| 1 | 
#ifndef lint | 
| 2 | 
static const char       RCSid[] = "$Id: vect.c,v 1.3 2003/02/28 20:11:30 greg Exp $"; | 
| 3 | 
#endif | 
| 4 | 
#include <math.h> | 
| 5 | 
#include <string.h> | 
| 6 | 
#include "vect3ds.h" | 
| 7 | 
 | 
| 8 | 
#ifndef M_PI | 
| 9 | 
#define M_PI    3.14159265358979323846 | 
| 10 | 
#endif | 
| 11 | 
#define PI      ((double)M_PI) | 
| 12 | 
 | 
| 13 | 
#define EPSILON 1e-6 | 
| 14 | 
 | 
| 15 | 
void   adjoint (Matrix mat); | 
| 16 | 
double det4x4 (Matrix mat); | 
| 17 | 
double det3x3 (double a1, double a2, double a3, double b1, double b2, | 
| 18 | 
               double b3, double c1, double c2, double c3); | 
| 19 | 
double det2x2 (double a, double b, double c, double d); | 
| 20 | 
 | 
| 21 | 
 | 
| 22 | 
void vect_init (Vector v, float  x, float  y, float  z) | 
| 23 | 
{ | 
| 24 | 
    v[X] = x; | 
| 25 | 
    v[Y] = y; | 
| 26 | 
    v[Z] = z; | 
| 27 | 
} | 
| 28 | 
 | 
| 29 | 
 | 
| 30 | 
void vect_copy (Vector v1, Vector v2) | 
| 31 | 
{ | 
| 32 | 
    v1[X] = v2[X]; | 
| 33 | 
    v1[Y] = v2[Y]; | 
| 34 | 
    v1[Z] = v2[Z]; | 
| 35 | 
} | 
| 36 | 
 | 
| 37 | 
 | 
| 38 | 
int vect_equal (Vector v1, Vector v2) | 
| 39 | 
{ | 
| 40 | 
    if (v1[X] == v2[X] && v1[Y] == v2[Y] && v1[Z] == v2[Z]) | 
| 41 | 
        return 1; | 
| 42 | 
    else | 
| 43 | 
        return 0; | 
| 44 | 
} | 
| 45 | 
 | 
| 46 | 
 | 
| 47 | 
void vect_add (Vector v1, Vector v2, Vector v3) | 
| 48 | 
{ | 
| 49 | 
    v1[X] = v2[X] + v3[X]; | 
| 50 | 
    v1[Y] = v2[Y] + v3[Y]; | 
| 51 | 
    v1[Z] = v2[Z] + v3[Z]; | 
| 52 | 
} | 
| 53 | 
 | 
| 54 | 
 | 
| 55 | 
void vect_sub (Vector v1, Vector v2, Vector v3) | 
| 56 | 
{ | 
| 57 | 
    v1[X] = v2[X] - v3[X]; | 
| 58 | 
    v1[Y] = v2[Y] - v3[Y]; | 
| 59 | 
    v1[Z] = v2[Z] - v3[Z]; | 
| 60 | 
} | 
| 61 | 
 | 
| 62 | 
 | 
| 63 | 
void vect_scale (Vector v1, Vector v2, float  k) | 
| 64 | 
{ | 
| 65 | 
    v1[X] = k * v2[X]; | 
| 66 | 
    v1[Y] = k * v2[Y]; | 
| 67 | 
    v1[Z] = k * v2[Z]; | 
| 68 | 
} | 
| 69 | 
 | 
| 70 | 
 | 
| 71 | 
float vect_mag (Vector v) | 
| 72 | 
{ | 
| 73 | 
    float mag = sqrt(v[X]*v[X] + v[Y]*v[Y] + v[Z]*v[Z]); | 
| 74 | 
 | 
| 75 | 
    return mag; | 
| 76 | 
} | 
| 77 | 
 | 
| 78 | 
 | 
| 79 | 
void vect_normalize (Vector v) | 
| 80 | 
{ | 
| 81 | 
    float mag = vect_mag (v); | 
| 82 | 
 | 
| 83 | 
    if (mag > 0.0) | 
| 84 | 
        vect_scale (v, v, 1.0/mag); | 
| 85 | 
} | 
| 86 | 
 | 
| 87 | 
 | 
| 88 | 
float vect_dot (Vector v1, Vector v2) | 
| 89 | 
{ | 
| 90 | 
    return (v1[X]*v2[X] + v1[Y]*v2[Y] + v1[Z]*v2[Z]); | 
| 91 | 
} | 
| 92 | 
 | 
| 93 | 
 | 
| 94 | 
void vect_cross (Vector v1, Vector v2, Vector v3) | 
| 95 | 
{ | 
| 96 | 
    v1[X] = (v2[Y] * v3[Z]) - (v2[Z] * v3[Y]); | 
| 97 | 
    v1[Y] = (v2[Z] * v3[X]) - (v2[X] * v3[Z]); | 
| 98 | 
    v1[Z] = (v2[X] * v3[Y]) - (v2[Y] * v3[X]); | 
| 99 | 
} | 
| 100 | 
 | 
| 101 | 
void vect_min (Vector v1, Vector v2, Vector v3) | 
| 102 | 
{ | 
| 103 | 
    v1[X] = (v2[X] < v3[X]) ? v2[X] : v3[X]; | 
| 104 | 
    v1[Y] = (v2[Y] < v3[Y]) ? v2[Y] : v3[Y]; | 
| 105 | 
    v1[Z] = (v2[Z] < v3[Z]) ? v2[Z] : v3[Z]; | 
| 106 | 
} | 
| 107 | 
 | 
| 108 | 
 | 
| 109 | 
void vect_max (Vector v1, Vector v2, Vector v3) | 
| 110 | 
{ | 
| 111 | 
    v1[X] = (v2[X] > v3[X]) ? v2[X] : v3[X]; | 
| 112 | 
    v1[Y] = (v2[Y] > v3[Y]) ? v2[Y] : v3[Y]; | 
| 113 | 
    v1[Z] = (v2[Z] > v3[Z]) ? v2[Z] : v3[Z]; | 
| 114 | 
} | 
| 115 | 
 | 
| 116 | 
 | 
| 117 | 
/* Return the angle between two vectors */ | 
| 118 | 
float vect_angle (Vector v1, Vector v2) | 
| 119 | 
{ | 
| 120 | 
    float  mag1, mag2, angle, cos_theta; | 
| 121 | 
 | 
| 122 | 
    mag1 = vect_mag(v1); | 
| 123 | 
    mag2 = vect_mag(v2); | 
| 124 | 
 | 
| 125 | 
    if (mag1 * mag2 == 0.0) | 
| 126 | 
        angle = 0.0; | 
| 127 | 
    else { | 
| 128 | 
        cos_theta = vect_dot(v1,v2) / (mag1 * mag2); | 
| 129 | 
 | 
| 130 | 
        if (cos_theta <= -1.0) | 
| 131 | 
            angle = 180.0; | 
| 132 | 
        else if (cos_theta >= +1.0) | 
| 133 | 
            angle = 0.0; | 
| 134 | 
        else | 
| 135 | 
            angle = (180.0/PI) * acos(cos_theta); | 
| 136 | 
    } | 
| 137 | 
 | 
| 138 | 
    return angle; | 
| 139 | 
} | 
| 140 | 
 | 
| 141 | 
 | 
| 142 | 
void vect_print (FILE *f, Vector v, int dec, char sep) | 
| 143 | 
{ | 
| 144 | 
    char fstr[] = "%.4f, %.4f, %.4f"; | 
| 145 | 
 | 
| 146 | 
    if (dec < 0) dec = 0; | 
| 147 | 
    if (dec > 9) dec = 9; | 
| 148 | 
 | 
| 149 | 
    fstr[2]  = '0' + dec; | 
| 150 | 
    fstr[8]  = '0' + dec; | 
| 151 | 
    fstr[14] = '0' + dec; | 
| 152 | 
 | 
| 153 | 
    fstr[4]  = sep; | 
| 154 | 
    fstr[10] = sep; | 
| 155 | 
 | 
| 156 | 
    fprintf (f, fstr, v[X], v[Y], v[Z]); | 
| 157 | 
} | 
| 158 | 
 | 
| 159 | 
 | 
| 160 | 
/* Rotate a vector about the X, Y or Z axis */ | 
| 161 | 
void vect_rotate (Vector v1, Vector v2, int axis, float angle) | 
| 162 | 
{ | 
| 163 | 
    float  cosa, sina; | 
| 164 | 
 | 
| 165 | 
    cosa = cos ((PI/180.0) * angle); | 
| 166 | 
    sina = sin ((PI/180.0) * angle); | 
| 167 | 
 | 
| 168 | 
    switch (axis) { | 
| 169 | 
        case X: | 
| 170 | 
            v1[X] =  v2[X]; | 
| 171 | 
            v1[Y] =  v2[Y] * cosa + v2[Z] * sina; | 
| 172 | 
            v1[Z] =  v2[Z] * cosa - v2[Y] * sina; | 
| 173 | 
            break; | 
| 174 | 
 | 
| 175 | 
        case Y: | 
| 176 | 
            v1[X] = v2[X] * cosa - v2[Z] * sina; | 
| 177 | 
            v1[Y] = v2[Y]; | 
| 178 | 
            v1[Z] = v2[Z] * cosa + v2[X] * sina; | 
| 179 | 
            break; | 
| 180 | 
 | 
| 181 | 
        case Z: | 
| 182 | 
            v1[X] = v2[X] * cosa + v2[Y] * sina; | 
| 183 | 
            v1[Y] = v2[Y] * cosa - v2[X] * sina; | 
| 184 | 
            v1[Z] = v2[Z]; | 
| 185 | 
            break; | 
| 186 | 
    } | 
| 187 | 
} | 
| 188 | 
 | 
| 189 | 
 | 
| 190 | 
/* Rotate a vector about a specific axis */ | 
| 191 | 
void vect_axis_rotate (Vector v1, Vector v2, Vector axis, float angle) | 
| 192 | 
{ | 
| 193 | 
    float  cosa, sina; | 
| 194 | 
    Matrix mat; | 
| 195 | 
 | 
| 196 | 
    cosa = cos ((PI/180.0) * angle); | 
| 197 | 
    sina = sin ((PI/180.0) * angle); | 
| 198 | 
 | 
| 199 | 
    mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa); | 
| 200 | 
    mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina); | 
| 201 | 
    mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina); | 
| 202 | 
    mat[0][3] = 0.0; | 
| 203 | 
 | 
| 204 | 
    mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina); | 
| 205 | 
    mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa); | 
| 206 | 
    mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina); | 
| 207 | 
    mat[1][3] = 0.0; | 
| 208 | 
 | 
| 209 | 
    mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina); | 
| 210 | 
    mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina); | 
| 211 | 
    mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa); | 
| 212 | 
    mat[2][3] = 0.0; | 
| 213 | 
 | 
| 214 | 
    mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0; | 
| 215 | 
 | 
| 216 | 
    vect_transform (v1, v2, mat); | 
| 217 | 
} | 
| 218 | 
 | 
| 219 | 
 | 
| 220 | 
/* Transform the given vector */ | 
| 221 | 
void vect_transform (Vector v1, Vector v2, Matrix mat) | 
| 222 | 
{ | 
| 223 | 
    Vector tmp; | 
| 224 | 
 | 
| 225 | 
    tmp[X] = (v2[X] * mat[0][0]) + (v2[Y] * mat[1][0]) + (v2[Z] * mat[2][0]) + mat[3][0]; | 
| 226 | 
    tmp[Y] = (v2[X] * mat[0][1]) + (v2[Y] * mat[1][1]) + (v2[Z] * mat[2][1]) + mat[3][1]; | 
| 227 | 
    tmp[Z] = (v2[X] * mat[0][2]) + (v2[Y] * mat[1][2]) + (v2[Z] * mat[2][2]) + mat[3][2]; | 
| 228 | 
 | 
| 229 | 
    vect_copy (v1, tmp); | 
| 230 | 
} | 
| 231 | 
 | 
| 232 | 
 | 
| 233 | 
/* Create an identity matrix */ | 
| 234 | 
void mat_identity (Matrix mat) | 
| 235 | 
{ | 
| 236 | 
    int i, j; | 
| 237 | 
 | 
| 238 | 
    for (i = 0; i < 4; i++) | 
| 239 | 
        for (j = 0; j < 4; j++) | 
| 240 | 
            mat[i][j] = 0.0; | 
| 241 | 
 | 
| 242 | 
    for (i = 0; i < 4; i++) | 
| 243 | 
        mat[i][i] = 1.0; | 
| 244 | 
} | 
| 245 | 
 | 
| 246 | 
 | 
| 247 | 
void mat_copy (Matrix mat1, Matrix mat2) | 
| 248 | 
{ | 
| 249 | 
    int i, j; | 
| 250 | 
 | 
| 251 | 
    for (i = 0; i < 4; i++) | 
| 252 | 
        for (j = 0; j < 4; j++) | 
| 253 | 
            mat1[i][j] = mat2[i][j]; | 
| 254 | 
} | 
| 255 | 
 | 
| 256 | 
 | 
| 257 | 
/* Rotate a matrix about the X, Y or Z axis */ | 
| 258 | 
void mat_rotate (Matrix mat1, Matrix mat2, int axis, float angle) | 
| 259 | 
{ | 
| 260 | 
    Matrix mat; | 
| 261 | 
    float  cosa, sina; | 
| 262 | 
 | 
| 263 | 
    cosa = cos ((PI/180.0) * angle); | 
| 264 | 
    sina = sin ((PI/180.0) * angle); | 
| 265 | 
 | 
| 266 | 
    mat_identity (mat); | 
| 267 | 
 | 
| 268 | 
    switch (axis) { | 
| 269 | 
        case X: | 
| 270 | 
            mat[1][1] = cosa; | 
| 271 | 
            mat[1][2] = sina; | 
| 272 | 
            mat[2][1] = -sina; | 
| 273 | 
            mat[2][2] = cosa; | 
| 274 | 
            break; | 
| 275 | 
 | 
| 276 | 
        case Y: | 
| 277 | 
            mat[0][0] = cosa; | 
| 278 | 
            mat[0][2] = -sina; | 
| 279 | 
            mat[2][0] = sina; | 
| 280 | 
            mat[2][2] = cosa; | 
| 281 | 
            break; | 
| 282 | 
 | 
| 283 | 
        case Z: | 
| 284 | 
            mat[0][0] = cosa; | 
| 285 | 
            mat[0][1] = sina; | 
| 286 | 
            mat[1][0] = -sina; | 
| 287 | 
            mat[1][1] = cosa; | 
| 288 | 
            break; | 
| 289 | 
    } | 
| 290 | 
 | 
| 291 | 
    mat_mult (mat1, mat2, mat); | 
| 292 | 
} | 
| 293 | 
 | 
| 294 | 
 | 
| 295 | 
void mat_axis_rotate (Matrix mat1, Matrix mat2, Vector axis, float angle) | 
| 296 | 
{ | 
| 297 | 
    float  cosa, sina; | 
| 298 | 
    Matrix mat; | 
| 299 | 
 | 
| 300 | 
    cosa = cos ((PI/180.0) * angle); | 
| 301 | 
    sina = sin ((PI/180.0) * angle); | 
| 302 | 
 | 
| 303 | 
    mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa); | 
| 304 | 
    mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina); | 
| 305 | 
    mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina); | 
| 306 | 
    mat[0][3] = 0.0; | 
| 307 | 
 | 
| 308 | 
    mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina); | 
| 309 | 
    mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa); | 
| 310 | 
    mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina); | 
| 311 | 
    mat[1][3] = 0.0; | 
| 312 | 
 | 
| 313 | 
    mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina); | 
| 314 | 
    mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina); | 
| 315 | 
    mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa); | 
| 316 | 
    mat[2][3] = 0.0; | 
| 317 | 
 | 
| 318 | 
    mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0; | 
| 319 | 
 | 
| 320 | 
    mat_mult (mat1, mat2, mat); | 
| 321 | 
} | 
| 322 | 
 | 
| 323 | 
 | 
| 324 | 
/*  mat1 <-- mat2 * mat3 */ | 
| 325 | 
void mat_mult (Matrix mat1, Matrix mat2, Matrix mat3) | 
| 326 | 
{ | 
| 327 | 
    float sum; | 
| 328 | 
    int   i, j, k; | 
| 329 | 
    Matrix result; | 
| 330 | 
 | 
| 331 | 
    for (i = 0; i < 4; i++) { | 
| 332 | 
        for (j = 0; j < 4; j++) { | 
| 333 | 
            sum = 0.0; | 
| 334 | 
 | 
| 335 | 
            for (k = 0; k < 4; k++) | 
| 336 | 
                sum = sum + mat2[i][k] * mat3[k][j]; | 
| 337 | 
 | 
| 338 | 
            result[i][j] = sum; | 
| 339 | 
        } | 
| 340 | 
    } | 
| 341 | 
 | 
| 342 | 
    for (i = 0; i < 4; i++) | 
| 343 | 
        for (j = 0; j < 4; j++) | 
| 344 | 
            mat1[i][j] = result[i][j]; | 
| 345 | 
} | 
| 346 | 
 | 
| 347 | 
 | 
| 348 | 
/* | 
| 349 | 
   Decodes a 3x4 transformation matrix into separate scale, rotation, | 
| 350 | 
   translation, and shear vectors. Based on a program by Spencer W. | 
| 351 | 
   Thomas (Graphics Gems II) | 
| 352 | 
*/ | 
| 353 | 
void mat_decode (Matrix mat, Vector scale,  Vector shear, Vector rotate, | 
| 354 | 
                Vector transl) | 
| 355 | 
{ | 
| 356 | 
    int i; | 
| 357 | 
    Vector row[3], temp; | 
| 358 | 
 | 
| 359 | 
    for (i = 0; i < 3; i++) | 
| 360 | 
        transl[i] = mat[3][i]; | 
| 361 | 
 | 
| 362 | 
    for (i = 0; i < 3; i++) { | 
| 363 | 
        row[i][X] = mat[i][0]; | 
| 364 | 
        row[i][Y] = mat[i][1]; | 
| 365 | 
        row[i][Z] = mat[i][2]; | 
| 366 | 
    } | 
| 367 | 
 | 
| 368 | 
    scale[X] = vect_mag (row[0]); | 
| 369 | 
    vect_normalize (row[0]); | 
| 370 | 
 | 
| 371 | 
    shear[X] = vect_dot (row[0], row[1]); | 
| 372 | 
    row[1][X] = row[1][X] - shear[X]*row[0][X]; | 
| 373 | 
    row[1][Y] = row[1][Y] - shear[X]*row[0][Y]; | 
| 374 | 
    row[1][Z] = row[1][Z] - shear[X]*row[0][Z]; | 
| 375 | 
 | 
| 376 | 
    scale[Y] = vect_mag (row[1]); | 
| 377 | 
    vect_normalize (row[1]); | 
| 378 | 
 | 
| 379 | 
    if (scale[Y] != 0.0) | 
| 380 | 
        shear[X] /= scale[Y]; | 
| 381 | 
 | 
| 382 | 
    shear[Y] = vect_dot (row[0], row[2]); | 
| 383 | 
    row[2][X] = row[2][X] - shear[Y]*row[0][X]; | 
| 384 | 
    row[2][Y] = row[2][Y] - shear[Y]*row[0][Y]; | 
| 385 | 
    row[2][Z] = row[2][Z] - shear[Y]*row[0][Z]; | 
| 386 | 
 | 
| 387 | 
    shear[Z] = vect_dot (row[1], row[2]); | 
| 388 | 
    row[2][X] = row[2][X] - shear[Z]*row[1][X]; | 
| 389 | 
    row[2][Y] = row[2][Y] - shear[Z]*row[1][Y]; | 
| 390 | 
    row[2][Z] = row[2][Z] - shear[Z]*row[1][Z]; | 
| 391 | 
 | 
| 392 | 
    scale[Z] = vect_mag (row[2]); | 
| 393 | 
    vect_normalize (row[2]); | 
| 394 | 
 | 
| 395 | 
    if (scale[Z] != 0.0) { | 
| 396 | 
        shear[Y] /= scale[Z]; | 
| 397 | 
        shear[Z] /= scale[Z]; | 
| 398 | 
    } | 
| 399 | 
 | 
| 400 | 
    vect_cross (temp, row[1], row[2]); | 
| 401 | 
    if (vect_dot (row[0], temp) < 0.0) { | 
| 402 | 
        for (i = 0; i < 3; i++) { | 
| 403 | 
            scale[i]  *= -1.0; | 
| 404 | 
            row[i][X] *= -1.0; | 
| 405 | 
            row[i][Y] *= -1.0; | 
| 406 | 
            row[i][Z] *= -1.0; | 
| 407 | 
        } | 
| 408 | 
    } | 
| 409 | 
 | 
| 410 | 
    if (row[0][Z] < -1.0) row[0][Z] = -1.0; | 
| 411 | 
    if (row[0][Z] > +1.0) row[0][Z] = +1.0; | 
| 412 | 
 | 
| 413 | 
    rotate[Y] = asin(-row[0][Z]); | 
| 414 | 
 | 
| 415 | 
    if (fabs(cos(rotate[Y])) > EPSILON) { | 
| 416 | 
        rotate[X] = atan2 (row[1][Z], row[2][Z]); | 
| 417 | 
        rotate[Z] = atan2 (row[0][Y], row[0][X]); | 
| 418 | 
    } | 
| 419 | 
    else { | 
| 420 | 
        rotate[X] = atan2 (row[1][X], row[1][Y]); | 
| 421 | 
        rotate[Z] = 0.0; | 
| 422 | 
    } | 
| 423 | 
 | 
| 424 | 
    /* Convert the rotations to degrees */ | 
| 425 | 
    rotate[X] = (180.0/PI)*rotate[X]; | 
| 426 | 
    rotate[Y] = (180.0/PI)*rotate[Y]; | 
| 427 | 
    rotate[Z] = (180.0/PI)*rotate[Z]; | 
| 428 | 
} | 
| 429 | 
 | 
| 430 | 
 | 
| 431 | 
/* Matrix inversion code from Graphics Gems */ | 
| 432 | 
 | 
| 433 | 
/* mat1 <-- mat2^-1 */ | 
| 434 | 
float mat_inv (Matrix mat1, Matrix mat2) | 
| 435 | 
{ | 
| 436 | 
    int i, j; | 
| 437 | 
    float det; | 
| 438 | 
 | 
| 439 | 
    if (mat1 != mat2) { | 
| 440 | 
        for (i = 0; i < 4; i++) | 
| 441 | 
            for (j = 0; j < 4; j++) | 
| 442 | 
                mat1[i][j] = mat2[i][j]; | 
| 443 | 
    } | 
| 444 | 
 | 
| 445 | 
    det = det4x4 (mat1); | 
| 446 | 
 | 
| 447 | 
    if (fabs (det) < EPSILON) | 
| 448 | 
        return 0.0; | 
| 449 | 
 | 
| 450 | 
    adjoint (mat1); | 
| 451 | 
 | 
| 452 | 
    for (i = 0; i < 4; i++) | 
| 453 | 
        for(j = 0; j < 4; j++) | 
| 454 | 
            mat1[i][j] = mat1[i][j] / det; | 
| 455 | 
 | 
| 456 | 
    return det; | 
| 457 | 
} | 
| 458 | 
 | 
| 459 | 
 | 
| 460 | 
void adjoint (Matrix mat) | 
| 461 | 
{ | 
| 462 | 
    double a1, a2, a3, a4, b1, b2, b3, b4; | 
| 463 | 
    double c1, c2, c3, c4, d1, d2, d3, d4; | 
| 464 | 
 | 
| 465 | 
    a1 = mat[0][0]; b1 = mat[0][1]; | 
| 466 | 
    c1 = mat[0][2]; d1 = mat[0][3]; | 
| 467 | 
 | 
| 468 | 
    a2 = mat[1][0]; b2 = mat[1][1]; | 
| 469 | 
    c2 = mat[1][2]; d2 = mat[1][3]; | 
| 470 | 
 | 
| 471 | 
    a3 = mat[2][0]; b3 = mat[2][1]; | 
| 472 | 
    c3 = mat[2][2]; d3 = mat[2][3]; | 
| 473 | 
 | 
| 474 | 
    a4 = mat[3][0]; b4 = mat[3][1]; | 
| 475 | 
    c4 = mat[3][2]; d4 = mat[3][3]; | 
| 476 | 
 | 
| 477 | 
    /* row column labeling reversed since we transpose rows & columns */ | 
| 478 | 
    mat[0][0]  =  det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4); | 
| 479 | 
    mat[1][0]  = -det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4); | 
| 480 | 
    mat[2][0]  =  det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4); | 
| 481 | 
    mat[3][0]  = -det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4); | 
| 482 | 
 | 
| 483 | 
    mat[0][1]  = -det3x3 (b1, b3, b4, c1, c3, c4, d1, d3, d4); | 
| 484 | 
    mat[1][1]  =  det3x3 (a1, a3, a4, c1, c3, c4, d1, d3, d4); | 
| 485 | 
    mat[2][1]  = -det3x3 (a1, a3, a4, b1, b3, b4, d1, d3, d4); | 
| 486 | 
    mat[3][1]  =  det3x3 (a1, a3, a4, b1, b3, b4, c1, c3, c4); | 
| 487 | 
 | 
| 488 | 
    mat[0][2]  =  det3x3 (b1, b2, b4, c1, c2, c4, d1, d2, d4); | 
| 489 | 
    mat[1][2]  = -det3x3 (a1, a2, a4, c1, c2, c4, d1, d2, d4); | 
| 490 | 
    mat[2][2]  =  det3x3 (a1, a2, a4, b1, b2, b4, d1, d2, d4); | 
| 491 | 
    mat[3][2]  = -det3x3 (a1, a2, a4, b1, b2, b4, c1, c2, c4); | 
| 492 | 
 | 
| 493 | 
    mat[0][3]  = -det3x3 (b1, b2, b3, c1, c2, c3, d1, d2, d3); | 
| 494 | 
    mat[1][3]  =  det3x3 (a1, a2, a3, c1, c2, c3, d1, d2, d3); | 
| 495 | 
    mat[2][3]  = -det3x3 (a1, a2, a3, b1, b2, b3, d1, d2, d3); | 
| 496 | 
    mat[3][3]  =  det3x3 (a1, a2, a3, b1, b2, b3, c1, c2, c3); | 
| 497 | 
} | 
| 498 | 
 | 
| 499 | 
 | 
| 500 | 
double det4x4 (Matrix mat) | 
| 501 | 
{ | 
| 502 | 
    double ans; | 
| 503 | 
    double a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3,                  d4; | 
| 504 | 
 | 
| 505 | 
    a1 = mat[0][0]; b1 = mat[0][1]; | 
| 506 | 
    c1 = mat[0][2]; d1 = mat[0][3]; | 
| 507 | 
 | 
| 508 | 
    a2 = mat[1][0]; b2 = mat[1][1]; | 
| 509 | 
    c2 = mat[1][2]; d2 = mat[1][3]; | 
| 510 | 
 | 
| 511 | 
    a3 = mat[2][0]; b3 = mat[2][1]; | 
| 512 | 
    c3 = mat[2][2]; d3 = mat[2][3]; | 
| 513 | 
 | 
| 514 | 
    a4 = mat[3][0]; b4 = mat[3][1]; | 
| 515 | 
    c4 = mat[3][2]; d4 = mat[3][3]; | 
| 516 | 
 | 
| 517 | 
    ans = a1 * det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4) - | 
| 518 | 
          b1 * det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4) + | 
| 519 | 
          c1 * det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4) - | 
| 520 | 
          d1 * det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4); | 
| 521 | 
 | 
| 522 | 
    return ans; | 
| 523 | 
} | 
| 524 | 
 | 
| 525 | 
 | 
| 526 | 
double det3x3 (double a1, double a2, double a3, double b1, double b2, | 
| 527 | 
               double b3, double c1, double c2, double c3) | 
| 528 | 
{ | 
| 529 | 
    double ans; | 
| 530 | 
 | 
| 531 | 
    ans = a1 * det2x2 (b2, b3, c2, c3) | 
| 532 | 
        - b1 * det2x2 (a2, a3, c2, c3) | 
| 533 | 
        + c1 * det2x2 (a2, a3, b2, b3); | 
| 534 | 
 | 
| 535 | 
    return ans; | 
| 536 | 
} | 
| 537 | 
 | 
| 538 | 
 | 
| 539 | 
double det2x2 (double a, double b, double c, double d) | 
| 540 | 
{ | 
| 541 | 
    double ans; | 
| 542 | 
    ans = a * d - b * c; | 
| 543 | 
    return ans; | 
| 544 | 
} | 
| 545 | 
 |