| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
1.3 |
static const char RCSid[] = "$Id$";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
|
|
#include <math.h>
|
| 5 |
|
|
#include <string.h>
|
| 6 |
|
|
#include "vect.h"
|
| 7 |
|
|
|
| 8 |
|
|
#ifndef M_PI
|
| 9 |
|
|
#define M_PI 3.14159265358979323846
|
| 10 |
|
|
#endif
|
| 11 |
gregl |
1.2 |
#define PI ((double)M_PI)
|
| 12 |
greg |
1.1 |
|
| 13 |
|
|
#define EPSILON 1e-6
|
| 14 |
|
|
|
| 15 |
|
|
void adjoint (Matrix mat);
|
| 16 |
|
|
double det4x4 (Matrix mat);
|
| 17 |
|
|
double det3x3 (double a1, double a2, double a3, double b1, double b2,
|
| 18 |
|
|
double b3, double c1, double c2, double c3);
|
| 19 |
|
|
double det2x2 (double a, double b, double c, double d);
|
| 20 |
|
|
|
| 21 |
|
|
|
| 22 |
|
|
void vect_init (Vector v, float x, float y, float z)
|
| 23 |
|
|
{
|
| 24 |
|
|
v[X] = x;
|
| 25 |
|
|
v[Y] = y;
|
| 26 |
|
|
v[Z] = z;
|
| 27 |
|
|
}
|
| 28 |
|
|
|
| 29 |
|
|
|
| 30 |
|
|
void vect_copy (Vector v1, Vector v2)
|
| 31 |
|
|
{
|
| 32 |
|
|
v1[X] = v2[X];
|
| 33 |
|
|
v1[Y] = v2[Y];
|
| 34 |
|
|
v1[Z] = v2[Z];
|
| 35 |
|
|
}
|
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
int vect_equal (Vector v1, Vector v2)
|
| 39 |
|
|
{
|
| 40 |
|
|
if (v1[X] == v2[X] && v1[Y] == v2[Y] && v1[Z] == v2[Z])
|
| 41 |
|
|
return 1;
|
| 42 |
|
|
else
|
| 43 |
|
|
return 0;
|
| 44 |
|
|
}
|
| 45 |
|
|
|
| 46 |
|
|
|
| 47 |
|
|
void vect_add (Vector v1, Vector v2, Vector v3)
|
| 48 |
|
|
{
|
| 49 |
|
|
v1[X] = v2[X] + v3[X];
|
| 50 |
|
|
v1[Y] = v2[Y] + v3[Y];
|
| 51 |
|
|
v1[Z] = v2[Z] + v3[Z];
|
| 52 |
|
|
}
|
| 53 |
|
|
|
| 54 |
|
|
|
| 55 |
|
|
void vect_sub (Vector v1, Vector v2, Vector v3)
|
| 56 |
|
|
{
|
| 57 |
|
|
v1[X] = v2[X] - v3[X];
|
| 58 |
|
|
v1[Y] = v2[Y] - v3[Y];
|
| 59 |
|
|
v1[Z] = v2[Z] - v3[Z];
|
| 60 |
|
|
}
|
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
void vect_scale (Vector v1, Vector v2, float k)
|
| 64 |
|
|
{
|
| 65 |
|
|
v1[X] = k * v2[X];
|
| 66 |
|
|
v1[Y] = k * v2[Y];
|
| 67 |
|
|
v1[Z] = k * v2[Z];
|
| 68 |
|
|
}
|
| 69 |
|
|
|
| 70 |
|
|
|
| 71 |
|
|
float vect_mag (Vector v)
|
| 72 |
|
|
{
|
| 73 |
|
|
float mag = sqrt(v[X]*v[X] + v[Y]*v[Y] + v[Z]*v[Z]);
|
| 74 |
|
|
|
| 75 |
|
|
return mag;
|
| 76 |
|
|
}
|
| 77 |
|
|
|
| 78 |
|
|
|
| 79 |
|
|
void vect_normalize (Vector v)
|
| 80 |
|
|
{
|
| 81 |
|
|
float mag = vect_mag (v);
|
| 82 |
|
|
|
| 83 |
|
|
if (mag > 0.0)
|
| 84 |
|
|
vect_scale (v, v, 1.0/mag);
|
| 85 |
|
|
}
|
| 86 |
|
|
|
| 87 |
|
|
|
| 88 |
|
|
float vect_dot (Vector v1, Vector v2)
|
| 89 |
|
|
{
|
| 90 |
|
|
return (v1[X]*v2[X] + v1[Y]*v2[Y] + v1[Z]*v2[Z]);
|
| 91 |
|
|
}
|
| 92 |
|
|
|
| 93 |
|
|
|
| 94 |
|
|
void vect_cross (Vector v1, Vector v2, Vector v3)
|
| 95 |
|
|
{
|
| 96 |
|
|
v1[X] = (v2[Y] * v3[Z]) - (v2[Z] * v3[Y]);
|
| 97 |
|
|
v1[Y] = (v2[Z] * v3[X]) - (v2[X] * v3[Z]);
|
| 98 |
|
|
v1[Z] = (v2[X] * v3[Y]) - (v2[Y] * v3[X]);
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
|
|
void vect_min (Vector v1, Vector v2, Vector v3)
|
| 102 |
|
|
{
|
| 103 |
|
|
v1[X] = (v2[X] < v3[X]) ? v2[X] : v3[X];
|
| 104 |
|
|
v1[Y] = (v2[Y] < v3[Y]) ? v2[Y] : v3[Y];
|
| 105 |
|
|
v1[Z] = (v2[Z] < v3[Z]) ? v2[Z] : v3[Z];
|
| 106 |
|
|
}
|
| 107 |
|
|
|
| 108 |
|
|
|
| 109 |
|
|
void vect_max (Vector v1, Vector v2, Vector v3)
|
| 110 |
|
|
{
|
| 111 |
|
|
v1[X] = (v2[X] > v3[X]) ? v2[X] : v3[X];
|
| 112 |
|
|
v1[Y] = (v2[Y] > v3[Y]) ? v2[Y] : v3[Y];
|
| 113 |
|
|
v1[Z] = (v2[Z] > v3[Z]) ? v2[Z] : v3[Z];
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
|
|
|
| 117 |
|
|
/* Return the angle between two vectors */
|
| 118 |
|
|
float vect_angle (Vector v1, Vector v2)
|
| 119 |
|
|
{
|
| 120 |
|
|
float mag1, mag2, angle, cos_theta;
|
| 121 |
|
|
|
| 122 |
|
|
mag1 = vect_mag(v1);
|
| 123 |
|
|
mag2 = vect_mag(v2);
|
| 124 |
|
|
|
| 125 |
|
|
if (mag1 * mag2 == 0.0)
|
| 126 |
|
|
angle = 0.0;
|
| 127 |
|
|
else {
|
| 128 |
|
|
cos_theta = vect_dot(v1,v2) / (mag1 * mag2);
|
| 129 |
|
|
|
| 130 |
|
|
if (cos_theta <= -1.0)
|
| 131 |
|
|
angle = 180.0;
|
| 132 |
|
|
else if (cos_theta >= +1.0)
|
| 133 |
|
|
angle = 0.0;
|
| 134 |
|
|
else
|
| 135 |
gregl |
1.2 |
angle = (180.0/PI) * acos(cos_theta);
|
| 136 |
greg |
1.1 |
}
|
| 137 |
|
|
|
| 138 |
|
|
return angle;
|
| 139 |
|
|
}
|
| 140 |
|
|
|
| 141 |
|
|
|
| 142 |
|
|
void vect_print (FILE *f, Vector v, int dec, char sep)
|
| 143 |
|
|
{
|
| 144 |
|
|
char fstr[] = "%.4f, %.4f, %.4f";
|
| 145 |
|
|
|
| 146 |
|
|
if (dec < 0) dec = 0;
|
| 147 |
|
|
if (dec > 9) dec = 9;
|
| 148 |
|
|
|
| 149 |
|
|
fstr[2] = '0' + dec;
|
| 150 |
|
|
fstr[8] = '0' + dec;
|
| 151 |
|
|
fstr[14] = '0' + dec;
|
| 152 |
|
|
|
| 153 |
|
|
fstr[4] = sep;
|
| 154 |
|
|
fstr[10] = sep;
|
| 155 |
|
|
|
| 156 |
|
|
fprintf (f, fstr, v[X], v[Y], v[Z]);
|
| 157 |
|
|
}
|
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
|
/* Rotate a vector about the X, Y or Z axis */
|
| 161 |
|
|
void vect_rotate (Vector v1, Vector v2, int axis, float angle)
|
| 162 |
|
|
{
|
| 163 |
|
|
float cosa, sina;
|
| 164 |
|
|
|
| 165 |
gregl |
1.2 |
cosa = cos ((PI/180.0) * angle);
|
| 166 |
|
|
sina = sin ((PI/180.0) * angle);
|
| 167 |
greg |
1.1 |
|
| 168 |
|
|
switch (axis) {
|
| 169 |
|
|
case X:
|
| 170 |
|
|
v1[X] = v2[X];
|
| 171 |
|
|
v1[Y] = v2[Y] * cosa + v2[Z] * sina;
|
| 172 |
|
|
v1[Z] = v2[Z] * cosa - v2[Y] * sina;
|
| 173 |
|
|
break;
|
| 174 |
|
|
|
| 175 |
|
|
case Y:
|
| 176 |
|
|
v1[X] = v2[X] * cosa - v2[Z] * sina;
|
| 177 |
|
|
v1[Y] = v2[Y];
|
| 178 |
|
|
v1[Z] = v2[Z] * cosa + v2[X] * sina;
|
| 179 |
|
|
break;
|
| 180 |
|
|
|
| 181 |
|
|
case Z:
|
| 182 |
|
|
v1[X] = v2[X] * cosa + v2[Y] * sina;
|
| 183 |
|
|
v1[Y] = v2[Y] * cosa - v2[X] * sina;
|
| 184 |
|
|
v1[Z] = v2[Z];
|
| 185 |
|
|
break;
|
| 186 |
|
|
}
|
| 187 |
|
|
}
|
| 188 |
|
|
|
| 189 |
|
|
|
| 190 |
|
|
/* Rotate a vector about a specific axis */
|
| 191 |
|
|
void vect_axis_rotate (Vector v1, Vector v2, Vector axis, float angle)
|
| 192 |
|
|
{
|
| 193 |
|
|
float cosa, sina;
|
| 194 |
|
|
Matrix mat;
|
| 195 |
|
|
|
| 196 |
gregl |
1.2 |
cosa = cos ((PI/180.0) * angle);
|
| 197 |
|
|
sina = sin ((PI/180.0) * angle);
|
| 198 |
greg |
1.1 |
|
| 199 |
|
|
mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa);
|
| 200 |
|
|
mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina);
|
| 201 |
|
|
mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina);
|
| 202 |
|
|
mat[0][3] = 0.0;
|
| 203 |
|
|
|
| 204 |
|
|
mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina);
|
| 205 |
|
|
mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa);
|
| 206 |
|
|
mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina);
|
| 207 |
|
|
mat[1][3] = 0.0;
|
| 208 |
|
|
|
| 209 |
|
|
mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina);
|
| 210 |
|
|
mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina);
|
| 211 |
|
|
mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa);
|
| 212 |
|
|
mat[2][3] = 0.0;
|
| 213 |
|
|
|
| 214 |
|
|
mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0;
|
| 215 |
|
|
|
| 216 |
|
|
vect_transform (v1, v2, mat);
|
| 217 |
|
|
}
|
| 218 |
|
|
|
| 219 |
|
|
|
| 220 |
|
|
/* Transform the given vector */
|
| 221 |
|
|
void vect_transform (Vector v1, Vector v2, Matrix mat)
|
| 222 |
|
|
{
|
| 223 |
|
|
Vector tmp;
|
| 224 |
|
|
|
| 225 |
|
|
tmp[X] = (v2[X] * mat[0][0]) + (v2[Y] * mat[1][0]) + (v2[Z] * mat[2][0]) + mat[3][0];
|
| 226 |
|
|
tmp[Y] = (v2[X] * mat[0][1]) + (v2[Y] * mat[1][1]) + (v2[Z] * mat[2][1]) + mat[3][1];
|
| 227 |
|
|
tmp[Z] = (v2[X] * mat[0][2]) + (v2[Y] * mat[1][2]) + (v2[Z] * mat[2][2]) + mat[3][2];
|
| 228 |
|
|
|
| 229 |
|
|
vect_copy (v1, tmp);
|
| 230 |
|
|
}
|
| 231 |
|
|
|
| 232 |
|
|
|
| 233 |
|
|
/* Create an identity matrix */
|
| 234 |
|
|
void mat_identity (Matrix mat)
|
| 235 |
|
|
{
|
| 236 |
|
|
int i, j;
|
| 237 |
|
|
|
| 238 |
|
|
for (i = 0; i < 4; i++)
|
| 239 |
|
|
for (j = 0; j < 4; j++)
|
| 240 |
|
|
mat[i][j] = 0.0;
|
| 241 |
|
|
|
| 242 |
|
|
for (i = 0; i < 4; i++)
|
| 243 |
|
|
mat[i][i] = 1.0;
|
| 244 |
|
|
}
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
void mat_copy (Matrix mat1, Matrix mat2)
|
| 248 |
|
|
{
|
| 249 |
|
|
int i, j;
|
| 250 |
|
|
|
| 251 |
|
|
for (i = 0; i < 4; i++)
|
| 252 |
|
|
for (j = 0; j < 4; j++)
|
| 253 |
|
|
mat1[i][j] = mat2[i][j];
|
| 254 |
|
|
}
|
| 255 |
|
|
|
| 256 |
|
|
|
| 257 |
|
|
/* Rotate a matrix about the X, Y or Z axis */
|
| 258 |
|
|
void mat_rotate (Matrix mat1, Matrix mat2, int axis, float angle)
|
| 259 |
|
|
{
|
| 260 |
|
|
Matrix mat;
|
| 261 |
|
|
float cosa, sina;
|
| 262 |
|
|
|
| 263 |
gregl |
1.2 |
cosa = cos ((PI/180.0) * angle);
|
| 264 |
|
|
sina = sin ((PI/180.0) * angle);
|
| 265 |
greg |
1.1 |
|
| 266 |
|
|
mat_identity (mat);
|
| 267 |
|
|
|
| 268 |
|
|
switch (axis) {
|
| 269 |
|
|
case X:
|
| 270 |
|
|
mat[1][1] = cosa;
|
| 271 |
|
|
mat[1][2] = sina;
|
| 272 |
|
|
mat[2][1] = -sina;
|
| 273 |
|
|
mat[2][2] = cosa;
|
| 274 |
|
|
break;
|
| 275 |
|
|
|
| 276 |
|
|
case Y:
|
| 277 |
|
|
mat[0][0] = cosa;
|
| 278 |
|
|
mat[0][2] = -sina;
|
| 279 |
|
|
mat[2][0] = sina;
|
| 280 |
|
|
mat[2][2] = cosa;
|
| 281 |
|
|
break;
|
| 282 |
|
|
|
| 283 |
|
|
case Z:
|
| 284 |
|
|
mat[0][0] = cosa;
|
| 285 |
|
|
mat[0][1] = sina;
|
| 286 |
|
|
mat[1][0] = -sina;
|
| 287 |
|
|
mat[1][1] = cosa;
|
| 288 |
|
|
break;
|
| 289 |
|
|
}
|
| 290 |
|
|
|
| 291 |
|
|
mat_mult (mat1, mat2, mat);
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
|
| 295 |
|
|
void mat_axis_rotate (Matrix mat1, Matrix mat2, Vector axis, float angle)
|
| 296 |
|
|
{
|
| 297 |
|
|
float cosa, sina;
|
| 298 |
|
|
Matrix mat;
|
| 299 |
|
|
|
| 300 |
gregl |
1.2 |
cosa = cos ((PI/180.0) * angle);
|
| 301 |
|
|
sina = sin ((PI/180.0) * angle);
|
| 302 |
greg |
1.1 |
|
| 303 |
|
|
mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa);
|
| 304 |
|
|
mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina);
|
| 305 |
|
|
mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina);
|
| 306 |
|
|
mat[0][3] = 0.0;
|
| 307 |
|
|
|
| 308 |
|
|
mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina);
|
| 309 |
|
|
mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa);
|
| 310 |
|
|
mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina);
|
| 311 |
|
|
mat[1][3] = 0.0;
|
| 312 |
|
|
|
| 313 |
|
|
mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina);
|
| 314 |
|
|
mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina);
|
| 315 |
|
|
mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa);
|
| 316 |
|
|
mat[2][3] = 0.0;
|
| 317 |
|
|
|
| 318 |
|
|
mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0;
|
| 319 |
|
|
|
| 320 |
|
|
mat_mult (mat1, mat2, mat);
|
| 321 |
|
|
}
|
| 322 |
|
|
|
| 323 |
|
|
|
| 324 |
|
|
/* mat1 <-- mat2 * mat3 */
|
| 325 |
|
|
void mat_mult (Matrix mat1, Matrix mat2, Matrix mat3)
|
| 326 |
|
|
{
|
| 327 |
|
|
float sum;
|
| 328 |
|
|
int i, j, k;
|
| 329 |
|
|
Matrix result;
|
| 330 |
|
|
|
| 331 |
|
|
for (i = 0; i < 4; i++) {
|
| 332 |
|
|
for (j = 0; j < 4; j++) {
|
| 333 |
|
|
sum = 0.0;
|
| 334 |
|
|
|
| 335 |
|
|
for (k = 0; k < 4; k++)
|
| 336 |
|
|
sum = sum + mat2[i][k] * mat3[k][j];
|
| 337 |
|
|
|
| 338 |
|
|
result[i][j] = sum;
|
| 339 |
|
|
}
|
| 340 |
|
|
}
|
| 341 |
|
|
|
| 342 |
|
|
for (i = 0; i < 4; i++)
|
| 343 |
|
|
for (j = 0; j < 4; j++)
|
| 344 |
|
|
mat1[i][j] = result[i][j];
|
| 345 |
|
|
}
|
| 346 |
|
|
|
| 347 |
|
|
|
| 348 |
|
|
/*
|
| 349 |
|
|
Decodes a 3x4 transformation matrix into separate scale, rotation,
|
| 350 |
|
|
translation, and shear vectors. Based on a program by Spencer W.
|
| 351 |
|
|
Thomas (Graphics Gems II)
|
| 352 |
|
|
*/
|
| 353 |
|
|
void mat_decode (Matrix mat, Vector scale, Vector shear, Vector rotate,
|
| 354 |
|
|
Vector transl)
|
| 355 |
|
|
{
|
| 356 |
|
|
int i;
|
| 357 |
|
|
Vector row[3], temp;
|
| 358 |
|
|
|
| 359 |
|
|
for (i = 0; i < 3; i++)
|
| 360 |
|
|
transl[i] = mat[3][i];
|
| 361 |
|
|
|
| 362 |
|
|
for (i = 0; i < 3; i++) {
|
| 363 |
|
|
row[i][X] = mat[i][0];
|
| 364 |
|
|
row[i][Y] = mat[i][1];
|
| 365 |
|
|
row[i][Z] = mat[i][2];
|
| 366 |
|
|
}
|
| 367 |
|
|
|
| 368 |
|
|
scale[X] = vect_mag (row[0]);
|
| 369 |
|
|
vect_normalize (row[0]);
|
| 370 |
|
|
|
| 371 |
|
|
shear[X] = vect_dot (row[0], row[1]);
|
| 372 |
|
|
row[1][X] = row[1][X] - shear[X]*row[0][X];
|
| 373 |
|
|
row[1][Y] = row[1][Y] - shear[X]*row[0][Y];
|
| 374 |
|
|
row[1][Z] = row[1][Z] - shear[X]*row[0][Z];
|
| 375 |
|
|
|
| 376 |
|
|
scale[Y] = vect_mag (row[1]);
|
| 377 |
|
|
vect_normalize (row[1]);
|
| 378 |
|
|
|
| 379 |
|
|
if (scale[Y] != 0.0)
|
| 380 |
|
|
shear[X] /= scale[Y];
|
| 381 |
|
|
|
| 382 |
|
|
shear[Y] = vect_dot (row[0], row[2]);
|
| 383 |
|
|
row[2][X] = row[2][X] - shear[Y]*row[0][X];
|
| 384 |
|
|
row[2][Y] = row[2][Y] - shear[Y]*row[0][Y];
|
| 385 |
|
|
row[2][Z] = row[2][Z] - shear[Y]*row[0][Z];
|
| 386 |
|
|
|
| 387 |
|
|
shear[Z] = vect_dot (row[1], row[2]);
|
| 388 |
|
|
row[2][X] = row[2][X] - shear[Z]*row[1][X];
|
| 389 |
|
|
row[2][Y] = row[2][Y] - shear[Z]*row[1][Y];
|
| 390 |
|
|
row[2][Z] = row[2][Z] - shear[Z]*row[1][Z];
|
| 391 |
|
|
|
| 392 |
|
|
scale[Z] = vect_mag (row[2]);
|
| 393 |
|
|
vect_normalize (row[2]);
|
| 394 |
|
|
|
| 395 |
|
|
if (scale[Z] != 0.0) {
|
| 396 |
|
|
shear[Y] /= scale[Z];
|
| 397 |
|
|
shear[Z] /= scale[Z];
|
| 398 |
|
|
}
|
| 399 |
|
|
|
| 400 |
|
|
vect_cross (temp, row[1], row[2]);
|
| 401 |
|
|
if (vect_dot (row[0], temp) < 0.0) {
|
| 402 |
|
|
for (i = 0; i < 3; i++) {
|
| 403 |
|
|
scale[i] *= -1.0;
|
| 404 |
|
|
row[i][X] *= -1.0;
|
| 405 |
|
|
row[i][Y] *= -1.0;
|
| 406 |
|
|
row[i][Z] *= -1.0;
|
| 407 |
|
|
}
|
| 408 |
|
|
}
|
| 409 |
|
|
|
| 410 |
|
|
if (row[0][Z] < -1.0) row[0][Z] = -1.0;
|
| 411 |
|
|
if (row[0][Z] > +1.0) row[0][Z] = +1.0;
|
| 412 |
|
|
|
| 413 |
|
|
rotate[Y] = asin(-row[0][Z]);
|
| 414 |
|
|
|
| 415 |
|
|
if (fabs(cos(rotate[Y])) > EPSILON) {
|
| 416 |
|
|
rotate[X] = atan2 (row[1][Z], row[2][Z]);
|
| 417 |
|
|
rotate[Z] = atan2 (row[0][Y], row[0][X]);
|
| 418 |
|
|
}
|
| 419 |
|
|
else {
|
| 420 |
|
|
rotate[X] = atan2 (row[1][X], row[1][Y]);
|
| 421 |
|
|
rotate[Z] = 0.0;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
/* Convert the rotations to degrees */
|
| 425 |
gregl |
1.2 |
rotate[X] = (180.0/PI)*rotate[X];
|
| 426 |
|
|
rotate[Y] = (180.0/PI)*rotate[Y];
|
| 427 |
|
|
rotate[Z] = (180.0/PI)*rotate[Z];
|
| 428 |
greg |
1.1 |
}
|
| 429 |
|
|
|
| 430 |
|
|
|
| 431 |
|
|
/* Matrix inversion code from Graphics Gems */
|
| 432 |
|
|
|
| 433 |
|
|
/* mat1 <-- mat2^-1 */
|
| 434 |
|
|
float mat_inv (Matrix mat1, Matrix mat2)
|
| 435 |
|
|
{
|
| 436 |
|
|
int i, j;
|
| 437 |
|
|
float det;
|
| 438 |
|
|
|
| 439 |
|
|
if (mat1 != mat2) {
|
| 440 |
|
|
for (i = 0; i < 4; i++)
|
| 441 |
|
|
for (j = 0; j < 4; j++)
|
| 442 |
|
|
mat1[i][j] = mat2[i][j];
|
| 443 |
|
|
}
|
| 444 |
|
|
|
| 445 |
|
|
det = det4x4 (mat1);
|
| 446 |
|
|
|
| 447 |
|
|
if (fabs (det) < EPSILON)
|
| 448 |
|
|
return 0.0;
|
| 449 |
|
|
|
| 450 |
|
|
adjoint (mat1);
|
| 451 |
|
|
|
| 452 |
|
|
for (i = 0; i < 4; i++)
|
| 453 |
|
|
for(j = 0; j < 4; j++)
|
| 454 |
|
|
mat1[i][j] = mat1[i][j] / det;
|
| 455 |
|
|
|
| 456 |
|
|
return det;
|
| 457 |
|
|
}
|
| 458 |
|
|
|
| 459 |
|
|
|
| 460 |
|
|
void adjoint (Matrix mat)
|
| 461 |
|
|
{
|
| 462 |
|
|
double a1, a2, a3, a4, b1, b2, b3, b4;
|
| 463 |
|
|
double c1, c2, c3, c4, d1, d2, d3, d4;
|
| 464 |
|
|
|
| 465 |
|
|
a1 = mat[0][0]; b1 = mat[0][1];
|
| 466 |
|
|
c1 = mat[0][2]; d1 = mat[0][3];
|
| 467 |
|
|
|
| 468 |
|
|
a2 = mat[1][0]; b2 = mat[1][1];
|
| 469 |
|
|
c2 = mat[1][2]; d2 = mat[1][3];
|
| 470 |
|
|
|
| 471 |
|
|
a3 = mat[2][0]; b3 = mat[2][1];
|
| 472 |
|
|
c3 = mat[2][2]; d3 = mat[2][3];
|
| 473 |
|
|
|
| 474 |
|
|
a4 = mat[3][0]; b4 = mat[3][1];
|
| 475 |
|
|
c4 = mat[3][2]; d4 = mat[3][3];
|
| 476 |
|
|
|
| 477 |
|
|
/* row column labeling reversed since we transpose rows & columns */
|
| 478 |
|
|
mat[0][0] = det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
| 479 |
|
|
mat[1][0] = -det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
| 480 |
|
|
mat[2][0] = det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
| 481 |
|
|
mat[3][0] = -det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
| 482 |
|
|
|
| 483 |
|
|
mat[0][1] = -det3x3 (b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
| 484 |
|
|
mat[1][1] = det3x3 (a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
| 485 |
|
|
mat[2][1] = -det3x3 (a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
| 486 |
|
|
mat[3][1] = det3x3 (a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
| 487 |
|
|
|
| 488 |
|
|
mat[0][2] = det3x3 (b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
| 489 |
|
|
mat[1][2] = -det3x3 (a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
| 490 |
|
|
mat[2][2] = det3x3 (a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
| 491 |
|
|
mat[3][2] = -det3x3 (a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
| 492 |
|
|
|
| 493 |
|
|
mat[0][3] = -det3x3 (b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
| 494 |
|
|
mat[1][3] = det3x3 (a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
| 495 |
|
|
mat[2][3] = -det3x3 (a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
| 496 |
|
|
mat[3][3] = det3x3 (a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
|
| 500 |
|
|
double det4x4 (Matrix mat)
|
| 501 |
|
|
{
|
| 502 |
|
|
double ans;
|
| 503 |
|
|
double a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
|
| 504 |
|
|
|
| 505 |
|
|
a1 = mat[0][0]; b1 = mat[0][1];
|
| 506 |
|
|
c1 = mat[0][2]; d1 = mat[0][3];
|
| 507 |
|
|
|
| 508 |
|
|
a2 = mat[1][0]; b2 = mat[1][1];
|
| 509 |
|
|
c2 = mat[1][2]; d2 = mat[1][3];
|
| 510 |
|
|
|
| 511 |
|
|
a3 = mat[2][0]; b3 = mat[2][1];
|
| 512 |
|
|
c3 = mat[2][2]; d3 = mat[2][3];
|
| 513 |
|
|
|
| 514 |
|
|
a4 = mat[3][0]; b4 = mat[3][1];
|
| 515 |
|
|
c4 = mat[3][2]; d4 = mat[3][3];
|
| 516 |
|
|
|
| 517 |
|
|
ans = a1 * det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4) -
|
| 518 |
|
|
b1 * det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4) +
|
| 519 |
|
|
c1 * det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4) -
|
| 520 |
|
|
d1 * det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
| 521 |
|
|
|
| 522 |
|
|
return ans;
|
| 523 |
|
|
}
|
| 524 |
|
|
|
| 525 |
|
|
|
| 526 |
|
|
double det3x3 (double a1, double a2, double a3, double b1, double b2,
|
| 527 |
|
|
double b3, double c1, double c2, double c3)
|
| 528 |
|
|
{
|
| 529 |
|
|
double ans;
|
| 530 |
|
|
|
| 531 |
|
|
ans = a1 * det2x2 (b2, b3, c2, c3)
|
| 532 |
|
|
- b1 * det2x2 (a2, a3, c2, c3)
|
| 533 |
|
|
+ c1 * det2x2 (a2, a3, b2, b3);
|
| 534 |
|
|
|
| 535 |
|
|
return ans;
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
|
| 539 |
|
|
double det2x2 (double a, double b, double c, double d)
|
| 540 |
|
|
{
|
| 541 |
|
|
double ans;
|
| 542 |
|
|
ans = a * d - b * c;
|
| 543 |
|
|
return ans;
|
| 544 |
|
|
}
|
| 545 |
|
|
|