac--) { |
| 94 |
|
} |
| 95 |
|
putchar('\n'); |
| 96 |
|
} |
| 97 |
+ |
|
| 98 |
+ |
|
| 99 |
+ |
int |
| 100 |
+ |
main( |
| 101 |
+ |
int argc, |
| 102 |
+ |
char *argv[] |
| 103 |
+ |
) |
| 104 |
+ |
{ |
| 105 |
+ |
double width, delem, depth, rcurv = 0.0, mydelta, angle; |
| 106 |
+ |
double beta, gamma, theta, chi = 0; |
| 107 |
+ |
int i, j, k, l; |
| 108 |
+ |
|
| 109 |
+ |
|
| 110 |
+ |
if (argc != 8 && argc != 10) |
| 111 |
+ |
goto userr; |
| 112 |
+ |
material = argv[1]; |
| 113 |
+ |
name = argv[2]; |
| 114 |
+ |
depth = atof(argv[3]); |
| 115 |
+ |
width = atof(argv[4]); |
| 116 |
+ |
height = atof(argv[5]); |
| 117 |
+ |
nslats = atoi(argv[6]); |
| 118 |
+ |
angle = atof(argv[7]); |
| 119 |
+ |
if (argc == 10) { |
| 120 |
+ |
if (!strcmp(argv[8], "-r")) |
| 121 |
+ |
rcurv = atof(argv[9]); |
| 122 |
+ |
else if (!strcmp(argv[8], "+r")) |
| 123 |
+ |
rcurv = -atof(argv[9]); |
| 124 |
+ |
else |
| 125 |
+ |
goto userr; |
| 126 |
+ |
} |
| 127 |
+ |
/* CURVED BLIND CALCULATION */ |
| 128 |
+ |
|
| 129 |
+ |
if (rcurv != 0.) { |
| 130 |
+ |
|
| 131 |
+ |
/* BLINDS SUSTAINED ANGLE */ |
| 132 |
+ |
|
| 133 |
+ |
theta = 2.*asin(depth/(2.*fabs(rcurv))); |
| 134 |
+ |
|
| 135 |
+ |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
| 136 |
+ |
|
| 137 |
+ |
nsurf = (int)(theta / ((PI/180.)*DELTA) + 0.99999); |
| 138 |
+ |
|
| 139 |
+ |
mydelta = (180./PI) * theta / nsurf; |
| 140 |
+ |
|
| 141 |
+ |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
| 142 |
+ |
|
| 143 |
+ |
delem = 2.*fabs(rcurv)*sin((PI/180.)*(mydelta/2.)); |
| 144 |
+ |
|
| 145 |
+ |
beta = (PI-theta)/2.; |
| 146 |
+ |
gamma = beta -((PI/180.)*angle); |
| 147 |
+ |
|
| 148 |
+ |
|
| 149 |
+ |
|
| 150 |
+ |
if (rcurv < 0) { |
| 151 |
+ |
A[0]=fabs(rcurv)*cos(gamma); |
| 152 |
+ |
A[0] *= -1.; |
| 153 |
+ |
A[1]=0.; |
| 154 |
+ |
A[2]=fabs(rcurv)*sin(gamma); |
| 155 |
+ |
} |
| 156 |
+ |
if (rcurv > 0) { |
| 157 |
+ |
A[0]=fabs(rcurv)*cos(gamma+theta); |
| 158 |
+ |
A[1]=0.; |
| 159 |
+ |
A[2]=fabs(rcurv)*sin(gamma+theta); |
| 160 |
+ |
A[2] *= -1.; |
| 161 |
+ |
} |
| 162 |
+ |
|
| 163 |
+ |
for (k=0; k < nsurf; k++) { |
| 164 |
+ |
if (rcurv < 0) { |
| 165 |
+ |
chi=(PI/180.)*((180.-mydelta)/2.) - (gamma+(k*(PI/180.)*mydelta)); |
| 166 |
+ |
} |
| 167 |
+ |
if (rcurv > 0) { |
| 168 |
+ |
chi=(PI-(gamma+theta)+(k*(PI/180.)*mydelta))-(PI/180.)* |
| 169 |
+ |
((180.-mydelta)/2.); |
| 170 |
+ |
} |
| 171 |
+ |
makeflat(width, delem, chi); |
| 172 |
+ |
if (rcurv < 0.) { |
| 173 |
+ |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*mydelta))-A[0]; |
| 174 |
+ |
X[1]=0.; |
| 175 |
+ |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*mydelta))-A[2]; |
| 176 |
+ |
} |
| 177 |
+ |
if (rcurv > 0.) { |
| 178 |
+ |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*mydelta))-A[0]; |
| 179 |
+ |
X[1]=0.; |
| 180 |
+ |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*mydelta))-A[2]; |
| 181 |
+ |
} |
| 182 |
+ |
|
| 183 |
+ |
for (i=0; i < 4; i++) { |
| 184 |
+ |
for (j=0; j < 3; j++) { |
| 185 |
+ |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
| 186 |
+ |
} |
| 187 |
+ |
} |
| 188 |
+ |
} |
| 189 |
+ |
} |
| 190 |
+ |
|
| 191 |
+ |
/* FLAT BLINDS CALCULATION */ |
| 192 |
+ |
|
| 193 |
+ |
else { |
| 194 |
+ |
|
| 195 |
+ |
nsurf=1; |
| 196 |
+ |
makeflat(width,depth,angle*(PI/180.)); |
| 197 |
+ |
for (i=0; i < 4; i++) { |
| 198 |
+ |
for (j=0; j < 3; j++) { |
| 199 |
+ |
baseblind[i][j][0] = baseflat[i][j]; |
| 200 |
+ |
} |
| 201 |
+ |
} |
| 202 |
+ |
} |
| 203 |
+ |
|
| 204 |
+ |
printhead(argc, argv); |
| 205 |
+ |
|
| 206 |
+ |
|
| 207 |
+ |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
| 208 |
+ |
|
| 209 |
+ |
for (l = 1; l <= nslats; l++) |
| 210 |
+ |
printslat(l); |
| 211 |
+ |
exit(0); |
| 212 |
+ |
userr: |
| 213 |
+ |
fprintf(stderr, |
| 214 |
+ |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
| 215 |
+ |
argv[0]); |
| 216 |
+ |
exit(1); |
| 217 |
+ |
} |
| 218 |
+ |
|
| 219 |
+ |
|
| 220 |
+ |
|