| 1 |
greg |
2.1 |
/* RCSid $Id$ */
|
| 2 |
|
|
/*
|
| 3 |
|
|
transportSimplex.h
|
| 4 |
|
|
|
| 5 |
|
|
A C++ implementation of the transportation simplex algorithm.
|
| 6 |
|
|
|
| 7 |
|
|
Last edit Sept 3 2006
|
| 8 |
|
|
|
| 9 |
|
|
Copyright (C) 2006 Darren MacDonald
|
| 10 |
|
|
[email protected]
|
| 11 |
|
|
www.site.uottawa.ca/~dmacd070/emd
|
| 12 |
|
|
|
| 13 |
|
|
except some data structures and interface adapted from
|
| 14 |
|
|
http://ai.stanford.edu/~rubner/emd/emd.c,
|
| 15 |
|
|
Copyright 1998 Yossi Rubner.
|
| 16 |
|
|
|
| 17 |
|
|
This algorithm solves the problem of finding the least-cost way to transport
|
| 18 |
|
|
goods from a set of source (supply) nodes to a set of sink (demand) nodes.
|
| 19 |
|
|
|
| 20 |
|
|
To use the code, simply include this file in the user code and add 'using namespace t_simplex;'.
|
| 21 |
|
|
Organize the nodes into signatures using the TsSignature<TF> class, which contains a feature
|
| 22 |
|
|
array (of type TF) and an array of the respective weights of the features.
|
| 23 |
|
|
|
| 24 |
|
|
Solve the system by calling
|
| 25 |
|
|
transportSimplex(&Sig1, &Sig2, grndDist);
|
| 26 |
|
|
where Sig1 is the source signature, containing an array of source features and an array of their respective
|
| 27 |
|
|
supplies, Sig2 is the sink signature, containing the sink features and and their respective demands, and
|
| 28 |
|
|
grndDist is a pointer to a function which accepts two features pointers as arguments and returns the unit
|
| 29 |
|
|
cost of transporting goods between the two.
|
| 30 |
|
|
|
| 31 |
|
|
transportSimplex either returns the optimal transportation cost or throws a TsError.
|
| 32 |
|
|
|
| 33 |
|
|
For more information see the documentation at
|
| 34 |
|
|
www.site.uottawa.ca/~dmacd070/emd/index.html
|
| 35 |
|
|
and the example implemenation at
|
| 36 |
|
|
www.site.uottawa.ca/~dmacd070/emd/main.cpp.
|
| 37 |
|
|
*/
|
| 38 |
|
|
|
| 39 |
|
|
#ifndef _T_SIMPLEX_H
|
| 40 |
|
|
#define _T_SIMPLEX_H
|
| 41 |
|
|
#include <iostream>
|
| 42 |
|
|
#include <stdlib.h>
|
| 43 |
|
|
#include <math.h>
|
| 44 |
|
|
#include <new>
|
| 45 |
|
|
|
| 46 |
|
|
#define TSINFINITY 1e20
|
| 47 |
|
|
#define TSEPSILON 1e-6
|
| 48 |
|
|
#define TSPIVOTLIMIT 0.00
|
| 49 |
|
|
|
| 50 |
|
|
namespace t_simplex {
|
| 51 |
|
|
|
| 52 |
|
|
/* DECLARATION OF DATA TYPES */
|
| 53 |
|
|
enum TsError { TsErrBadInput };
|
| 54 |
|
|
|
| 55 |
|
|
//TsSignature is used for inputting the source and sink signatures
|
| 56 |
|
|
template <class TF>
|
| 57 |
|
|
class TsSignature {
|
| 58 |
|
|
public:
|
| 59 |
|
|
int n; // Number of features in the signature
|
| 60 |
|
|
TF *features; // Pointer to the features vector
|
| 61 |
|
|
double *weights; // Pointer to the weights of the features
|
| 62 |
|
|
TsSignature(int nin, TF *fin, double * win):n(nin), features(fin), weights(win){};
|
| 63 |
|
|
};
|
| 64 |
|
|
|
| 65 |
|
|
//TsFlow is used for outputting the final flow table
|
| 66 |
|
|
typedef struct TsFlow {
|
| 67 |
|
|
int from; // Feature number in signature 1
|
| 68 |
|
|
int to; // Feature number in signature 2
|
| 69 |
|
|
double amount; // Amount of flow from signature1.features[from] to signature2.features[to]
|
| 70 |
|
|
} TsFlow;
|
| 71 |
|
|
|
| 72 |
|
|
// TsBasic is used for 2D lists, allowing for easy navigation of the basic variables
|
| 73 |
|
|
typedef struct TsBasic{
|
| 74 |
|
|
int i, j;
|
| 75 |
|
|
double val;
|
| 76 |
|
|
TsBasic *nextSnk, *prevSnk; // next/previous node in the column
|
| 77 |
|
|
TsBasic *nextSrc, *prevSrc; // next/previous node in the row
|
| 78 |
|
|
} TsBasic;
|
| 79 |
|
|
|
| 80 |
|
|
// TsStone is used for _BFS
|
| 81 |
|
|
typedef struct TsStone {
|
| 82 |
|
|
struct TsStone *prev;
|
| 83 |
|
|
struct TsBasic *node;
|
| 84 |
|
|
} TsStone;
|
| 85 |
|
|
|
| 86 |
|
|
// TsRusPen is used for 1D lists in _initRussel
|
| 87 |
|
|
typedef struct TsRusPen {
|
| 88 |
|
|
int i;
|
| 89 |
|
|
double val;
|
| 90 |
|
|
struct TsRusPen *next, *prev;
|
| 91 |
|
|
} TsRusPen;
|
| 92 |
|
|
|
| 93 |
|
|
// TsVogPen is used for 1D lists in _initVogel
|
| 94 |
|
|
typedef struct TsVogPen {
|
| 95 |
|
|
int i;
|
| 96 |
|
|
struct TsVogPen *next, *prev;
|
| 97 |
|
|
int one, two;
|
| 98 |
|
|
double oneCost, twoCost;
|
| 99 |
|
|
} TsVogPen;
|
| 100 |
|
|
|
| 101 |
|
|
/* DECLARATION OF GLOBALS */
|
| 102 |
|
|
double ** _tsC = NULL; // Cost matrix
|
| 103 |
|
|
double _tsMaxC; // Maximum of all costs
|
| 104 |
|
|
double _tsMaxW; // Maximum of all weights
|
| 105 |
|
|
|
| 106 |
|
|
|
| 107 |
|
|
/* INTERNAL FUNCTIONS */
|
| 108 |
|
|
double _pivot(TsBasic * basics, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2);
|
| 109 |
|
|
TsStone * _BFS(TsStone *stoneTree, TsBasic ** srcBasics, TsBasic ** snkBasics, bool complete = false);
|
| 110 |
|
|
void _initVogel(double *S, double *D, TsBasic * basicsEnd, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2);
|
| 111 |
|
|
void _initRussel(double *S, double *D, TsBasic * basicsEnd, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2);
|
| 112 |
|
|
|
| 113 |
|
|
/*
|
| 114 |
|
|
transportSimplex() - Program entry point.
|
| 115 |
|
|
|
| 116 |
|
|
signature1 and signature2 define the source and sink sets. Unit costs between two features are computed from
|
| 117 |
|
|
grndDist. Signature weights must be positive and all costs must be positive.
|
| 118 |
|
|
TsFlow is an output parameter which can be set to an array that will be filled with the final flow amounts.
|
| 119 |
|
|
The array must be of size signature1->n + signature2->n - 1 . flowSize is a pointer to an integer which
|
| 120 |
|
|
indicates the number of functional entries in Flow, because all spaces are not necessarily used. Flow and
|
| 121 |
|
|
flowSize can be set to NULL or omitted from the argument list if this information is not important.
|
| 122 |
|
|
|
| 123 |
|
|
The return value is the transportation cost.
|
| 124 |
|
|
|
| 125 |
|
|
*/
|
| 126 |
|
|
template <class TF>
|
| 127 |
|
|
double transportSimplex(TsSignature<TF> *signature1, TsSignature<TF> *signature2, double (*grndDist)(TF *, TF *),
|
| 128 |
|
|
TsFlow *flowTable = NULL, int *flowSize = NULL) {
|
| 129 |
|
|
|
| 130 |
|
|
int n1, n2; // number of features in signature1 and Signature 2
|
| 131 |
|
|
int i, j;
|
| 132 |
|
|
|
| 133 |
|
|
double totalCost;
|
| 134 |
|
|
double w;
|
| 135 |
|
|
|
| 136 |
|
|
double srcSum, snkSum, diff;
|
| 137 |
|
|
|
| 138 |
|
|
TF *P1, *P2;
|
| 139 |
|
|
|
| 140 |
|
|
n1 = signature1->n;
|
| 141 |
|
|
n2 = signature2->n;
|
| 142 |
|
|
|
| 143 |
|
|
TsBasic * basics = NULL; ///Array of basic variables.
|
| 144 |
|
|
bool ** isBasic = NULL; //Flag matrix. isBasic[i][j] is true there is flow between source i and sink j
|
| 145 |
|
|
TsBasic **srcBasics = NULL; //Array of pointers to the first basic variable in each row
|
| 146 |
|
|
TsBasic **snkBasics = NULL; //Array of pointers to the first basic variable in each column
|
| 147 |
|
|
double * src = NULL; //Array of source supplies
|
| 148 |
|
|
double * snk =NULL; //Array of sink demands
|
| 149 |
|
|
|
| 150 |
|
|
|
| 151 |
|
|
// Equalize source and sink weights. A dummy source or sink may be added to equalize the total sink
|
| 152 |
|
|
// and source weights. n1 = signature1->n + 1 if there is a dummy source, and n2 = signature2->n + 1
|
| 153 |
|
|
// if there is a dummy sink.
|
| 154 |
|
|
srcSum = 0.0;
|
| 155 |
|
|
for(i=0; i < n1; i++)
|
| 156 |
|
|
srcSum += signature1->weights[i];
|
| 157 |
|
|
|
| 158 |
|
|
snkSum = 0.0;
|
| 159 |
|
|
for(j=0; j < n2; j++)
|
| 160 |
|
|
snkSum += signature2->weights[j];
|
| 161 |
|
|
|
| 162 |
|
|
diff = srcSum - snkSum;
|
| 163 |
|
|
if (fabs(diff) > TSEPSILON * srcSum)
|
| 164 |
|
|
if (diff < 0.0)
|
| 165 |
|
|
n1++;
|
| 166 |
|
|
else
|
| 167 |
|
|
n2++;
|
| 168 |
|
|
|
| 169 |
|
|
_tsMaxW = srcSum > snkSum ? srcSum : snkSum;
|
| 170 |
|
|
w = srcSum < snkSum ? srcSum : snkSum;
|
| 171 |
|
|
|
| 172 |
|
|
//Allocate memory for arrays
|
| 173 |
|
|
try {
|
| 174 |
|
|
|
| 175 |
|
|
basics = new TsBasic[n1 + n2];
|
| 176 |
|
|
|
| 177 |
|
|
isBasic = new bool*[n1];
|
| 178 |
|
|
for(i = 0; i < n1; i++)
|
| 179 |
|
|
isBasic[i] = NULL;
|
| 180 |
|
|
|
| 181 |
|
|
for(i = 0; i < n1; i++) {
|
| 182 |
|
|
isBasic[i] = new bool[n2];
|
| 183 |
|
|
for (j=0; j < n2; j++)
|
| 184 |
|
|
isBasic[i][j] = 0;
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
srcBasics = new TsBasic*[n1];
|
| 188 |
|
|
for (i = 0; i < n1; i++)
|
| 189 |
|
|
srcBasics[i] = NULL;
|
| 190 |
|
|
|
| 191 |
|
|
snkBasics = new TsBasic*[n2];
|
| 192 |
|
|
for (i = 0; i < n2; i++)
|
| 193 |
|
|
snkBasics[i] = NULL;
|
| 194 |
|
|
|
| 195 |
|
|
// Compute the cost matrix
|
| 196 |
|
|
_tsMaxC = 0;
|
| 197 |
|
|
_tsC = new double*[n1];
|
| 198 |
|
|
for(i=0; i < n1; i++)
|
| 199 |
|
|
_tsC[i] = NULL;
|
| 200 |
|
|
|
| 201 |
|
|
for(i=0, P1=signature1->features; i < n1; i++, P1++) {
|
| 202 |
|
|
_tsC[i] = new double[n2]; //What happens if bad here?
|
| 203 |
|
|
for(j=0, P2=signature2->features; j < n2; j++, P2++) {
|
| 204 |
|
|
if (i == signature1->n || j == signature2->n) {
|
| 205 |
|
|
_tsC[i][j] = 0; // cost is zero for flow to or from a dummy
|
| 206 |
|
|
} else {
|
| 207 |
|
|
_tsC[i][j] = grndDist(P1, P2);
|
| 208 |
|
|
if (_tsC[i][j] < 0) throw TsErrBadInput;
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
|
| 212 |
|
|
if (_tsC[i][j] > _tsMaxC)
|
| 213 |
|
|
_tsMaxC = _tsC[i][j];
|
| 214 |
|
|
}
|
| 215 |
|
|
}
|
| 216 |
|
|
|
| 217 |
|
|
src = new double[n1]; //init the source array
|
| 218 |
|
|
for (i = 0; i < signature1->n; i++) {
|
| 219 |
|
|
src[i] = signature1->weights[i];
|
| 220 |
|
|
if (src[i] < 0) throw TsErrBadInput;
|
| 221 |
|
|
}
|
| 222 |
|
|
if (n1 != signature1->n)
|
| 223 |
|
|
src[signature1->n] = -diff;
|
| 224 |
|
|
|
| 225 |
|
|
snk = new double[n2]; //init the sink array
|
| 226 |
|
|
for (i = 0; i < signature2->n; i++) {
|
| 227 |
|
|
snk[i] = signature2->weights[i];
|
| 228 |
|
|
if (snk[i] < 0) throw TsErrBadInput;
|
| 229 |
|
|
}
|
| 230 |
|
|
if (n2 != signature2->n)
|
| 231 |
|
|
snk[signature2->n] = diff;
|
| 232 |
|
|
|
| 233 |
|
|
// Find the initail basic feasible solution. Use either _initRussel or _initVogel
|
| 234 |
|
|
|
| 235 |
|
|
|
| 236 |
|
|
_initRussel(src, snk, basics, srcBasics, snkBasics, isBasic, n1, n2);
|
| 237 |
|
|
//_initVogel(src, snk, basics, srcBasics, snkBasics, isBasic, n1, n2);
|
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
|
|
// Enter the main pivot loop
|
| 241 |
|
|
totalCost = _pivot(basics, srcBasics, snkBasics, isBasic, n1, n2);
|
| 242 |
|
|
|
| 243 |
|
|
} catch (...) {
|
| 244 |
|
|
for(i = 0; i < n1; i++)
|
| 245 |
|
|
delete[] isBasic[i];
|
| 246 |
|
|
delete[] isBasic;
|
| 247 |
|
|
|
| 248 |
|
|
for (i = 0; i < n1; i++)
|
| 249 |
|
|
delete[] _tsC[i];
|
| 250 |
|
|
delete[] _tsC;
|
| 251 |
|
|
|
| 252 |
|
|
delete[] src;
|
| 253 |
|
|
delete[] snk;
|
| 254 |
|
|
delete[] srcBasics;
|
| 255 |
|
|
delete[] snkBasics;
|
| 256 |
|
|
delete[] basics;
|
| 257 |
|
|
|
| 258 |
|
|
throw;
|
| 259 |
|
|
}
|
| 260 |
|
|
|
| 261 |
|
|
// Fill the Flow data structure
|
| 262 |
|
|
TsBasic * basicPtr;
|
| 263 |
|
|
TsFlow * flowPtr = flowTable;
|
| 264 |
|
|
if (flowTable != NULL) {
|
| 265 |
|
|
for (i = 0; i < n1+n2 -1; i++) {
|
| 266 |
|
|
basicPtr = basics + i;
|
| 267 |
|
|
if (isBasic[basicPtr->i][basicPtr->j] && basicPtr->i != signature1->n && basicPtr->j != signature2->n && basicPtr->val != 0.0) {
|
| 268 |
|
|
flowPtr->to = basicPtr->j;
|
| 269 |
|
|
flowPtr->from = basicPtr->i;
|
| 270 |
|
|
flowPtr->amount = basicPtr->val;
|
| 271 |
|
|
flowPtr++;
|
| 272 |
|
|
}
|
| 273 |
|
|
}
|
| 274 |
|
|
}
|
| 275 |
|
|
if (flowSize != NULL) {
|
| 276 |
|
|
*flowSize = (int)(flowPtr - flowTable);
|
| 277 |
|
|
}
|
| 278 |
|
|
|
| 279 |
|
|
|
| 280 |
|
|
for(i = 0; i < n1; i++)
|
| 281 |
|
|
delete[] isBasic[i];
|
| 282 |
|
|
delete[] isBasic;
|
| 283 |
|
|
|
| 284 |
|
|
for (i = 0; i < n1; i++)
|
| 285 |
|
|
delete[] _tsC[i];
|
| 286 |
|
|
delete[] _tsC;
|
| 287 |
|
|
|
| 288 |
|
|
delete[] src;
|
| 289 |
|
|
delete[] snk;
|
| 290 |
|
|
delete[] srcBasics;
|
| 291 |
|
|
delete[] snkBasics;
|
| 292 |
|
|
delete[] basics;
|
| 293 |
|
|
|
| 294 |
|
|
return totalCost;
|
| 295 |
|
|
}
|
| 296 |
|
|
|
| 297 |
|
|
/*
|
| 298 |
|
|
Main pivot loop.
|
| 299 |
|
|
Pivots until the system is optimal and return the optimal transportation cost.
|
| 300 |
|
|
*/
|
| 301 |
|
|
double _pivot(TsBasic * basics, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2) {
|
| 302 |
|
|
|
| 303 |
|
|
double * srcDuals = NULL;
|
| 304 |
|
|
double * snkDuals = NULL;
|
| 305 |
|
|
TsStone * stonePath = NULL;
|
| 306 |
|
|
|
| 307 |
|
|
TsStone * spitra, * spitrb, * leaving;
|
| 308 |
|
|
TsBasic * XP;
|
| 309 |
|
|
TsBasic * basicsEnd = basics + n1 + n2;
|
| 310 |
|
|
TsBasic * entering = basicsEnd - 1 ;
|
| 311 |
|
|
TsBasic dummyBasic;
|
| 312 |
|
|
dummyBasic.i = -1;
|
| 313 |
|
|
dummyBasic.j = 0;
|
| 314 |
|
|
|
| 315 |
|
|
int i,j, lowI, lowJ;
|
| 316 |
|
|
double objectiveValue = TSINFINITY, oldObjectiveValue = 0;
|
| 317 |
|
|
double lowVal;
|
| 318 |
|
|
int numPivots = 0;
|
| 319 |
|
|
|
| 320 |
|
|
try {
|
| 321 |
|
|
srcDuals = new double[n1];
|
| 322 |
|
|
snkDuals = new double[n2];
|
| 323 |
|
|
stonePath = new TsStone[n1 + n2];
|
| 324 |
|
|
} catch (std::bad_alloc) {
|
| 325 |
|
|
delete[] srcDuals;
|
| 326 |
|
|
delete[] snkDuals;
|
| 327 |
|
|
delete[] stonePath;
|
| 328 |
|
|
throw;
|
| 329 |
|
|
}
|
| 330 |
|
|
|
| 331 |
|
|
while (1) {
|
| 332 |
|
|
|
| 333 |
|
|
oldObjectiveValue = objectiveValue;
|
| 334 |
|
|
objectiveValue = 0;
|
| 335 |
|
|
|
| 336 |
|
|
for (XP = basics; XP != basicsEnd; XP++){
|
| 337 |
|
|
if (XP != entering)
|
| 338 |
|
|
objectiveValue += _tsC[XP->i][XP->j] * XP->val;
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
// Compute the dual variables for each row and column. Begin by finding a spanning tree (stonepath)
|
| 342 |
|
|
// of the basic variables using the breadth-first search routine seeded at an imaginary basic
|
| 343 |
|
|
// variable in the first column. The dual variables can then be computed incrementally by traversing
|
| 344 |
|
|
// the tree.
|
| 345 |
|
|
stonePath[0].node = &dummyBasic;
|
| 346 |
|
|
stonePath[0].prev = NULL;
|
| 347 |
|
|
spitrb = _BFS(stonePath, srcBasics, snkBasics, true);
|
| 348 |
|
|
|
| 349 |
|
|
spitra = stonePath;
|
| 350 |
|
|
snkDuals[spitra->node->j] = 0;
|
| 351 |
|
|
for (spitra++; spitra != spitrb; spitra++) {
|
| 352 |
|
|
if (spitra->node->i == spitra->prev->node->i) {
|
| 353 |
|
|
//node is in same row as parent
|
| 354 |
|
|
snkDuals[spitra->node->j] = _tsC[spitra->node->i][spitra->node->j] - srcDuals[spitra->node->i];
|
| 355 |
|
|
} else if (spitra->node->j == spitra->prev->node->j) {
|
| 356 |
|
|
srcDuals[spitra->node->i] = _tsC[spitra->node->i][spitra->node->j] - snkDuals[spitra->node->j];
|
| 357 |
|
|
}
|
| 358 |
|
|
}
|
| 359 |
|
|
|
| 360 |
|
|
// After computing the duals, find the non-basic variable that has the greatest negative value of
|
| 361 |
|
|
// delta = _tsC[i][j] - srcDuals[i] - snkDuals[j]. This is the entering variable
|
| 362 |
|
|
lowVal = 0.0;
|
| 363 |
|
|
for (i = 0; i < n1; i++)
|
| 364 |
|
|
for (j = 0; j < n2; j++)
|
| 365 |
|
|
if (!isBasic[i][j] && _tsC[i][j] - srcDuals[i] - snkDuals[j] < lowVal) {
|
| 366 |
|
|
lowVal = _tsC[i][j] - srcDuals[i] - snkDuals[j];
|
| 367 |
|
|
lowI = i;
|
| 368 |
|
|
lowJ = j;
|
| 369 |
|
|
}
|
| 370 |
|
|
|
| 371 |
|
|
// If all delta values are non-negative, the table is optimal
|
| 372 |
|
|
if (lowVal >= -TSEPSILON * _tsMaxC || (oldObjectiveValue - objectiveValue) < TSPIVOTLIMIT) {
|
| 373 |
|
|
delete[] srcDuals;
|
| 374 |
|
|
delete[] snkDuals;
|
| 375 |
|
|
delete[] stonePath;
|
| 376 |
|
|
//std::cout << numPivots << "\t";
|
| 377 |
|
|
return objectiveValue;
|
| 378 |
|
|
}
|
| 379 |
|
|
|
| 380 |
|
|
// Add the entering variable
|
| 381 |
|
|
entering->i = lowI;
|
| 382 |
|
|
entering->j = lowJ;
|
| 383 |
|
|
isBasic[lowI][lowJ] = 1;
|
| 384 |
|
|
entering->val = 0;
|
| 385 |
|
|
|
| 386 |
|
|
entering->nextSrc = srcBasics[lowI];
|
| 387 |
|
|
if (srcBasics[lowI] != NULL) srcBasics[lowI]->prevSrc = entering;
|
| 388 |
|
|
entering->nextSnk = snkBasics[lowJ];
|
| 389 |
|
|
if (snkBasics[lowJ] != NULL) snkBasics[lowJ]->prevSnk = entering;
|
| 390 |
|
|
|
| 391 |
|
|
srcBasics[lowI] = entering;
|
| 392 |
|
|
entering->prevSrc = srcBasics[lowI];
|
| 393 |
|
|
snkBasics[lowJ] = entering;
|
| 394 |
|
|
entering->prevSnk = snkBasics[lowJ];
|
| 395 |
|
|
|
| 396 |
|
|
stonePath[0].node = entering;
|
| 397 |
|
|
stonePath[0].prev = NULL;
|
| 398 |
|
|
|
| 399 |
|
|
// Use breadth-first search to find a loop of basics.
|
| 400 |
|
|
spitra = spitrb = _BFS(stonePath, srcBasics, snkBasics);
|
| 401 |
|
|
lowVal = TSINFINITY;
|
| 402 |
|
|
bool add = false;
|
| 403 |
|
|
|
| 404 |
|
|
// Find the lowest flow along the loop (leaving variable)
|
| 405 |
|
|
do {
|
| 406 |
|
|
if (!add && spitrb->node->val < lowVal) {
|
| 407 |
|
|
leaving = spitrb;
|
| 408 |
|
|
lowVal = spitrb->node->val;
|
| 409 |
|
|
}
|
| 410 |
|
|
add = !add;
|
| 411 |
|
|
} while (spitrb = spitrb->prev);
|
| 412 |
|
|
|
| 413 |
|
|
add = false;
|
| 414 |
|
|
spitrb = spitra;
|
| 415 |
|
|
|
| 416 |
|
|
// Alternately increase and decrease flow along the loop
|
| 417 |
|
|
do {
|
| 418 |
|
|
if (add) spitrb->node->val += lowVal;
|
| 419 |
|
|
else spitrb->node->val -= lowVal;
|
| 420 |
|
|
add = !add;
|
| 421 |
|
|
} while (spitrb = spitrb->prev);
|
| 422 |
|
|
|
| 423 |
|
|
i = leaving->node->i;
|
| 424 |
|
|
j = leaving->node->j;
|
| 425 |
|
|
isBasic[i][j] = 0;
|
| 426 |
|
|
|
| 427 |
|
|
|
| 428 |
|
|
if (srcBasics[i] == leaving->node) {
|
| 429 |
|
|
srcBasics[i] = leaving->node->nextSrc;
|
| 430 |
|
|
srcBasics[i]->prevSrc = NULL;
|
| 431 |
|
|
} else {
|
| 432 |
|
|
leaving->node->prevSrc->nextSrc = leaving->node->nextSrc;
|
| 433 |
|
|
if (leaving->node->nextSrc != NULL)
|
| 434 |
|
|
leaving->node->nextSrc->prevSrc = leaving->node->prevSrc;
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
if (snkBasics[j] == leaving->node) {
|
| 438 |
|
|
snkBasics[j] = leaving->node->nextSnk;
|
| 439 |
|
|
snkBasics[j]->prevSnk = NULL;
|
| 440 |
|
|
} else {
|
| 441 |
|
|
leaving->node->prevSnk->nextSnk = leaving->node->nextSnk;
|
| 442 |
|
|
if (leaving->node->nextSnk != NULL)
|
| 443 |
|
|
leaving->node->nextSnk->prevSnk = leaving->node->prevSnk;
|
| 444 |
|
|
}
|
| 445 |
|
|
entering = leaving->node;
|
| 446 |
|
|
numPivots++;
|
| 447 |
|
|
}
|
| 448 |
|
|
};
|
| 449 |
|
|
|
| 450 |
|
|
|
| 451 |
|
|
/*******************
|
| 452 |
|
|
_BFS
|
| 453 |
|
|
Perform a breadth-first search of the basic varaibles. The search tree is stored in stoneTree, where each
|
| 454 |
|
|
'stone' contains a pointer to a basic variable, and a pointer to that stone's parent. srcBasics and snkBasics
|
| 455 |
|
|
are arrays of linked lists which allow for easy identification of a node's neighbours in the flow network.
|
| 456 |
|
|
If complete == true, find all basics in the table. Otherwise, terminate when a basic variable which completes
|
| 457 |
|
|
a loop has been found and return a pointer to the final stone in the loop.
|
| 458 |
|
|
*********************/
|
| 459 |
|
|
TsStone * _BFS(TsStone * stoneTree, TsBasic ** srcBasics, TsBasic ** snkBasics, bool complete) {
|
| 460 |
|
|
bool column = true;
|
| 461 |
|
|
int jumpoffset = 0;
|
| 462 |
|
|
TsBasic * bitr;
|
| 463 |
|
|
TsStone * sitra = &stoneTree[0], * sitrb = &stoneTree[1];
|
| 464 |
|
|
do {
|
| 465 |
|
|
if (column) {
|
| 466 |
|
|
for (bitr = snkBasics[sitra->node->j]; bitr != NULL; bitr = bitr->nextSnk) {
|
| 467 |
|
|
if (bitr != sitra->node){
|
| 468 |
|
|
sitrb->node = bitr;
|
| 469 |
|
|
sitrb->prev = sitra;
|
| 470 |
|
|
sitrb++;
|
| 471 |
|
|
}
|
| 472 |
|
|
}
|
| 473 |
|
|
} else {
|
| 474 |
|
|
for (bitr = srcBasics[sitra->node->i]; bitr != NULL; bitr = bitr->nextSrc) {
|
| 475 |
|
|
if (bitr != sitra->node){
|
| 476 |
|
|
sitrb->node = bitr;
|
| 477 |
|
|
sitrb->prev = sitra;
|
| 478 |
|
|
sitrb++;
|
| 479 |
|
|
}
|
| 480 |
|
|
}
|
| 481 |
|
|
}
|
| 482 |
|
|
|
| 483 |
|
|
sitra++;
|
| 484 |
|
|
if (sitra == sitrb) //no cycle found and no cycles in tree
|
| 485 |
|
|
return sitra;
|
| 486 |
|
|
|
| 487 |
|
|
if (sitra->node->i == sitra->prev->node->i)
|
| 488 |
|
|
column = true;
|
| 489 |
|
|
else
|
| 490 |
|
|
column = false;
|
| 491 |
|
|
|
| 492 |
|
|
// cycle found
|
| 493 |
|
|
if (!complete && sitra->node->i == stoneTree[0].node->i && sitra->node->j != stoneTree[0].node->j && column == false)
|
| 494 |
|
|
return sitra;
|
| 495 |
|
|
} while(1);
|
| 496 |
|
|
}
|
| 497 |
|
|
|
| 498 |
|
|
|
| 499 |
|
|
// Helper function for _initVogel
|
| 500 |
|
|
inline void addPenalty(TsVogPen * pitr, double cost, int i) {
|
| 501 |
|
|
if (cost < pitr->oneCost) {
|
| 502 |
|
|
pitr->twoCost = pitr->oneCost;
|
| 503 |
|
|
pitr->two = pitr->one;
|
| 504 |
|
|
pitr->oneCost = cost;
|
| 505 |
|
|
pitr->one = i;
|
| 506 |
|
|
} else if (cost < pitr->twoCost) {
|
| 507 |
|
|
pitr->twoCost = cost;
|
| 508 |
|
|
pitr->two = i;
|
| 509 |
|
|
}
|
| 510 |
|
|
}
|
| 511 |
|
|
|
| 512 |
|
|
|
| 513 |
|
|
/**********************
|
| 514 |
|
|
Vogel's initialization method
|
| 515 |
|
|
**********************/
|
| 516 |
|
|
void _initVogel(double *S, double *D, TsBasic * basicsEnd, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2) {
|
| 517 |
|
|
int i, j;
|
| 518 |
|
|
TsVogPen *srcPens = NULL;
|
| 519 |
|
|
TsVogPen *snkPens = NULL;
|
| 520 |
|
|
TsVogPen *pitra, *pitrb; //iterators
|
| 521 |
|
|
TsVogPen *maxPen;
|
| 522 |
|
|
TsVogPen srcPenHead, snkPenHead;
|
| 523 |
|
|
bool maxIsSrc;
|
| 524 |
|
|
double lowVal;
|
| 525 |
|
|
|
| 526 |
|
|
try {
|
| 527 |
|
|
srcPens = new TsVogPen[n1];
|
| 528 |
|
|
snkPens = new TsVogPen[n2];
|
| 529 |
|
|
} catch (std::bad_alloc) {
|
| 530 |
|
|
delete[] srcPens;
|
| 531 |
|
|
delete[] snkPens;
|
| 532 |
|
|
throw;
|
| 533 |
|
|
}
|
| 534 |
|
|
|
| 535 |
|
|
srcPenHead.next = pitra = srcPens;
|
| 536 |
|
|
for (i=0; i < n1; i++) {
|
| 537 |
|
|
pitra->i = i;
|
| 538 |
|
|
pitra->next = pitra+1;
|
| 539 |
|
|
pitra->prev = pitra-1;
|
| 540 |
|
|
pitra->one = pitra->two = 0;
|
| 541 |
|
|
pitra->oneCost = pitra->twoCost = TSINFINITY;
|
| 542 |
|
|
pitra++;
|
| 543 |
|
|
}
|
| 544 |
|
|
(--pitra)->next = NULL;
|
| 545 |
|
|
srcPens[0].prev = &srcPenHead;
|
| 546 |
|
|
|
| 547 |
|
|
snkPenHead.next = pitra = snkPens;
|
| 548 |
|
|
for (i=0; i < n2; i++) {
|
| 549 |
|
|
pitra->i = i;
|
| 550 |
|
|
pitra->next = pitra+1;
|
| 551 |
|
|
pitra->prev = pitra-1;
|
| 552 |
|
|
pitra->one = pitra->two = 0;
|
| 553 |
|
|
pitra->oneCost = pitra->twoCost = TSINFINITY;
|
| 554 |
|
|
pitra++;
|
| 555 |
|
|
}
|
| 556 |
|
|
(--pitra)->next = NULL;
|
| 557 |
|
|
snkPens[0].prev = &snkPenHead;
|
| 558 |
|
|
|
| 559 |
|
|
|
| 560 |
|
|
for (pitra = srcPenHead.next, i=0; pitra != NULL; pitra = pitra->next, i++)
|
| 561 |
|
|
for (pitrb = snkPenHead.next, j=0; pitrb != NULL; pitrb = pitrb->next, j++) {
|
| 562 |
|
|
//initialize Source Penalties;
|
| 563 |
|
|
addPenalty(pitra, _tsC[i][j], j);
|
| 564 |
|
|
addPenalty(pitrb, _tsC[i][j], i);
|
| 565 |
|
|
}
|
| 566 |
|
|
|
| 567 |
|
|
|
| 568 |
|
|
while (srcPenHead.next != NULL && snkPenHead.next != NULL) {
|
| 569 |
|
|
maxIsSrc = true;
|
| 570 |
|
|
for (maxPen = pitra = srcPenHead.next; pitra != NULL; pitra = pitra->next)
|
| 571 |
|
|
if ((pitra->twoCost - pitra->oneCost) > (maxPen->twoCost - maxPen->oneCost))
|
| 572 |
|
|
maxPen = pitra;
|
| 573 |
|
|
|
| 574 |
|
|
for (pitra = snkPenHead.next; pitra != NULL; pitra = pitra->next)
|
| 575 |
|
|
if ((pitra->twoCost - pitra->oneCost) > (maxPen->twoCost - maxPen->oneCost)) {
|
| 576 |
|
|
maxPen = pitra;
|
| 577 |
|
|
maxIsSrc = false;
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
if (maxIsSrc) {
|
| 581 |
|
|
i = maxPen->i;
|
| 582 |
|
|
j = maxPen->one;
|
| 583 |
|
|
} else {
|
| 584 |
|
|
j = maxPen->i;
|
| 585 |
|
|
i = maxPen->one;
|
| 586 |
|
|
}
|
| 587 |
|
|
|
| 588 |
|
|
if (D[j] - S[i] > _tsMaxW * TSEPSILON || (srcPenHead.next->next != NULL && fabs(S[i] - D[j]) < _tsMaxW * TSEPSILON)) {
|
| 589 |
|
|
//delete source
|
| 590 |
|
|
lowVal = S[i];
|
| 591 |
|
|
maxPen = srcPens + i;
|
| 592 |
|
|
maxPen->prev->next = maxPen->next;
|
| 593 |
|
|
if (maxPen->next != NULL)
|
| 594 |
|
|
maxPen->next->prev = maxPen->prev;
|
| 595 |
|
|
|
| 596 |
|
|
for (pitra = snkPenHead.next; pitra != NULL; pitra = pitra->next) {
|
| 597 |
|
|
if (pitra->one == i || pitra->two == i){
|
| 598 |
|
|
pitra->oneCost = TSINFINITY;
|
| 599 |
|
|
pitra->twoCost = TSINFINITY;
|
| 600 |
|
|
for (pitrb = srcPenHead.next; pitrb != NULL; pitrb = pitrb->next)
|
| 601 |
|
|
addPenalty(pitra, _tsC[pitrb->i][pitra->i], pitrb->i);
|
| 602 |
|
|
}
|
| 603 |
|
|
}
|
| 604 |
|
|
} else {
|
| 605 |
|
|
//delete sink
|
| 606 |
|
|
lowVal = D[j];
|
| 607 |
|
|
maxPen = snkPens + j;
|
| 608 |
|
|
maxPen->prev->next = maxPen->next;
|
| 609 |
|
|
if (maxPen->next != NULL)
|
| 610 |
|
|
maxPen->next->prev = maxPen->prev;
|
| 611 |
|
|
|
| 612 |
|
|
for (pitra = srcPenHead.next; pitra != NULL; pitra = pitra->next) {
|
| 613 |
|
|
if (pitra->one == j || pitra->two == j){
|
| 614 |
|
|
pitra->oneCost = TSINFINITY;
|
| 615 |
|
|
pitra->twoCost = TSINFINITY;
|
| 616 |
|
|
for (pitrb = snkPenHead.next; pitrb != NULL; pitrb = pitrb->next)
|
| 617 |
|
|
addPenalty(pitra, _tsC[pitra->i][pitrb->i], pitrb->i);
|
| 618 |
|
|
}
|
| 619 |
|
|
}
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
S[i] -= lowVal;
|
| 623 |
|
|
D[j] -= lowVal;
|
| 624 |
|
|
|
| 625 |
|
|
isBasic[i][j] = 1;
|
| 626 |
|
|
basicsEnd->val = lowVal;
|
| 627 |
|
|
basicsEnd->i = i;
|
| 628 |
|
|
basicsEnd->j = j;
|
| 629 |
|
|
|
| 630 |
|
|
basicsEnd->nextSnk = snkBasics[j];
|
| 631 |
|
|
if (snkBasics[j] != NULL) snkBasics[j]->prevSnk = basicsEnd;
|
| 632 |
|
|
basicsEnd->nextSrc = srcBasics[i];
|
| 633 |
|
|
if (srcBasics[i] != NULL) srcBasics[i]->prevSrc = basicsEnd;
|
| 634 |
|
|
|
| 635 |
|
|
srcBasics[i] = basicsEnd;
|
| 636 |
|
|
basicsEnd->prevSnk = NULL;
|
| 637 |
|
|
snkBasics[j] = basicsEnd;
|
| 638 |
|
|
basicsEnd->prevSrc = NULL;
|
| 639 |
|
|
|
| 640 |
|
|
basicsEnd++;
|
| 641 |
|
|
|
| 642 |
|
|
}
|
| 643 |
|
|
delete[] srcPens;
|
| 644 |
|
|
delete[] snkPens;
|
| 645 |
|
|
}
|
| 646 |
|
|
|
| 647 |
|
|
|
| 648 |
|
|
/**********************
|
| 649 |
|
|
Russel's initialization method
|
| 650 |
|
|
**********************/
|
| 651 |
|
|
void _initRussel(double *S, double *D, TsBasic * basicsEnd, TsBasic ** srcBasics, TsBasic ** snkBasics, bool ** isBasic, int n1, int n2) {
|
| 652 |
|
|
double ** Delta = NULL;
|
| 653 |
|
|
int i, j, lowI, lowJ;
|
| 654 |
|
|
TsRusPen *U = NULL;
|
| 655 |
|
|
TsRusPen *V = NULL;
|
| 656 |
|
|
TsRusPen *Uhead, *Vhead;
|
| 657 |
|
|
TsRusPen *Uitr, *Vitr;
|
| 658 |
|
|
double cost, lowVal;
|
| 659 |
|
|
|
| 660 |
|
|
try {
|
| 661 |
|
|
Delta = new double*[n1];
|
| 662 |
|
|
for (i = 0; i < n1; i++)
|
| 663 |
|
|
Delta[i] = new double[n2];
|
| 664 |
|
|
|
| 665 |
|
|
U = new TsRusPen[n1];
|
| 666 |
|
|
V = new TsRusPen[n2];
|
| 667 |
|
|
} catch (std::bad_alloc) {
|
| 668 |
|
|
for (i = 0; i < n1; i++)
|
| 669 |
|
|
delete[] Delta[i];
|
| 670 |
|
|
delete[] Delta;
|
| 671 |
|
|
|
| 672 |
|
|
delete[] U;
|
| 673 |
|
|
delete[] V;
|
| 674 |
|
|
throw;
|
| 675 |
|
|
}
|
| 676 |
|
|
|
| 677 |
|
|
for (i = 0; i < n1; i++) {
|
| 678 |
|
|
U[i].i = i;
|
| 679 |
|
|
U[i].val = 0;
|
| 680 |
|
|
U[i].next = &U[i+1];
|
| 681 |
|
|
U[i].prev = &U[i-1];
|
| 682 |
|
|
}
|
| 683 |
|
|
U[n1-1].next = NULL;
|
| 684 |
|
|
U[0].prev = NULL;
|
| 685 |
|
|
|
| 686 |
|
|
for (i = 0; i < n2; i++) {
|
| 687 |
|
|
V[i].i = i;
|
| 688 |
|
|
V[i].val = 0;
|
| 689 |
|
|
V[i].next = &V[i+1];
|
| 690 |
|
|
V[i].prev = &V[i-1];
|
| 691 |
|
|
}
|
| 692 |
|
|
V[n2-1].next = NULL;
|
| 693 |
|
|
V[0].prev = NULL;
|
| 694 |
|
|
|
| 695 |
|
|
for (i = 0; i < n1; i++)
|
| 696 |
|
|
for (j = 0; j < n2; j++) {
|
| 697 |
|
|
cost = _tsC[i][j];
|
| 698 |
|
|
if (cost > U[i].val)
|
| 699 |
|
|
U[i].val = cost;
|
| 700 |
|
|
if (cost > V[j].val)
|
| 701 |
|
|
V[j].val = cost;
|
| 702 |
|
|
}
|
| 703 |
|
|
|
| 704 |
|
|
for (i = 0; i < n1; i++)
|
| 705 |
|
|
for (j = 0; j < n2; j++)
|
| 706 |
|
|
Delta[i][j] = _tsC[i][j] - U[i].val - V[j].val;
|
| 707 |
|
|
|
| 708 |
|
|
Uhead = U;
|
| 709 |
|
|
Vhead = V;
|
| 710 |
|
|
while (Uhead != NULL && Vhead != NULL) {
|
| 711 |
|
|
|
| 712 |
|
|
//Find lowest Delta
|
| 713 |
|
|
lowVal = TSINFINITY;
|
| 714 |
|
|
for (Uitr = Uhead; Uitr != NULL; Uitr = Uitr->next)
|
| 715 |
|
|
for (Vitr = Vhead; Vitr != NULL; Vitr = Vitr->next)
|
| 716 |
|
|
if (Delta[Uitr->i][Vitr->i] < lowVal) {
|
| 717 |
|
|
lowI = Uitr->i;
|
| 718 |
|
|
lowJ = Vitr->i;
|
| 719 |
|
|
lowVal = Delta[Uitr->i][Vitr->i];
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
|
| 723 |
|
|
if (D[lowJ] - S[lowI] > _tsMaxW * TSEPSILON || (fabs(S[lowI] - D[lowJ]) < _tsMaxW * TSEPSILON && Uhead->next != NULL)) {
|
| 724 |
|
|
//Delete Source
|
| 725 |
|
|
if (&U[lowI] == Uhead) { //Entering variable is first in list
|
| 726 |
|
|
Uhead = Uhead->next;
|
| 727 |
|
|
if (Uhead != NULL) Uhead->prev = NULL;
|
| 728 |
|
|
} else {
|
| 729 |
|
|
U[lowI].prev->next = U[lowI].next; //Entering variable is in middle of list;
|
| 730 |
|
|
if (U[lowI].next != NULL) //Entering variable is at the end of the list;
|
| 731 |
|
|
U[lowI].next->prev = U[lowI].prev;
|
| 732 |
|
|
}
|
| 733 |
|
|
//See if this source was the maximum cost for any dest
|
| 734 |
|
|
for (Vitr = Vhead; Vitr != NULL; Vitr = Vitr->next) {
|
| 735 |
|
|
if (Vitr->val == _tsC[lowI][Vitr->i]) {
|
| 736 |
|
|
//it is; update the dest
|
| 737 |
|
|
//find maximum cost in the dest
|
| 738 |
|
|
Vitr->val = 0;
|
| 739 |
|
|
for (Uitr = Uhead; Uitr != NULL; Uitr = Uitr->next)
|
| 740 |
|
|
if (_tsC[Uitr->i][Vitr->i] > Vitr->val)
|
| 741 |
|
|
Vitr->val = _tsC[Uitr->i][Vitr->i];
|
| 742 |
|
|
//update Delta
|
| 743 |
|
|
for (Uitr = Uhead; Uitr != NULL; Uitr = Uitr->next)
|
| 744 |
|
|
Delta[Uitr->i][Vitr->i] = _tsC[Uitr->i][Vitr->i] - Uitr->val - Vitr->val;
|
| 745 |
|
|
|
| 746 |
|
|
}
|
| 747 |
|
|
}
|
| 748 |
|
|
lowVal = S[lowI];
|
| 749 |
|
|
|
| 750 |
|
|
} else {
|
| 751 |
|
|
//Delete Dest
|
| 752 |
|
|
if (&V[lowJ] == Vhead) { //Entering variable is first in list
|
| 753 |
|
|
Vhead = Vhead->next;
|
| 754 |
|
|
if (Vhead != NULL) Vhead->prev = NULL;
|
| 755 |
|
|
} else {
|
| 756 |
|
|
V[lowJ].prev->next = V[lowJ].next; //Entering variable is in middle of list;
|
| 757 |
|
|
if (V[lowJ].next != NULL) //Entering variable is at the end of the list;
|
| 758 |
|
|
V[lowJ].next->prev = V[lowJ].prev;
|
| 759 |
|
|
}
|
| 760 |
|
|
//See if this source was the maximum cost for any dest
|
| 761 |
|
|
for (Uitr = Uhead; Uitr != NULL; Uitr = Uitr->next) {
|
| 762 |
|
|
if (Uitr->val == _tsC[Uitr->i][lowJ]) {
|
| 763 |
|
|
//it is; update the dest
|
| 764 |
|
|
//find maximum cost in the dest
|
| 765 |
|
|
Uitr->val = 0;
|
| 766 |
|
|
for (Vitr = Vhead; Vitr != NULL; Vitr = Vitr->next)
|
| 767 |
|
|
if (_tsC[Uitr->i][Vitr->i] > Uitr->val)
|
| 768 |
|
|
Uitr->val = _tsC[Uitr->i][Vitr->i];
|
| 769 |
|
|
//update Delta
|
| 770 |
|
|
for (Vitr = Vhead; Vitr != NULL; Vitr = Vitr->next)
|
| 771 |
|
|
Delta[Uitr->i][Vitr->i] = _tsC[Uitr->i][Vitr->i] - Uitr->val - Vitr->val;
|
| 772 |
|
|
|
| 773 |
|
|
}
|
| 774 |
|
|
}
|
| 775 |
|
|
lowVal = D[lowJ];
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
S[lowI] -= lowVal;
|
| 779 |
|
|
D[lowJ] -= lowVal;
|
| 780 |
|
|
|
| 781 |
|
|
isBasic[lowI][lowJ] = 1;
|
| 782 |
|
|
basicsEnd->val = lowVal;
|
| 783 |
|
|
basicsEnd->i = lowI;
|
| 784 |
|
|
basicsEnd->j = lowJ;
|
| 785 |
|
|
|
| 786 |
|
|
basicsEnd->nextSnk = snkBasics[lowJ];
|
| 787 |
|
|
if (snkBasics[lowJ] != NULL) snkBasics[lowJ]->prevSnk = basicsEnd;
|
| 788 |
|
|
basicsEnd->nextSrc = srcBasics[lowI];
|
| 789 |
|
|
if (srcBasics[lowI] != NULL) srcBasics[lowI]->prevSrc = basicsEnd;
|
| 790 |
|
|
|
| 791 |
|
|
srcBasics[lowI] = basicsEnd;
|
| 792 |
|
|
basicsEnd->prevSnk = NULL;
|
| 793 |
|
|
snkBasics[lowJ] = basicsEnd;
|
| 794 |
|
|
basicsEnd->prevSrc = NULL;
|
| 795 |
|
|
|
| 796 |
|
|
basicsEnd++;
|
| 797 |
|
|
|
| 798 |
|
|
}
|
| 799 |
|
|
|
| 800 |
|
|
delete[] U;
|
| 801 |
|
|
delete[] V;
|
| 802 |
|
|
for (i = 0; i < n1; i++)
|
| 803 |
|
|
delete[] Delta[i];
|
| 804 |
|
|
delete[] Delta;
|
| 805 |
|
|
}
|
| 806 |
|
|
}
|
| 807 |
|
|
#endif
|
| 808 |
|
|
|