| 1 |
Enclosing IES File Notes
|
| 2 |
RCSid "$Id$"
|
| 3 |
|
| 4 |
The following notes describe how MGF data is to be referred to by
|
| 5 |
an enclosing IES luminaire file, and these notes are in a state of flux.
|
| 6 |
|
| 7 |
The basic method for specifying an MGF geometry file within an IES
|
| 8 |
file is a single line immediately preceeding the TILT= line, which reads:
|
| 9 |
|
| 10 |
GEOM=file.mgf
|
| 11 |
|
| 12 |
where "file.mgf" is replaced by the name of the relevant MGF file.
|
| 13 |
|
| 14 |
IES data file contains simplified geometry, which must completely
|
| 15 |
enclose the detailed geometry specified by the "GEOM=file.mgf" line.
|
| 16 |
This detailed geometry file is always in meters, whatever the units of
|
| 17 |
the enclosing IES file, and must have its origin at the center of the
|
| 18 |
simplified geometry. The X-axis corresponds to the 0-180 degree plane,
|
| 19 |
the Y-axis corresponds to the 90-270 degree plane, and the Z-axis
|
| 20 |
corresponds to the up direction. (This is a right-handed coordinate
|
| 21 |
system.)
|
| 22 |
|
| 23 |
The emission values in the MGF file will be multiplied by the usual
|
| 24 |
IES luminaire factors, i.e. the tilt factors (if any), the candela
|
| 25 |
multiplier, the ballast factor and the ballast lamp factor. Thus,
|
| 26 |
the MGF file emissions should correspond to those of the as-tested
|
| 27 |
luminaire configuration.
|