| 1 |
– |
/* Copyright (c) 1992 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
< |
* Convert IES luminaire data to Radiance description |
| 5 |
> |
* ies2rad -- Convert IES luminaire data to Radiance description |
| 6 |
|
* |
| 7 |
+ |
* ies2rad converts an IES LM-63 luminare description to a Radiance |
| 8 |
+ |
* luminaire description. In addition, ies2rad manages a local |
| 9 |
+ |
* database of Radiance luminaire files. |
| 10 |
+ |
* |
| 11 |
+ |
* Ies2rad generates two or three files for each luminaire. For a |
| 12 |
+ |
* luminaire named LUM, ies2rad will generate LUM.rad, a Radiance |
| 13 |
+ |
* scene description file which describes the light source, LUM.dat, |
| 14 |
+ |
* which contains the photometric data from the IES LM-63 file, and |
| 15 |
+ |
* (if tilt data is provided) LUM%.dat, which contains the tilt data |
| 16 |
+ |
* from the IES file. |
| 17 |
+ |
* |
| 18 |
+ |
* Ies2rad is supported by the Radiance function files source.cal and |
| 19 |
+ |
* tilt.cal, which transform the coordinates in the IES data into |
| 20 |
+ |
* Radiance (θ,φ) luminaire coordinates and then apply photometric and |
| 21 |
+ |
* tilt data to generate Radiance light. θ is altitude from the |
| 22 |
+ |
* negative z-axis and φ is azimuth from the positive x-axis, |
| 23 |
+ |
* increasing towards the positive y-axis. This system matches none of |
| 24 |
+ |
* the usual goniophotometric conventions, but it is closest to IES |
| 25 |
+ |
* type C; V in type C photometry is θ in Radiance and L is -φ. |
| 26 |
+ |
* |
| 27 |
+ |
* The ies2rad scene description for a luminaire LUM, with tilt data, |
| 28 |
+ |
* uses the following Radiance scene description primitives: |
| 29 |
+ |
* |
| 30 |
+ |
* void brightdata LUM_tilt |
| 31 |
+ |
* … |
| 32 |
+ |
* LUM_tilt brightdata LUM_dist |
| 33 |
+ |
* … |
| 34 |
+ |
* LUM_dist light LUM_light |
| 35 |
+ |
* … |
| 36 |
+ |
* LUM_light surface1 name1 |
| 37 |
+ |
* … |
| 38 |
+ |
* LUM_light surface2 name2 |
| 39 |
+ |
* … |
| 40 |
+ |
* LUM_light surface_n name_n |
| 41 |
+ |
* |
| 42 |
+ |
* Without tilt data, the primitives are: |
| 43 |
+ |
* |
| 44 |
+ |
* void brightdata LUM_dist |
| 45 |
+ |
* … |
| 46 |
+ |
* LUM_dist light LUM_light |
| 47 |
+ |
* … |
| 48 |
+ |
* LUM_light surface1 name1 |
| 49 |
+ |
* … |
| 50 |
+ |
* LUM_light surface2 name2 |
| 51 |
+ |
* … |
| 52 |
+ |
* LUM_light surface_n name_n |
| 53 |
+ |
* |
| 54 |
+ |
* As many surfaces are given as required to describe the light |
| 55 |
+ |
* source. Illum may be used rather than light so that a visible form |
| 56 |
+ |
* (impostor) may be given to the luminaire, rather than a simple |
| 57 |
+ |
* glowing shape. If an impostor is provided, it must be wholly |
| 58 |
+ |
* contained within the illum and if it provides impostor light |
| 59 |
+ |
* sources, those must be given with glow, so that they do not |
| 60 |
+ |
* themselves illuminate the scene, providing incorrect results. |
| 61 |
+ |
* |
| 62 |
+ |
* The ies2rad code uses the "bsd" style. For emacs, this is set up |
| 63 |
+ |
* automatically in the "Local Variables" section at the end of the |
| 64 |
+ |
* file. For vim, use ":set tabstop=8 shiftwidth=8". |
| 65 |
+ |
* |
| 66 |
|
* 07Apr90 Greg Ward |
| 67 |
+ |
* |
| 68 |
+ |
* Fixed correction factor for flat sources 29Oct2001 GW |
| 69 |
+ |
* Extensive comments added by Randolph Fritz May2018 |
| 70 |
|
*/ |
| 71 |
|
|
| 72 |
< |
#include <stdio.h> |
| 72 |
> |
#include <math.h> |
| 73 |
|
#include <ctype.h> |
| 74 |
+ |
|
| 75 |
+ |
#include "rtio.h" |
| 76 |
|
#include "color.h" |
| 77 |
|
#include "paths.h" |
| 78 |
|
|
| 79 |
|
#define PI 3.14159265358979323846 |
| 80 |
< |
/* floating comparisons */ |
| 80 |
> |
|
| 81 |
> |
/* floating comparisons -- floating point numbers within FTINY of each |
| 82 |
> |
* other are considered equal */ |
| 83 |
|
#define FTINY 1e-6 |
| 84 |
|
#define FEQ(a,b) ((a)<=(b)+FTINY&&(a)>=(b)-FTINY) |
| 85 |
< |
/* tilt specs */ |
| 85 |
> |
|
| 86 |
> |
|
| 87 |
> |
/* IESNA LM-63 keywords and constants */ |
| 88 |
> |
/* Since 1991, LM-63 files have begun with the magic keyword IESNA */ |
| 89 |
> |
#define MAGICID "IESNA" |
| 90 |
> |
#define LMAGICID 5 |
| 91 |
> |
/* But newer files start with IESNA:LM-63- */ |
| 92 |
> |
#define MAGICID2 "IESNA:LM-63-" |
| 93 |
> |
#define LMAGICID2 12 |
| 94 |
> |
/* ies2rad supports the 1986, 1991, and 1995 versions of |
| 95 |
> |
* LM-63. FIRSTREV describes the first version; LASTREV describes the |
| 96 |
> |
* 1995 version. */ |
| 97 |
> |
#define FIRSTREV 86 |
| 98 |
> |
#define LASTREV 95 |
| 99 |
> |
|
| 100 |
> |
/* The following definitions support LM-63 file keyword reading and |
| 101 |
> |
* analysis. |
| 102 |
> |
* |
| 103 |
> |
* This section defines two function-like macros: keymatch(i,s), which |
| 104 |
> |
* checks to see if keyword i matches string s, and checklamp(s), |
| 105 |
> |
* which checks to see if a string matches the keywords "LAMP" or |
| 106 |
> |
* "LAMPCAT". |
| 107 |
> |
* |
| 108 |
> |
* LM-63-1986 files begin with a list of free-form label lines. |
| 109 |
> |
* LM-63-1991 files begin with the identifying line "IESNA91" followed |
| 110 |
> |
* by a list of formatted keywords. LM-63-1995 files begin with the |
| 111 |
> |
* identifying line "IESNA:LM-63-1995" followed by a list of formatted |
| 112 |
> |
* keywords. |
| 113 |
> |
* |
| 114 |
> |
* The K_* #defines enumerate the keywords used in the different |
| 115 |
> |
* versions of the file and give them symbolic names. |
| 116 |
> |
* |
| 117 |
> |
* The D86, D91, and D95 #defines validate the keywords in the 1986, |
| 118 |
> |
* 1991, and 1995 versions of the standard, one bit per keyword. |
| 119 |
> |
* Since the 1986 standard does not use keywords, D86 is zero. The |
| 120 |
> |
* 1991 standard has 13 keywords, and D91 has the lower 13 bits set. |
| 121 |
> |
* The 1995 standard has 14 keywords, and D95 has the lower 14 bits |
| 122 |
> |
* set. |
| 123 |
> |
* |
| 124 |
> |
*/ |
| 125 |
> |
#define D86 0 |
| 126 |
> |
|
| 127 |
> |
#define K_TST 0 |
| 128 |
> |
#define K_MAN 1 |
| 129 |
> |
#define K_LMC 2 |
| 130 |
> |
#define K_LMN 3 |
| 131 |
> |
#define K_LPC 4 |
| 132 |
> |
#define K_LMP 5 |
| 133 |
> |
#define K_BAL 6 |
| 134 |
> |
#define K_MTC 7 |
| 135 |
> |
#define K_OTH 8 |
| 136 |
> |
#define K_SCH 9 |
| 137 |
> |
#define K_MOR 10 |
| 138 |
> |
#define K_BLK 11 |
| 139 |
> |
#define K_EBK 12 |
| 140 |
> |
|
| 141 |
> |
/* keywords defined in LM-63-1991 */ |
| 142 |
> |
#define D91 ((1L<<13)-1) |
| 143 |
> |
|
| 144 |
> |
#define K_LMG 13 |
| 145 |
> |
|
| 146 |
> |
/* keywords defined in LM-63-1995 */ |
| 147 |
> |
#define D95 ((1L<<14)-1) |
| 148 |
> |
|
| 149 |
> |
char k_kwd[][20] = {"TEST", "MANUFAC", "LUMCAT", "LUMINAIRE", "LAMPCAT", |
| 150 |
> |
"LAMP", "BALLAST", "MAINTCAT", "OTHER", "SEARCH", |
| 151 |
> |
"MORE", "BLOCK", "ENDBLOCK", "LUMINOUSGEOMETRY"}; |
| 152 |
> |
|
| 153 |
> |
long k_defined[] = {D86, D86, D86, D86, D86, D91, D91, D91, D91, D95}; |
| 154 |
> |
|
| 155 |
> |
int filerev = FIRSTREV; |
| 156 |
> |
|
| 157 |
> |
#define keymatch(i,s) (k_defined[filerev-FIRSTREV]&1L<<(i) &&\ |
| 158 |
> |
k_match(k_kwd[i],s)) |
| 159 |
> |
|
| 160 |
> |
#define checklamp(s) (!(k_defined[filerev-FIRSTREV]&(1<<K_LMP|1<<K_LPC)) ||\ |
| 161 |
> |
keymatch(K_LMP,s) || keymatch(K_LPC,s)) |
| 162 |
> |
|
| 163 |
> |
/* tilt specs |
| 164 |
> |
* |
| 165 |
> |
* This next series of definitions address metal-halide lamps, which |
| 166 |
> |
* change their brightness depending on the angle at which they are |
| 167 |
> |
* mounted. The section begins with "TILT=". The constants in this |
| 168 |
> |
* section are all defined in LM-63. |
| 169 |
> |
* |
| 170 |
> |
*/ |
| 171 |
> |
|
| 172 |
|
#define TLTSTR "TILT=" |
| 173 |
|
#define TLTSTRLEN 5 |
| 174 |
|
#define TLTNONE "NONE" |
| 176 |
|
#define TLT_VERT 1 |
| 177 |
|
#define TLT_H0 2 |
| 178 |
|
#define TLT_H90 3 |
| 179 |
< |
/* photometric types */ |
| 179 |
> |
|
| 180 |
> |
/* Constants from LM-63 files */ |
| 181 |
> |
|
| 182 |
> |
/* photometric types |
| 183 |
> |
* |
| 184 |
> |
* This enumeration reflects three different methods of measuring the |
| 185 |
> |
* distribution of light from a luminaire -- "goniophotometry" -- and |
| 186 |
> |
* the different coordinate systems related to these |
| 187 |
> |
* goniophotometers. All are described in IES standard LM-75-01. |
| 188 |
> |
* Earlier and shorter descriptions may be found the LM-63 standards |
| 189 |
> |
* from 1986, 1991, and 1995. |
| 190 |
> |
* |
| 191 |
> |
* ies2rad does not support type A photometry. |
| 192 |
> |
* |
| 193 |
> |
* In the 1986 file format, LM-63-86, 1 is used for type C and type A |
| 194 |
> |
* photometric data. |
| 195 |
> |
* |
| 196 |
> |
*/ |
| 197 |
|
#define PM_C 1 |
| 198 |
|
#define PM_B 2 |
| 199 |
< |
/* unit types */ |
| 199 |
> |
#define PM_A 3 |
| 200 |
> |
|
| 201 |
> |
/* unit types */ |
| 202 |
|
#define U_FEET 1 |
| 203 |
|
#define U_METERS 2 |
| 204 |
< |
/* string lengths */ |
| 205 |
< |
#define MAXLINE 132 |
| 206 |
< |
#define MAXWORD 76 |
| 207 |
< |
/* file types */ |
| 204 |
> |
|
| 205 |
> |
/* string lengths */ |
| 206 |
> |
/* Maximum input line is 256 characters including CR LF at end. */ |
| 207 |
> |
#define MAXLINE 257 |
| 208 |
> |
#define RMAXWORD 76 |
| 209 |
> |
|
| 210 |
> |
/* End of LM-63-related #defines */ |
| 211 |
> |
|
| 212 |
> |
/* file extensions */ |
| 213 |
|
#define T_RAD ".rad" |
| 214 |
|
#define T_DST ".dat" |
| 215 |
< |
#define T_TLT "+.dat" |
| 216 |
< |
/* shape types */ |
| 215 |
> |
#define T_TLT "%.dat" |
| 216 |
> |
#define T_OCT ".oct" |
| 217 |
> |
|
| 218 |
> |
/* shape types |
| 219 |
> |
* These #defines enumerate the shapes of the Radiance objects which |
| 220 |
> |
* emit the light. |
| 221 |
> |
*/ |
| 222 |
|
#define RECT 1 |
| 223 |
|
#define DISK 2 |
| 224 |
|
#define SPHERE 3 |
| 225 |
|
|
| 226 |
< |
#define MINDIM .001 /* minimum dimension (point source) */ |
| 226 |
> |
/* The diameter of a point source luminaire model. Also the minimum |
| 227 |
> |
* size (in meters) that the luminous opening of a luminaire must have |
| 228 |
> |
* to be treated as other than a point source. */ |
| 229 |
> |
#define MINDIM .001 |
| 230 |
|
|
| 231 |
< |
#define F_M .3048 /* feet to meters */ |
| 231 |
> |
/* feet to meters */ |
| 232 |
> |
/* length_in_meters = length_in_feet * F_M */ |
| 233 |
> |
#define F_M .3048 |
| 234 |
|
|
| 235 |
+ |
/* abspath - return true if a path begins with a directory separator |
| 236 |
+ |
* or a '.' (current directory) */ |
| 237 |
|
#define abspath(p) (ISDIRSEP((p)[0]) || (p)[0] == '.') |
| 238 |
|
|
| 239 |
+ |
/* Global variables. |
| 240 |
+ |
* |
| 241 |
+ |
* Mostly, these are a way of communicating command line parameters to |
| 242 |
+ |
* the rest of the program. |
| 243 |
+ |
*/ |
| 244 |
|
static char default_name[] = "default"; |
| 245 |
|
|
| 246 |
|
char *libdir = NULL; /* library directory location */ |
| 254 |
|
float *lampcolor = defcolor; /* pointer to current lamp color */ |
| 255 |
|
double multiplier = 1.0; /* multiplier for all light sources */ |
| 256 |
|
char units[64] = "meters"; /* output units */ |
| 257 |
+ |
int out2stdout = 0; /* put out to stdout r.t. file */ |
| 258 |
+ |
int instantiate = 0; /* instantiate geometry */ |
| 259 |
|
double illumrad = 0.0; /* radius for illum sphere */ |
| 260 |
|
|
| 261 |
+ |
/* This struct describes the Radiance source object */ |
| 262 |
|
typedef struct { |
| 263 |
+ |
int isillum; /* do as illum */ |
| 264 |
|
int type; /* RECT, DISK, SPHERE */ |
| 265 |
+ |
double mult; /* candela multiplier */ |
| 266 |
|
double w, l, h; /* width, length, height */ |
| 267 |
|
double area; /* max. projected area */ |
| 268 |
< |
} SHAPE; /* a source shape */ |
| 268 |
> |
} SRCINFO; /* a source shape (units=meters) */ |
| 269 |
|
|
| 270 |
< |
int gargc; /* global argc (minus filenames) */ |
| 270 |
> |
/* A count and pointer to the list of input file names */ |
| 271 |
> |
int gargc; /* global argc */ |
| 272 |
|
char **gargv; /* global argv */ |
| 273 |
|
|
| 274 |
< |
extern char *strcpy(), *strcat(), *stradd(), *tailtrunc(), *filetrunc(), |
| 275 |
< |
*filename(), *libname(), *fullname(), *malloc(), |
| 276 |
< |
*getword(), *atos(); |
| 277 |
< |
extern float *matchlamp(); |
| 278 |
< |
|
| 274 |
> |
/* macros to scan numbers out of IES files |
| 275 |
> |
* |
| 276 |
> |
* fp is a file pointer. scnint() places the number in the integer |
| 277 |
> |
* indicated by ip; scnflt() places the number in the double indicated |
| 278 |
> |
* by rp. The macros return 1 if successful, 0 if not. |
| 279 |
> |
* |
| 280 |
> |
*/ |
| 281 |
|
#define scnint(fp,ip) cvtint(ip,getword(fp)) |
| 282 |
|
#define scnflt(fp,rp) cvtflt(rp,getword(fp)) |
| 85 |
– |
#define isint isflt /* IES allows real as integer */ |
| 283 |
|
|
| 284 |
+ |
/* The original (1986) version of LM-63 allows decimals points in |
| 285 |
+ |
* integers, so that, for instance, the number of lamps may be written |
| 286 |
+ |
* 3.0 (the number, obviously, must still be an integer.) This |
| 287 |
+ |
* confusing define accommodates that. */ |
| 288 |
+ |
#define isint isflt |
| 289 |
|
|
| 290 |
< |
main(argc, argv) |
| 291 |
< |
int argc; |
| 292 |
< |
char *argv[]; |
| 290 |
> |
/* Function declarations */ |
| 291 |
> |
static int ies2rad(char *inpname, char *outname); |
| 292 |
> |
static void initlamps(void); |
| 293 |
> |
static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name); |
| 294 |
> |
static int dotilt(FILE *in, FILE *out, char *dir, char *tltspec, |
| 295 |
> |
char *dfltname, char *tltid); |
| 296 |
> |
static int cvgeometry(char *inpname, SRCINFO *sinf, char *outname, FILE *outfp); |
| 297 |
> |
static int cvtint(int *ip, char *wrd); |
| 298 |
> |
static int cvdata(FILE *in, FILE *out, int ndim, int npts[], double mult, |
| 299 |
> |
double lim[][2]); |
| 300 |
> |
static int cvtflt(double *rp, char *wrd); |
| 301 |
> |
static int makeshape(SRCINFO *shp, double width, double length, double height); |
| 302 |
> |
static int putsource(SRCINFO *shp, FILE *fp, char *mod, char *name, |
| 303 |
> |
int dolower, int doupper, int dosides); |
| 304 |
> |
static void putrectsrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); |
| 305 |
> |
static void putsides(SRCINFO *shp, FILE *fp, char *mod, char *name); |
| 306 |
> |
static void putdisksrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); |
| 307 |
> |
static void putspheresrc(SRCINFO *shp, FILE *fp, char *mod, char *name); |
| 308 |
> |
static void putrect(SRCINFO *shp, FILE *fp, char *mod, char *name, char *suffix, |
| 309 |
> |
int a, int b, int c, int d); |
| 310 |
> |
static void putpoint(SRCINFO *shp, FILE *fp, int p); |
| 311 |
> |
static void putcyl(SRCINFO *shp, FILE *fp, char *mod, char *name); |
| 312 |
> |
static char * tailtrunc(char *name); |
| 313 |
> |
static char * filename(char *path); |
| 314 |
> |
static char * libname(char *path, char *fname, char *suffix); |
| 315 |
> |
static char * getword(FILE *fp); |
| 316 |
> |
static char * fullnam(char *path, char *fname, char *suffix); |
| 317 |
> |
|
| 318 |
> |
/* main - process arguments and run the conversion |
| 319 |
> |
* |
| 320 |
> |
* Refer to the man page for details of the arguments. |
| 321 |
> |
* |
| 322 |
> |
* Following Unix environment conventions, main() exits with 0 on |
| 323 |
> |
* success and 1 on failure. |
| 324 |
> |
* |
| 325 |
> |
* ies2rad outputs either two or three files for a given IES |
| 326 |
> |
* file. There is always a .rad file containing Radiance scene |
| 327 |
> |
* description primitives and a .dat file for the photometric data. If |
| 328 |
> |
* tilt data is given, that is placed in a separate .dat file. So |
| 329 |
> |
* ies2rad must have a filename to operate. Sometimes this name is the |
| 330 |
> |
* input file name, shorn of its extension; sometimes it is given in |
| 331 |
> |
* the -o option. But an output file name is required for ies2rad to |
| 332 |
> |
* do its work. |
| 333 |
> |
* |
| 334 |
> |
* Older versions of the LM-63 standard allowed inclusion of multiple |
| 335 |
> |
* luminaires in one IES file; this is not supported by ies2rad. |
| 336 |
> |
* |
| 337 |
> |
* This code sometimes does not check to make sure it has not run out |
| 338 |
> |
* of arguments; this can lead to segmentation faults and perhaps |
| 339 |
> |
* other errors. |
| 340 |
> |
* |
| 341 |
> |
*/ |
| 342 |
> |
int |
| 343 |
> |
main( |
| 344 |
> |
int argc, |
| 345 |
> |
char *argv[] |
| 346 |
> |
) |
| 347 |
|
{ |
| 348 |
|
char *outfile = NULL; |
| 349 |
|
int status; |
| 350 |
< |
char outname[MAXWORD]; |
| 350 |
> |
char outname[RMAXWORD]; |
| 351 |
|
double d1; |
| 352 |
|
int i; |
| 353 |
< |
|
| 353 |
> |
|
| 354 |
> |
/* Scan the options */ |
| 355 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
| 356 |
|
switch (argv[i][1]) { |
| 357 |
|
case 'd': /* dimensions */ |
| 413 |
|
case 'f': /* lamp data file */ |
| 414 |
|
lampdat = argv[++i]; |
| 415 |
|
break; |
| 416 |
< |
case 'o': /* output file name */ |
| 416 |
> |
case 'o': /* output file root name */ |
| 417 |
|
outfile = argv[++i]; |
| 418 |
|
break; |
| 419 |
+ |
case 's': /* output to stdout */ |
| 420 |
+ |
out2stdout = !out2stdout; |
| 421 |
+ |
break; |
| 422 |
|
case 'i': /* illum */ |
| 423 |
|
illumrad = atof(argv[++i]); |
| 164 |
– |
if (illumrad < MINDIM) |
| 165 |
– |
illumrad = MINDIM; |
| 424 |
|
break; |
| 425 |
+ |
case 'g': /* instantiate geometry? */ |
| 426 |
+ |
instantiate = !instantiate; |
| 427 |
+ |
break; |
| 428 |
|
case 't': /* override lamp type */ |
| 429 |
|
lamptype = argv[++i]; |
| 430 |
|
break; |
| 445 |
|
argv[0], argv[i]); |
| 446 |
|
exit(1); |
| 447 |
|
} |
| 448 |
+ |
/* Save pointers to the list of input file names */ |
| 449 |
|
gargc = i; |
| 450 |
|
gargv = argv; |
| 451 |
< |
initlamps(); /* get lamp data (if needed) */ |
| 452 |
< |
/* convert ies file(s) */ |
| 451 |
> |
|
| 452 |
> |
/* get lamp data (if needed) */ |
| 453 |
> |
initlamps(); |
| 454 |
> |
|
| 455 |
> |
/* convert ies file(s) */ |
| 456 |
> |
/* If an output file name is specified */ |
| 457 |
|
if (outfile != NULL) { |
| 458 |
|
if (i == argc) |
| 459 |
+ |
/* If no input filename is given, use stdin as |
| 460 |
+ |
* the source for the IES file */ |
| 461 |
|
exit(ies2rad(NULL, outfile) == 0 ? 0 : 1); |
| 462 |
|
else if (i == argc-1) |
| 463 |
+ |
/* If exactly one input file name is given, use it. */ |
| 464 |
|
exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1); |
| 465 |
< |
else { |
| 466 |
< |
fprintf(stderr, "%s: single input file required\n", |
| 198 |
< |
argv[0]); |
| 199 |
< |
exit(1); |
| 200 |
< |
} |
| 465 |
> |
else |
| 466 |
> |
goto needsingle; /* Otherwise, error. */ |
| 467 |
|
} else if (i >= argc) { |
| 468 |
+ |
/* If an output file and an input file are not give, error. */ |
| 469 |
|
fprintf(stderr, "%s: missing output file specification\n", |
| 470 |
|
argv[0]); |
| 471 |
|
exit(1); |
| 472 |
|
} |
| 473 |
+ |
/* If no input or output file is given, error. */ |
| 474 |
+ |
if (out2stdout && i != argc-1) |
| 475 |
+ |
goto needsingle; |
| 476 |
+ |
/* Otherwise, process each input file in turn. */ |
| 477 |
|
status = 0; |
| 478 |
|
for ( ; i < argc; i++) { |
| 479 |
|
tailtrunc(strcpy(outname,filename(argv[i]))); |
| 481 |
|
status = 1; |
| 482 |
|
} |
| 483 |
|
exit(status); |
| 484 |
+ |
needsingle: |
| 485 |
+ |
fprintf(stderr, "%s: single input file required\n", argv[0]); |
| 486 |
+ |
exit(1); |
| 487 |
|
} |
| 488 |
|
|
| 489 |
< |
|
| 490 |
< |
initlamps() /* set up lamps */ |
| 489 |
> |
/* Initlamps -- If necessary, read lamp data table */ |
| 490 |
> |
void |
| 491 |
> |
initlamps(void) /* set up lamps */ |
| 492 |
|
{ |
| 493 |
|
float *lcol; |
| 494 |
|
int status; |
| 495 |
|
|
| 496 |
+ |
/* If the lamp name is set to default, don't bother to read |
| 497 |
+ |
* the lamp data table. */ |
| 498 |
|
if (lamptype != NULL && !strcmp(lamptype, default_name) && |
| 499 |
|
deflamp == NULL) |
| 500 |
< |
return; /* no need for data */ |
| 501 |
< |
/* else load file */ |
| 502 |
< |
if ((status = loadlamps(lampdat)) < 0) |
| 503 |
< |
exit(1); |
| 500 |
> |
return; |
| 501 |
> |
|
| 502 |
> |
if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */ |
| 503 |
> |
exit(1); /* Exit if problems |
| 504 |
> |
* with the file. */ |
| 505 |
|
if (status == 0) { |
| 506 |
+ |
/* If can't open the file, just use the standard default lamp */ |
| 507 |
|
fprintf(stderr, "%s: warning - no lamp data\n", lampdat); |
| 508 |
|
lamptype = default_name; |
| 509 |
|
return; |
| 510 |
|
} |
| 511 |
< |
if (deflamp != NULL) { /* match default type */ |
| 511 |
> |
if (deflamp != NULL) { |
| 512 |
> |
/* Look up the specified default lamp type */ |
| 513 |
|
if ((lcol = matchlamp(deflamp)) == NULL) |
| 514 |
+ |
/* If it can't be found, use the default */ |
| 515 |
|
fprintf(stderr, |
| 516 |
|
"%s: warning - unknown default lamp type\n", |
| 517 |
|
deflamp); |
| 518 |
|
else |
| 519 |
+ |
/* Use the selected default lamp color */ |
| 520 |
|
copycolor(defcolor, lcol); |
| 521 |
|
} |
| 522 |
< |
if (lamptype != NULL) { /* match selected type */ |
| 522 |
> |
/* If a lamp type is specified and can be found, use it, and |
| 523 |
> |
* release the lamp data table memory; it won't be needed any more. */ |
| 524 |
> |
if (lamptype != NULL) { |
| 525 |
|
if (strcmp(lamptype, default_name)) { |
| 526 |
|
if ((lcol = matchlamp(lamptype)) == NULL) { |
| 527 |
|
fprintf(stderr, |
| 533 |
|
} |
| 534 |
|
freelamps(); /* all done with data */ |
| 535 |
|
} |
| 536 |
< |
/* else keep lamp data */ |
| 536 |
> |
/* else keep lamp data */ |
| 537 |
|
} |
| 538 |
|
|
| 539 |
+ |
/* |
| 540 |
+ |
* File path operations |
| 541 |
+ |
* |
| 542 |
+ |
* These provide file path operations that operate on both MS-Windows |
| 543 |
+ |
* and *nix. They will ignore and pass, but will not necessarily |
| 544 |
+ |
* process correctly, Windows drive letters. Paths including Windows |
| 545 |
+ |
* UNC network names (\\server\folder\file) may also cause problems. |
| 546 |
+ |
* |
| 547 |
+ |
*/ |
| 548 |
|
|
| 549 |
+ |
/* |
| 550 |
+ |
* stradd() |
| 551 |
+ |
* |
| 552 |
+ |
* Add a string to the end of a string, optionally concatenating a |
| 553 |
+ |
* file path separator character. If the path already ends with a |
| 554 |
+ |
* path separator, no additional separator is appended. |
| 555 |
+ |
* |
| 556 |
+ |
*/ |
| 557 |
|
char * |
| 558 |
< |
stradd(dst, src, sep) /* add a string at dst */ |
| 559 |
< |
register char *dst, *src; |
| 560 |
< |
int sep; |
| 558 |
> |
stradd( /* add a string at dst */ |
| 559 |
> |
char *dst, |
| 560 |
> |
char *src, |
| 561 |
> |
int sep |
| 562 |
> |
) |
| 563 |
|
{ |
| 564 |
|
if (src && *src) { |
| 565 |
|
do |
| 572 |
|
return(dst); |
| 573 |
|
} |
| 574 |
|
|
| 575 |
< |
|
| 575 |
> |
/* |
| 576 |
> |
* fullnam () - return a usable path name for an output file |
| 577 |
> |
*/ |
| 578 |
|
char * |
| 579 |
< |
fullname(path, fname, suffix) /* return full path name */ |
| 580 |
< |
char *path, *fname, *suffix; |
| 579 |
> |
fullnam( |
| 580 |
> |
char *path, /* The base directory path */ |
| 581 |
> |
char *fname, /* The file name */ |
| 582 |
> |
char *suffix /* A suffix, which usually contains |
| 583 |
> |
* a file name extension. */ |
| 584 |
> |
) |
| 585 |
|
{ |
| 586 |
+ |
extern char *prefdir; |
| 587 |
+ |
extern char *libdir; |
| 588 |
+ |
|
| 589 |
|
if (prefdir != NULL && abspath(prefdir)) |
| 590 |
+ |
/* If the subdirectory path is absolute or '.', just |
| 591 |
+ |
* concatenate the names together */ |
| 592 |
|
libname(path, fname, suffix); |
| 593 |
|
else if (abspath(fname)) |
| 594 |
+ |
/* If there is no subdirectory, and the file name is |
| 595 |
+ |
* an absolute path or '.', concatenate the path, |
| 596 |
+ |
* filename, and suffix. */ |
| 597 |
|
strcpy(stradd(path, fname, 0), suffix); |
| 598 |
|
else |
| 599 |
+ |
/* If the file name is relative, concatenate path, |
| 600 |
+ |
* library directory, directory separator, file name, |
| 601 |
+ |
* and suffix. */ |
| 602 |
|
libname(stradd(path, libdir, DIRSEP), fname, suffix); |
| 603 |
|
|
| 604 |
|
return(path); |
| 605 |
|
} |
| 606 |
|
|
| 607 |
|
|
| 608 |
+ |
/* |
| 609 |
+ |
* libname - convert a file name to a path |
| 610 |
+ |
*/ |
| 611 |
|
char * |
| 612 |
< |
libname(path, fname, suffix) /* return library relative name */ |
| 613 |
< |
char *path, *fname, *suffix; |
| 612 |
> |
libname( |
| 613 |
> |
char *path, /* The base directory path */ |
| 614 |
> |
char *fname, /* The file name */ |
| 615 |
> |
char *suffix /* A suffix, which usually contains |
| 616 |
> |
* a file name extension. */ |
| 617 |
> |
) |
| 618 |
|
{ |
| 619 |
+ |
extern char *prefdir; /* The subdirectory where the file |
| 620 |
+ |
* name is stored. */ |
| 621 |
+ |
|
| 622 |
|
if (abspath(fname)) |
| 623 |
+ |
/* If the file name begins with '/' or '.', combine |
| 624 |
+ |
* it with the path and attach the suffix */ |
| 625 |
|
strcpy(stradd(path, fname, 0), suffix); |
| 626 |
|
else |
| 627 |
+ |
/* If the file name is relative, attach it to the |
| 628 |
+ |
* path, include the subdirectory, and append the suffix. */ |
| 629 |
|
strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix); |
| 630 |
|
|
| 631 |
|
return(path); |
| 632 |
|
} |
| 633 |
|
|
| 634 |
< |
|
| 634 |
> |
/* filename - find the base file name in a buffer containing a path |
| 635 |
> |
* |
| 636 |
> |
* The pointer is to a character within the buffer, not a string in itself; |
| 637 |
> |
* it will become invalid when the buffer is freed. |
| 638 |
> |
* |
| 639 |
> |
*/ |
| 640 |
|
char * |
| 641 |
< |
filename(path) /* get final component of pathname */ |
| 642 |
< |
register char *path; |
| 641 |
> |
filename( |
| 642 |
> |
char *path |
| 643 |
> |
) |
| 644 |
|
{ |
| 645 |
< |
register char *cp; |
| 645 |
> |
char *cp; |
| 646 |
|
|
| 647 |
|
for (cp = path; *path; path++) |
| 648 |
|
if (ISDIRSEP(*path)) |
| 651 |
|
} |
| 652 |
|
|
| 653 |
|
|
| 654 |
+ |
/* filetrunc() - return the directory portion of a path |
| 655 |
+ |
* |
| 656 |
+ |
* The path is passed in in a pointer to a buffer; a null character is |
| 657 |
+ |
* inserted in the buffer after the last directory separator |
| 658 |
+ |
* |
| 659 |
+ |
*/ |
| 660 |
|
char * |
| 661 |
< |
filetrunc(path) /* truncate filename at end of path */ |
| 662 |
< |
char *path; |
| 661 |
> |
filetrunc( |
| 662 |
> |
char *path |
| 663 |
> |
) |
| 664 |
|
{ |
| 665 |
< |
register char *p1, *p2; |
| 665 |
> |
char *p1, *p2; |
| 666 |
|
|
| 667 |
|
for (p1 = p2 = path; *p2; p2++) |
| 668 |
|
if (ISDIRSEP(*p2)) |
| 669 |
|
p1 = p2; |
| 670 |
+ |
if (p1 == path && ISDIRSEP(*p1)) |
| 671 |
+ |
p1++; |
| 672 |
|
*p1 = '\0'; |
| 673 |
|
return(path); |
| 674 |
|
} |
| 675 |
|
|
| 676 |
< |
|
| 676 |
> |
/* tailtrunc() - trim a file name extension, if any. |
| 677 |
> |
* |
| 678 |
> |
* The file name is passed in in a buffer indicated by *name; the |
| 679 |
> |
* period which begins the extension is replaced with a 0 byte. |
| 680 |
> |
*/ |
| 681 |
|
char * |
| 682 |
< |
tailtrunc(name) /* truncate tail of filename */ |
| 683 |
< |
char *name; |
| 682 |
> |
tailtrunc( |
| 683 |
> |
char *name |
| 684 |
> |
) |
| 685 |
|
{ |
| 686 |
< |
register char *p1, *p2; |
| 686 |
> |
char *p1, *p2; |
| 687 |
|
|
| 688 |
+ |
/* Skip leading periods */ |
| 689 |
|
for (p1 = filename(name); *p1 == '.'; p1++) |
| 690 |
|
; |
| 691 |
+ |
/* Find the last period in a file name */ |
| 692 |
|
p2 = NULL; |
| 693 |
|
for ( ; *p1; p1++) |
| 694 |
|
if (*p1 == '.') |
| 695 |
|
p2 = p1; |
| 696 |
+ |
/* If present, trim the filename at that period */ |
| 697 |
|
if (p2 != NULL) |
| 698 |
|
*p2 = '\0'; |
| 699 |
|
return(name); |
| 700 |
|
} |
| 701 |
|
|
| 702 |
< |
|
| 703 |
< |
blanktrunc(s) /* truncate spaces at end of line */ |
| 704 |
< |
char *s; |
| 702 |
> |
/* blanktrunc() - trim spaces at the end of a string |
| 703 |
> |
* |
| 704 |
> |
* the string is passed in a character array, which is modified |
| 705 |
> |
*/ |
| 706 |
> |
void |
| 707 |
> |
blanktrunc( |
| 708 |
> |
char *s |
| 709 |
> |
) |
| 710 |
|
{ |
| 711 |
< |
register char *cp; |
| 711 |
> |
char *cp; |
| 712 |
|
|
| 713 |
|
for (cp = s; *cp; cp++) |
| 714 |
|
; |
| 717 |
|
*++cp = '\0'; |
| 718 |
|
} |
| 719 |
|
|
| 720 |
+ |
/* k_match - return true if keyword matches header line */ |
| 721 |
+ |
int |
| 722 |
+ |
k_match( |
| 723 |
+ |
char *kwd, /* keyword */ |
| 724 |
+ |
char *hdl /* header line */ |
| 725 |
+ |
) |
| 726 |
+ |
{ |
| 727 |
+ |
/* Skip leading spaces */ |
| 728 |
+ |
while (isspace(*hdl)) |
| 729 |
+ |
hdl++; |
| 730 |
+ |
/* The line has to begin with '[' */ |
| 731 |
+ |
if (*hdl++ != '[') |
| 732 |
+ |
return(0); |
| 733 |
+ |
/* case-independent keyword match */ |
| 734 |
+ |
while (toupper(*hdl) == *kwd++) |
| 735 |
+ |
if (!*hdl++) |
| 736 |
+ |
return(0); |
| 737 |
+ |
/* If we have come to the end of the keyword, and the keyword |
| 738 |
+ |
* at the beginning of the matched line is terminated with |
| 739 |
+ |
* ']', return 1 */ |
| 740 |
+ |
return(!kwd[-1] & (*hdl == ']')); |
| 741 |
+ |
} |
| 742 |
|
|
| 743 |
< |
putheader(out) /* print header */ |
| 744 |
< |
FILE *out; |
| 743 |
> |
/* keyargs - return the argument of a keyword, without leading spaces |
| 744 |
> |
* |
| 745 |
> |
* keyargs is passed a pointer to a buffer; it returns a pointer to |
| 746 |
> |
* where the argument starts in the buffer |
| 747 |
> |
* |
| 748 |
> |
*/ |
| 749 |
> |
char * |
| 750 |
> |
keyargs( |
| 751 |
> |
char *hdl /* header line */ |
| 752 |
> |
) |
| 753 |
|
{ |
| 754 |
< |
register int i; |
| 755 |
< |
|
| 754 |
> |
while (*hdl && *hdl++ != ']') |
| 755 |
> |
; |
| 756 |
> |
while (isspace(*hdl)) |
| 757 |
> |
hdl++; |
| 758 |
> |
return(hdl); |
| 759 |
> |
} |
| 760 |
> |
|
| 761 |
> |
|
| 762 |
> |
/* putheader - output the header of the .rad file |
| 763 |
> |
* |
| 764 |
> |
* Header is: |
| 765 |
> |
* # <file> <file> <file> (all files from input line) |
| 766 |
> |
* # Dimensions in [feet,meters,etc.] |
| 767 |
> |
* |
| 768 |
> |
* ??? Is listing all the input file names correct behavior? |
| 769 |
> |
* |
| 770 |
> |
*/ |
| 771 |
> |
void |
| 772 |
> |
|
| 773 |
> |
putheader( |
| 774 |
> |
FILE *out |
| 775 |
> |
) |
| 776 |
> |
{ |
| 777 |
> |
int i; |
| 778 |
> |
|
| 779 |
|
putc('#', out); |
| 780 |
|
for (i = 0; i < gargc; i++) { |
| 781 |
|
putc(' ', out); |
| 786 |
|
putc('\n', out); |
| 787 |
|
} |
| 788 |
|
|
| 789 |
< |
|
| 790 |
< |
ies2rad(inpname, outname) /* convert IES file */ |
| 791 |
< |
char *inpname, *outname; |
| 789 |
> |
/* ies2rad - convert an IES LM-63 file to a Radiance light source desc. |
| 790 |
> |
* |
| 791 |
> |
* Return -1 in case of failure, 0 in case of success. |
| 792 |
> |
* |
| 793 |
> |
* The file version recognition is confused and will treat 1995 and |
| 794 |
> |
* 2002 version files as 1986 version files. |
| 795 |
> |
* |
| 796 |
> |
*/ |
| 797 |
> |
int |
| 798 |
> |
ies2rad( /* convert IES file */ |
| 799 |
> |
char *inpname, |
| 800 |
> |
char *outname |
| 801 |
> |
) |
| 802 |
|
{ |
| 803 |
< |
char buf[MAXLINE], tltid[MAXWORD]; |
| 803 |
> |
SRCINFO srcinfo; |
| 804 |
> |
char buf[MAXLINE], tltid[RMAXWORD]; |
| 805 |
> |
char geomfile[128]; |
| 806 |
|
FILE *inpfp, *outfp; |
| 807 |
+ |
int lineno = 0; |
| 808 |
|
|
| 809 |
+ |
/* Open input and output files */ |
| 810 |
+ |
geomfile[0] = '\0'; |
| 811 |
+ |
srcinfo.isillum = 0; |
| 812 |
|
if (inpname == NULL) { |
| 813 |
|
inpname = "<stdin>"; |
| 814 |
|
inpfp = stdin; |
| 816 |
|
perror(inpname); |
| 817 |
|
return(-1); |
| 818 |
|
} |
| 819 |
< |
if ((outfp = fopen(fullname(buf,outname,T_RAD), "w")) == NULL) { |
| 819 |
> |
if (out2stdout) |
| 820 |
> |
outfp = stdout; |
| 821 |
> |
else if ((outfp = fopen(fullnam(buf,outname,T_RAD), "w")) == NULL) { |
| 822 |
|
perror(buf); |
| 823 |
|
fclose(inpfp); |
| 824 |
|
return(-1); |
| 825 |
|
} |
| 826 |
+ |
|
| 827 |
+ |
/* Output the output file header */ |
| 828 |
|
putheader(outfp); |
| 829 |
+ |
|
| 830 |
+ |
/* If the lamp type wasn't given on the command line, mark |
| 831 |
+ |
* the lamp color as missing */ |
| 832 |
|
if (lamptype == NULL) |
| 833 |
|
lampcolor = NULL; |
| 834 |
+ |
|
| 835 |
+ |
/* Read the input file header, copying lines to the .rad file |
| 836 |
+ |
* and looking for a lamp type. Stop at EOF or a line |
| 837 |
+ |
* beginning with "TILT=". */ |
| 838 |
|
while (fgets(buf,sizeof(buf),inpfp) != NULL |
| 839 |
|
&& strncmp(buf,TLTSTR,TLTSTRLEN)) { |
| 840 |
< |
blanktrunc(buf); |
| 841 |
< |
if (!buf[0]) |
| 840 |
> |
blanktrunc(buf); /* Trim trailing spaces, CR, LF. */ |
| 841 |
> |
if (!buf[0]) /* Skip blank lines */ |
| 842 |
|
continue; |
| 843 |
+ |
/* increment the header line count, and check for the |
| 844 |
+ |
* "TILT=" line that terminates the header */ |
| 845 |
+ |
if (!lineno++) { /* first line may be magic */ |
| 846 |
+ |
if (!strncmp(buf, MAGICID2, LMAGICID2)) |
| 847 |
+ |
filerev = atoi(buf+LMAGICID2) - 1900; |
| 848 |
+ |
else if (!strncmp(buf, MAGICID, LMAGICID)) |
| 849 |
+ |
filerev = atoi(buf+LMAGICID); |
| 850 |
+ |
if (filerev < FIRSTREV) |
| 851 |
+ |
filerev = FIRSTREV; |
| 852 |
+ |
else if (filerev > LASTREV) |
| 853 |
+ |
filerev = LASTREV; |
| 854 |
+ |
} |
| 855 |
+ |
/* Output the header line as a comment in the .rad file. */ |
| 856 |
|
fputs("#<", outfp); |
| 857 |
|
fputs(buf, outfp); |
| 858 |
|
putc('\n', outfp); |
| 859 |
< |
if (lampcolor == NULL) |
| 860 |
< |
lampcolor = matchlamp(buf); |
| 859 |
> |
|
| 860 |
> |
/* If the header line is a keyword line (file version |
| 861 |
> |
* later than 1986 and begins with '['), check a lamp |
| 862 |
> |
* in the "[LAMP]" and "[LAMPCAT]" keyword lines; |
| 863 |
> |
* otherwise check all lines. */ |
| 864 |
> |
if (lampcolor == NULL && checklamp(buf)) |
| 865 |
> |
lampcolor = matchlamp(*sskip2(buf,0) == '[' ? |
| 866 |
> |
keyargs(buf) : buf ); |
| 867 |
> |
/* Look for a materials and geometry file in the keywords. */ |
| 868 |
> |
if (keymatch(K_LMG, buf)) { |
| 869 |
> |
strcpy(geomfile, inpname); |
| 870 |
> |
strcpy(filename(geomfile), keyargs(buf)); |
| 871 |
> |
srcinfo.isillum = 1; |
| 872 |
> |
} |
| 873 |
|
} |
| 874 |
+ |
|
| 875 |
+ |
/* Done reading header information. If a lamp color still |
| 876 |
+ |
* hasn't been found, print a warning and use the default |
| 877 |
+ |
* color; if a lamp type hasn't been found, but a color has |
| 878 |
+ |
* been specified, used the specified color. */ |
| 879 |
|
if (lampcolor == NULL) { |
| 880 |
|
fprintf(stderr, "%s: warning - no lamp type\n", inpname); |
| 881 |
+ |
fputs("# Unknown lamp type (used default)\n", outfp); |
| 882 |
|
lampcolor = defcolor; |
| 883 |
< |
} |
| 883 |
> |
} else if (lamptype == NULL) |
| 884 |
> |
fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n", |
| 885 |
> |
lampcolor[3], lampcolor[4], 100.*lampcolor[5]); |
| 886 |
> |
|
| 887 |
> |
/* If the file ended before a "TILT=" line, that's an error. */ |
| 888 |
|
if (feof(inpfp)) { |
| 889 |
|
fprintf(stderr, "%s: not in IES format\n", inpname); |
| 890 |
|
goto readerr; |
| 891 |
|
} |
| 892 |
< |
atos(tltid, MAXWORD, buf+TLTSTRLEN); |
| 892 |
> |
|
| 893 |
> |
/* Process the tilt section of the file. */ |
| 894 |
> |
/* Get the tilt file name, or the keyword "INCLUDE". */ |
| 895 |
> |
atos(tltid, RMAXWORD, buf+TLTSTRLEN); |
| 896 |
|
if (inpfp == stdin) |
| 897 |
|
buf[0] = '\0'; |
| 898 |
|
else |
| 899 |
|
filetrunc(strcpy(buf, inpname)); |
| 900 |
+ |
/* Process the tilt data. */ |
| 901 |
|
if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) { |
| 902 |
|
fprintf(stderr, "%s: bad tilt data\n", inpname); |
| 903 |
|
goto readerr; |
| 904 |
|
} |
| 905 |
< |
if (dosource(inpfp, outfp, tltid, outname) != 0) { |
| 905 |
> |
|
| 906 |
> |
/* Process the luminaire data. */ |
| 907 |
> |
if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) { |
| 908 |
|
fprintf(stderr, "%s: bad luminaire data\n", inpname); |
| 909 |
|
goto readerr; |
| 910 |
|
} |
| 911 |
< |
fclose(outfp); |
| 911 |
> |
|
| 912 |
> |
/* Close the input file */ |
| 913 |
|
fclose(inpfp); |
| 914 |
+ |
|
| 915 |
+ |
/* Process an MGF file, if present. cvgeometry() closes outfp. */ |
| 916 |
+ |
if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) { |
| 917 |
+ |
fprintf(stderr, "%s: bad geometry file\n", geomfile); |
| 918 |
+ |
return(-1); |
| 919 |
+ |
} |
| 920 |
|
return(0); |
| 921 |
+ |
|
| 922 |
|
readerr: |
| 923 |
< |
fclose(outfp); |
| 923 |
> |
/* If there is an error reading the file, close the input and |
| 924 |
> |
* .rad output files, and delete the .rad file, returning -1. */ |
| 925 |
|
fclose(inpfp); |
| 926 |
< |
unlink(fullname(buf,outname,T_RAD)); |
| 926 |
> |
fclose(outfp); |
| 927 |
> |
unlink(fullnam(buf,outname,T_RAD)); |
| 928 |
|
return(-1); |
| 929 |
|
} |
| 930 |
|
|
| 931 |
< |
|
| 932 |
< |
dotilt(in, out, dir, tltspec, dfltname, tltid) /* convert tilt data */ |
| 933 |
< |
FILE *in, *out; |
| 934 |
< |
char *dir, *tltspec, *dfltname, *tltid; |
| 931 |
> |
/* dotilt -- process tilt data |
| 932 |
> |
* |
| 933 |
> |
* Generate a brightdata primitive which describes the effect of |
| 934 |
> |
* luminaire tilt on luminaire output and return its identifier in tltid. |
| 935 |
> |
* |
| 936 |
> |
* Tilt data (if present) is given as a number 1, 2, or 3, which |
| 937 |
> |
* specifies the orientation of the lamp within the luminaire, a |
| 938 |
> |
* number, n, of (angle, multiplier) pairs, followed by n angles and n |
| 939 |
> |
* multipliers. |
| 940 |
> |
* |
| 941 |
> |
* returns 0 for success, -1 for error |
| 942 |
> |
*/ |
| 943 |
> |
int |
| 944 |
> |
dotilt( |
| 945 |
> |
FILE *in, |
| 946 |
> |
FILE *out, |
| 947 |
> |
char *dir, |
| 948 |
> |
char *tltspec, |
| 949 |
> |
char *dfltname, |
| 950 |
> |
char *tltid |
| 951 |
> |
) |
| 952 |
|
{ |
| 953 |
|
int nangles, tlt_type; |
| 954 |
< |
double minmax[2]; |
| 955 |
< |
char buf[MAXPATH], tltname[MAXWORD]; |
| 954 |
> |
double minmax[1][2]; |
| 955 |
> |
char buf[PATH_MAX], tltname[RMAXWORD]; |
| 956 |
|
FILE *datin, *datout; |
| 957 |
|
|
| 958 |
+ |
/* Decide where the tilt data is; if the luminaire description |
| 959 |
+ |
* doesn't have a tilt section, set the identifier to "void". */ |
| 960 |
|
if (!strcmp(tltspec, TLTNONE)) { |
| 961 |
+ |
/* If the line is "TILT=NONE", set the input file |
| 962 |
+ |
* pointer to NULL and the identifier to "void". */ |
| 963 |
|
datin = NULL; |
| 964 |
|
strcpy(tltid, "void"); |
| 965 |
|
} else if (!strcmp(tltspec, TLTINCL)) { |
| 966 |
+ |
/* If the line is "TILT=INCLUDE" use the main IES |
| 967 |
+ |
* file as the source of tilt data. */ |
| 968 |
|
datin = in; |
| 969 |
|
strcpy(tltname, dfltname); |
| 970 |
|
} else { |
| 971 |
+ |
/* If the line is "TILE=<filename>", use that file |
| 972 |
+ |
* name as the source of tilt data. */ |
| 973 |
|
if (ISDIRSEP(tltspec[0])) |
| 974 |
|
strcpy(buf, tltspec); |
| 975 |
|
else |
| 980 |
|
} |
| 981 |
|
tailtrunc(strcpy(tltname,filename(tltspec))); |
| 982 |
|
} |
| 983 |
+ |
/* If tilt data is present, read, process, and output it. */ |
| 984 |
|
if (datin != NULL) { |
| 985 |
< |
if ((datout = fopen(fullname(buf,tltname,T_TLT),"w")) == NULL) { |
| 985 |
> |
/* Try to open the output file */ |
| 986 |
> |
if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) { |
| 987 |
|
perror(buf); |
| 988 |
|
if (datin != in) |
| 989 |
|
fclose(datin); |
| 990 |
|
return(-1); |
| 991 |
|
} |
| 992 |
+ |
/* Try to copy the tilt data to the tilt data file */ |
| 993 |
|
if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles) |
| 994 |
|
|| cvdata(datin,datout,1,&nangles,1.,minmax) != 0) { |
| 995 |
|
fprintf(stderr, "%s: data format error\n", tltspec); |
| 996 |
|
fclose(datout); |
| 997 |
|
if (datin != in) |
| 998 |
|
fclose(datin); |
| 999 |
< |
unlink(fullname(buf,tltname,T_TLT)); |
| 999 |
> |
unlink(fullnam(buf,tltname,T_TLT)); |
| 1000 |
|
return(-1); |
| 1001 |
|
} |
| 1002 |
|
fclose(datout); |
| 1003 |
|
if (datin != in) |
| 1004 |
|
fclose(datin); |
| 1005 |
+ |
|
| 1006 |
+ |
/* Generate the identifier of the brightdata; the filename |
| 1007 |
+ |
* with "_tilt" appended. */ |
| 1008 |
|
strcat(strcpy(tltid, filename(tltname)), "_tilt"); |
| 1009 |
+ |
/* Write out the brightdata primitive */ |
| 1010 |
|
fprintf(out, "\nvoid brightdata %s\n", tltid); |
| 1011 |
|
libname(buf,tltname,T_TLT); |
| 1012 |
+ |
/* Generate the tilt description */ |
| 1013 |
|
switch (tlt_type) { |
| 1014 |
< |
case TLT_VERT: /* vertical */ |
| 1014 |
> |
case TLT_VERT: |
| 1015 |
> |
/* The lamp is mounted vertically; either |
| 1016 |
> |
* base up or base down. */ |
| 1017 |
|
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
| 1018 |
< |
minmax[1]>90.+FTINY ? "tilt_ang" : "tilt_ang2"); |
| 1018 |
> |
minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2"); |
| 1019 |
|
break; |
| 1020 |
< |
case TLT_H0: /* horiz. in 0 deg. plane */ |
| 1020 |
> |
case TLT_H0: |
| 1021 |
> |
/* The lamp is mounted horizontally and |
| 1022 |
> |
* rotates but does not tilt when the |
| 1023 |
> |
* luminaire is tilted. */ |
| 1024 |
|
fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf, |
| 1025 |
< |
minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
| 1025 |
> |
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
| 1026 |
|
break; |
| 1027 |
|
case TLT_H90: |
| 1028 |
+ |
/* The lamp is mounted horizontally, and |
| 1029 |
+ |
* tilts when the luminaire is tilted. */ |
| 1030 |
|
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
| 1031 |
< |
minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
| 1031 |
> |
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
| 1032 |
|
break; |
| 1033 |
|
default: |
| 1034 |
+ |
/* otherwise, this is a bad IES file */ |
| 1035 |
|
fprintf(stderr, |
| 1036 |
|
"%s: illegal lamp to luminaire geometry (%d)\n", |
| 1037 |
|
tltspec, tlt_type); |
| 1038 |
|
return(-1); |
| 1039 |
|
} |
| 1040 |
+ |
/* And finally output the numbers of integer and real |
| 1041 |
+ |
* arguments, of which there are none. */ |
| 1042 |
|
fprintf(out, "0\n0\n"); |
| 1043 |
|
} |
| 1044 |
|
return(0); |
| 1045 |
|
} |
| 1046 |
|
|
| 1047 |
< |
|
| 1048 |
< |
dosource(in, out, mod, name) /* create source and distribution */ |
| 1049 |
< |
FILE *in, *out; |
| 1050 |
< |
char *mod, *name; |
| 1047 |
> |
/* dosource -- create the source and distribution primitives */ |
| 1048 |
> |
int |
| 1049 |
> |
dosource( |
| 1050 |
> |
SRCINFO *sinf, |
| 1051 |
> |
FILE *in, |
| 1052 |
> |
FILE *out, |
| 1053 |
> |
char *mod, |
| 1054 |
> |
char *name |
| 1055 |
> |
) |
| 1056 |
|
{ |
| 1057 |
< |
SHAPE srcshape; |
| 517 |
< |
char buf[MAXPATH], id[MAXWORD]; |
| 1057 |
> |
char buf[PATH_MAX], id[RMAXWORD]; |
| 1058 |
|
FILE *datout; |
| 1059 |
|
double mult, bfactor, pfactor, width, length, height, wattage; |
| 1060 |
|
double bounds[2][2]; |
| 1061 |
|
int nangles[2], pmtype, unitype; |
| 1062 |
|
double d1; |
| 1063 |
+ |
int doupper, dolower, dosides; |
| 1064 |
|
|
| 1065 |
+ |
/* Read in the luminaire description header */ |
| 1066 |
|
if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult) |
| 1067 |
|
|| !scnint(in,&nangles[0]) || !scnint(in,&nangles[1]) |
| 1068 |
|
|| !scnint(in,&pmtype) || !scnint(in,&unitype) |
| 1072 |
|
fprintf(stderr, "dosource: bad lamp specification\n"); |
| 1073 |
|
return(-1); |
| 1074 |
|
} |
| 1075 |
+ |
/* Type A photometry is not supported */ |
| 1076 |
+ |
if (pmtype != PM_C && pmtype != PM_B) { |
| 1077 |
+ |
fprintf(stderr, "dosource: unsupported photometric type (%d)\n", |
| 1078 |
+ |
pmtype); |
| 1079 |
+ |
return(-1); |
| 1080 |
+ |
} |
| 1081 |
+ |
|
| 1082 |
+ |
/* Multiplier = the multiplier from the -m option, times the |
| 1083 |
+ |
* multiplier from the IES file, times the ballast factor, |
| 1084 |
+ |
* times the "ballast lamp photometric factor," which was part |
| 1085 |
+ |
* of the 1986 and 1991 standards. In the 1995 standard, it is |
| 1086 |
+ |
* always supposed to be 1. */ |
| 1087 |
+ |
sinf->mult = multiplier*mult*bfactor*pfactor; |
| 1088 |
+ |
|
| 1089 |
+ |
/* If the count of angles is wrong, raise an error and quit. */ |
| 1090 |
|
if (nangles[0] < 2 || nangles[1] < 1) { |
| 1091 |
|
fprintf(stderr, "dosource: too few measured angles\n"); |
| 1092 |
|
return(-1); |
| 1093 |
|
} |
| 1094 |
+ |
|
| 1095 |
+ |
/* For internal computation, convert units to meters. */ |
| 1096 |
|
if (unitype == U_FEET) { |
| 1097 |
|
width *= F_M; |
| 1098 |
|
length *= F_M; |
| 1099 |
|
height *= F_M; |
| 1100 |
|
} |
| 1101 |
< |
if (makeshape(&srcshape, width, length, height) != 0) { |
| 1101 |
> |
|
| 1102 |
> |
/* Make decisions about the shape of the light source |
| 1103 |
> |
* geometry, and store them in sinf. */ |
| 1104 |
> |
if (makeshape(sinf, width, length, height) != 0) { |
| 1105 |
|
fprintf(stderr, "dosource: illegal source dimensions"); |
| 1106 |
|
return(-1); |
| 1107 |
|
} |
| 1108 |
< |
if ((datout = fopen(fullname(buf,name,T_DST), "w")) == NULL) { |
| 1108 |
> |
|
| 1109 |
> |
/* Copy the candela values into a Radiance data file. */ |
| 1110 |
> |
if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) { |
| 1111 |
|
perror(buf); |
| 1112 |
|
return(-1); |
| 1113 |
|
} |
| 1114 |
|
if (cvdata(in, datout, 2, nangles, 1./WHTEFFICACY, bounds) != 0) { |
| 1115 |
|
fprintf(stderr, "dosource: bad distribution data\n"); |
| 1116 |
|
fclose(datout); |
| 1117 |
< |
unlink(fullname(buf,name,T_DST)); |
| 1117 |
> |
unlink(fullnam(buf,name,T_DST)); |
| 1118 |
|
return(-1); |
| 1119 |
|
} |
| 1120 |
|
fclose(datout); |
| 1121 |
+ |
|
| 1122 |
+ |
/* Output explanatory comment */ |
| 1123 |
|
fprintf(out, "# %g watt luminaire, lamp*ballast factor = %g\n", |
| 1124 |
|
wattage, bfactor*pfactor); |
| 1125 |
+ |
/* Output distribution "brightdata" primitive. Start handling |
| 1126 |
+ |
the various cases of symmetry of the distribution. */ |
| 1127 |
|
strcat(strcpy(id, filename(name)), "_dist"); |
| 1128 |
|
fprintf(out, "\n%s brightdata %s\n", mod, id); |
| 1129 |
|
if (nangles[1] < 2) |
| 1131 |
|
else if (pmtype == PM_B) |
| 1132 |
|
fprintf(out, "5 "); |
| 1133 |
|
else if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) |
| 1134 |
< |
fprintf(out, "8 "); |
| 1134 |
> |
fprintf(out, "7 "); |
| 1135 |
|
else |
| 1136 |
< |
fprintf(out, "6 "); |
| 1136 |
> |
fprintf(out, "5 "); |
| 1137 |
> |
|
| 1138 |
> |
/* If the generated source geometry will be a box, a flat |
| 1139 |
> |
* rectangle, or a disk figure out if it needs a top, a |
| 1140 |
> |
* bottom, and/or sides. */ |
| 1141 |
> |
dolower = (bounds[0][0] < 90.-FTINY); /* Bottom */ |
| 1142 |
> |
doupper = (bounds[0][1] > 90.+FTINY); /* Top */ |
| 1143 |
> |
dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */ |
| 1144 |
> |
|
| 1145 |
> |
/* Select the appropriate function and parameters from source.cal */ |
| 1146 |
|
fprintf(out, "%s %s source.cal ", |
| 1147 |
< |
srcshape.type==SPHERE ? "corr" : "flatcorr", |
| 1147 |
> |
sinf->type==SPHERE ? "corr" : |
| 1148 |
> |
!dosides ? "flatcorr" : |
| 1149 |
> |
sinf->type==DISK ? "cylcorr" : "boxcorr", |
| 1150 |
|
libname(buf,name,T_DST)); |
| 1151 |
|
if (pmtype == PM_B) { |
| 1152 |
|
if (FEQ(bounds[1][0],0.)) |
| 1154 |
|
else |
| 1155 |
|
fprintf(out, "srcB_horiz "); |
| 1156 |
|
fprintf(out, "srcB_vert "); |
| 1157 |
< |
} else { |
| 1157 |
> |
} else /* pmtype == PM_C */ { |
| 1158 |
|
if (nangles[1] >= 2) { |
| 1159 |
|
d1 = bounds[1][1] - bounds[1][0]; |
| 1160 |
|
if (d1 <= 90.+FTINY) |
| 1161 |
|
fprintf(out, "src_phi4 "); |
| 1162 |
< |
else if (d1 <= 180.+FTINY) |
| 1163 |
< |
fprintf(out, "src_phi2 "); |
| 1164 |
< |
else |
| 1162 |
> |
else if (d1 <= 180.+FTINY) { |
| 1163 |
> |
if (FEQ(bounds[1][0],90.)) |
| 1164 |
> |
fprintf(out, "src_phi2+90 "); |
| 1165 |
> |
else |
| 1166 |
> |
fprintf(out, "src_phi2 "); |
| 1167 |
> |
} else |
| 1168 |
|
fprintf(out, "src_phi "); |
| 1169 |
< |
fprintf(out, "src_theta -my "); |
| 1169 |
> |
fprintf(out, "src_theta "); |
| 1170 |
|
if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) |
| 1171 |
|
fprintf(out, "-rz -90 "); |
| 1172 |
|
} else |
| 1173 |
|
fprintf(out, "src_theta "); |
| 1174 |
|
} |
| 1175 |
< |
fprintf(out, "\n0\n1 %g\n", multiplier*mult*bfactor*pfactor); |
| 1176 |
< |
if (putsource(&srcshape, out, id, filename(name), |
| 1177 |
< |
bounds[0][0]<90., bounds[0][1]>90.) != 0) |
| 1175 |
> |
/* finish the brightdata primitive with appropriate data */ |
| 1176 |
> |
if (!dosides || sinf->type == SPHERE) |
| 1177 |
> |
fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area); |
| 1178 |
> |
else if (sinf->type == DISK) |
| 1179 |
> |
fprintf(out, "\n0\n3 %g %g %g\n", sinf->mult, |
| 1180 |
> |
sinf->w, sinf->h); |
| 1181 |
> |
else |
| 1182 |
> |
fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult, |
| 1183 |
> |
sinf->l, sinf->w, sinf->h); |
| 1184 |
> |
/* Brightdata primitive written out. */ |
| 1185 |
> |
|
| 1186 |
> |
/* Finally, output the descriptions of the actual radiant |
| 1187 |
> |
* surfaces. */ |
| 1188 |
> |
if (putsource(sinf, out, id, filename(name), |
| 1189 |
> |
dolower, doupper, dosides) != 0) |
| 1190 |
|
return(-1); |
| 1191 |
|
return(0); |
| 1192 |
|
} |
| 1193 |
|
|
| 1194 |
< |
|
| 1195 |
< |
putsource(shp, fp, mod, name, dolower, doupper) /* put out source */ |
| 1196 |
< |
SHAPE *shp; |
| 1197 |
< |
FILE *fp; |
| 1198 |
< |
char *mod, *name; |
| 1199 |
< |
int dolower, doupper; |
| 1194 |
> |
/* putsource - output the actual light emitting geometry |
| 1195 |
> |
* |
| 1196 |
> |
* Three kinds of geometry are produced: rectangles and boxes, disks |
| 1197 |
> |
* ("ring" primitive, but the radius of the hole is always zero) and |
| 1198 |
> |
* cylinders, and spheres. |
| 1199 |
> |
*/ |
| 1200 |
> |
int |
| 1201 |
> |
putsource( |
| 1202 |
> |
SRCINFO *shp, |
| 1203 |
> |
FILE *fp, |
| 1204 |
> |
char *mod, |
| 1205 |
> |
char *name, |
| 1206 |
> |
int dolower, |
| 1207 |
> |
int doupper, |
| 1208 |
> |
int dosides |
| 1209 |
> |
) |
| 1210 |
|
{ |
| 1211 |
< |
char buf[MAXWORD]; |
| 1212 |
< |
|
| 1213 |
< |
fprintf(fp, "\n%s %s %s_light\n", mod, |
| 1214 |
< |
illumrad>=MINDIM/2. ? "illum" : "light", |
| 1215 |
< |
name); |
| 1211 |
> |
char lname[RMAXWORD]; |
| 1212 |
> |
|
| 1213 |
> |
/* First, describe the light. If a materials and geometry |
| 1214 |
> |
* file is given, generate an illum instead. */ |
| 1215 |
> |
strcat(strcpy(lname, name), "_light"); |
| 1216 |
> |
fprintf(fp, "\n%s %s %s\n", mod, |
| 1217 |
> |
shp->isillum ? "illum" : "light", lname); |
| 1218 |
|
fprintf(fp, "0\n0\n3 %g %g %g\n", |
| 1219 |
< |
lampcolor[0]/shp->area, |
| 614 |
< |
lampcolor[1]/shp->area, |
| 615 |
< |
lampcolor[2]/shp->area); |
| 616 |
< |
if (doupper && dolower && shp->type != SPHERE && shp->h > MINDIM) { |
| 617 |
< |
fprintf(fp, "\n%s glow %s_glow\n", mod, name); |
| 618 |
< |
fprintf(fp, "0\n0\n4 %g %g %g -1\n", |
| 619 |
< |
lampcolor[0]/shp->area, |
| 620 |
< |
lampcolor[1]/shp->area, |
| 621 |
< |
lampcolor[2]/shp->area); |
| 622 |
< |
} |
| 1219 |
> |
lampcolor[0], lampcolor[1], lampcolor[2]); |
| 1220 |
|
switch (shp->type) { |
| 1221 |
|
case RECT: |
| 1222 |
< |
strcat(strcpy(buf, name), "_light"); |
| 1222 |
> |
/* Output at least one rectangle. If light is radiated |
| 1223 |
> |
* from the sides of the luminaire, output rectangular |
| 1224 |
> |
* sides as well. */ |
| 1225 |
|
if (dolower) |
| 1226 |
< |
putrectsrc(shp, fp, buf, name, 0); |
| 1226 |
> |
putrectsrc(shp, fp, lname, name, 0); |
| 1227 |
|
if (doupper) |
| 1228 |
< |
putrectsrc(shp, fp, buf, name, 1); |
| 1229 |
< |
if (doupper && dolower && shp->h > MINDIM) { |
| 1230 |
< |
strcat(strcpy(buf, name), "_glow"); |
| 632 |
< |
putsides(shp, fp, buf, name); |
| 633 |
< |
} |
| 1228 |
> |
putrectsrc(shp, fp, lname, name, 1); |
| 1229 |
> |
if (dosides) |
| 1230 |
> |
putsides(shp, fp, lname, name); |
| 1231 |
|
break; |
| 1232 |
|
case DISK: |
| 1233 |
< |
strcat(strcpy(buf, name), "_light"); |
| 1233 |
> |
/* Output at least one disk. If light is radiated from |
| 1234 |
> |
* the sides of luminaire, output a cylinder as well. */ |
| 1235 |
|
if (dolower) |
| 1236 |
< |
putdisksrc(shp, fp, buf, name, 0); |
| 1236 |
> |
putdisksrc(shp, fp, lname, name, 0); |
| 1237 |
|
if (doupper) |
| 1238 |
< |
putdisksrc(shp, fp, buf, name, 1); |
| 1239 |
< |
if (doupper && dolower && shp->h > MINDIM) { |
| 1240 |
< |
strcat(strcpy(buf, name), "_glow"); |
| 643 |
< |
putcyl(shp, fp, buf, name); |
| 644 |
< |
} |
| 1238 |
> |
putdisksrc(shp, fp, lname, name, 1); |
| 1239 |
> |
if (dosides) |
| 1240 |
> |
putcyl(shp, fp, lname, name); |
| 1241 |
|
break; |
| 1242 |
|
case SPHERE: |
| 1243 |
< |
strcat(strcpy(buf, name), "_light"); |
| 1244 |
< |
putspheresrc(shp, fp, buf, name); |
| 1243 |
> |
/* Output a sphere. */ |
| 1244 |
> |
putspheresrc(shp, fp, lname, name); |
| 1245 |
|
break; |
| 1246 |
|
} |
| 1247 |
|
return(0); |
| 1248 |
|
} |
| 1249 |
|
|
| 1250 |
< |
|
| 1251 |
< |
makeshape(shp, width, length, height) /* make source shape */ |
| 1252 |
< |
register SHAPE *shp; |
| 1253 |
< |
double width, length, height; |
| 1250 |
> |
/* makeshape -- decide what shape will be used |
| 1251 |
> |
* |
| 1252 |
> |
* makeshape decides what Radiance geometry will be used to represent |
| 1253 |
> |
* the light source and stores information about it in shp. |
| 1254 |
> |
*/ |
| 1255 |
> |
int |
| 1256 |
> |
makeshape( |
| 1257 |
> |
SRCINFO *shp, |
| 1258 |
> |
double width, |
| 1259 |
> |
double length, |
| 1260 |
> |
double height |
| 1261 |
> |
) |
| 1262 |
|
{ |
| 1263 |
< |
if (illumrad >= MINDIM/2.) { |
| 1263 |
> |
/* Categorize the shape */ |
| 1264 |
> |
if (illumrad/meters2out >= MINDIM/2.) { |
| 1265 |
> |
/* If the -i command line option is used, and the |
| 1266 |
> |
* object is not a point source, output an "illum" |
| 1267 |
> |
* sphere */ |
| 1268 |
> |
shp->isillum = 1; |
| 1269 |
|
shp->type = SPHERE; |
| 1270 |
< |
shp->w = shp->l = shp->h = 2.*illumrad; |
| 1270 |
> |
shp->w = shp->l = shp->h = 2.*illumrad / meters2out; |
| 1271 |
|
} else if (width < MINDIM) { |
| 1272 |
+ |
/* The width is either zero or negative. */ |
| 1273 |
|
width = -width; |
| 1274 |
|
if (width < MINDIM) { |
| 1275 |
+ |
/* The width is zero. Use a tiny sphere to |
| 1276 |
+ |
* represent a point source. */ |
| 1277 |
|
shp->type = SPHERE; |
| 1278 |
|
shp->w = shp->l = shp->h = MINDIM; |
| 1279 |
|
} else if (height < .5*width) { |
| 1280 |
+ |
/* The width is negative and the height is |
| 1281 |
+ |
* modest; output either a disk or a thin |
| 1282 |
+ |
* vertical cylinder. */ |
| 1283 |
|
shp->type = DISK; |
| 1284 |
|
shp->w = shp->l = width; |
| 1285 |
|
if (height >= MINDIM) |
| 1287 |
|
else |
| 1288 |
|
shp->h = .5*MINDIM; |
| 1289 |
|
} else { |
| 1290 |
+ |
/* The width is negative and the object is |
| 1291 |
+ |
* tall; output a sphere. */ |
| 1292 |
|
shp->type = SPHERE; |
| 1293 |
|
shp->w = shp->l = shp->h = width; |
| 1294 |
|
} |
| 1295 |
|
} else { |
| 1296 |
+ |
/* The width is positive. Output a box, possibly very |
| 1297 |
+ |
* thin. */ |
| 1298 |
|
shp->type = RECT; |
| 1299 |
|
shp->w = width; |
| 1300 |
|
if (length >= MINDIM) |
| 1306 |
|
else |
| 1307 |
|
shp->h = .5*MINDIM; |
| 1308 |
|
} |
| 1309 |
+ |
|
| 1310 |
+ |
/* Done choosing the shape; calculate its area in the x-y plane. */ |
| 1311 |
|
switch (shp->type) { |
| 1312 |
|
case RECT: |
| 1313 |
|
shp->area = shp->w * shp->l; |
| 1320 |
|
return(0); |
| 1321 |
|
} |
| 1322 |
|
|
| 1323 |
+ |
/* Rectangular or box-shaped light source. |
| 1324 |
+ |
* |
| 1325 |
+ |
* putrectsrc, putsides, putrect, and putpoint are used to output the |
| 1326 |
+ |
* Radiance description of a box. The box is centered on the origin |
| 1327 |
+ |
* and has the dimensions given in the IES file. The coordinates |
| 1328 |
+ |
* range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length, |
| 1329 |
+ |
* 1/2*width, 1/2*height]. |
| 1330 |
+ |
* |
| 1331 |
+ |
* The location of the point is encoded in the low-order three bits of |
| 1332 |
+ |
* an integer. If the integer is p, then: bit 0 is (p & 1), |
| 1333 |
+ |
* representing length (x), bit 1 is (p & 2) representing width (y), |
| 1334 |
+ |
* and bit 2 is (p & 4), representing height (z). |
| 1335 |
+ |
* |
| 1336 |
+ |
* Looking down from above (towards -z), the vertices of the box or |
| 1337 |
+ |
* rectangle are numbered so: |
| 1338 |
+ |
* |
| 1339 |
+ |
* 2,6 3,7 |
| 1340 |
+ |
* +--------------------------------------+ |
| 1341 |
+ |
* | | |
| 1342 |
+ |
* | | |
| 1343 |
+ |
* | | |
| 1344 |
+ |
* | | |
| 1345 |
+ |
* +--------------------------------------+ |
| 1346 |
+ |
* 0,4 1,5 |
| 1347 |
+ |
* |
| 1348 |
+ |
* The higher number of each pair is above the x-y plane (positive z), |
| 1349 |
+ |
* the lower number is below the x-y plane (negative z.) |
| 1350 |
+ |
* |
| 1351 |
+ |
*/ |
| 1352 |
|
|
| 1353 |
< |
putrectsrc(shp, fp, mod, name, up) /* rectangular source */ |
| 1354 |
< |
SHAPE *shp; |
| 1355 |
< |
FILE *fp; |
| 1356 |
< |
char *mod, *name; |
| 1357 |
< |
int up; |
| 1353 |
> |
/* putrecsrc - output a rectangle parallel to the x-y plane |
| 1354 |
> |
* |
| 1355 |
> |
* Putrecsrc calls out the vertices of a rectangle parallel to the x-y |
| 1356 |
> |
* plane. The order of the vertices is different for the upper and |
| 1357 |
> |
* lower rectangles of a box, since a right-hand rule based on the |
| 1358 |
> |
* order of the vertices is used to determine the surface normal of |
| 1359 |
> |
* the rectangle, and the surface normal determines the direction the |
| 1360 |
> |
* light radiated by the rectangle. |
| 1361 |
> |
* |
| 1362 |
> |
*/ |
| 1363 |
> |
void |
| 1364 |
> |
putrectsrc( |
| 1365 |
> |
SRCINFO *shp, |
| 1366 |
> |
FILE *fp, |
| 1367 |
> |
char *mod, |
| 1368 |
> |
char *name, |
| 1369 |
> |
int up |
| 1370 |
> |
) |
| 1371 |
|
{ |
| 1372 |
|
if (up) |
| 1373 |
|
putrect(shp, fp, mod, name, ".u", 4, 5, 7, 6); |
| 1375 |
|
putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1); |
| 1376 |
|
} |
| 1377 |
|
|
| 1378 |
< |
|
| 1379 |
< |
putsides(shp, fp, mod, name) /* put out sides of box */ |
| 1380 |
< |
register SHAPE *shp; |
| 1381 |
< |
FILE *fp; |
| 1382 |
< |
char *mod, *name; |
| 1378 |
> |
/* putsides - put out sides of box */ |
| 1379 |
> |
void |
| 1380 |
> |
putsides( |
| 1381 |
> |
SRCINFO *shp, |
| 1382 |
> |
FILE *fp, |
| 1383 |
> |
char *mod, |
| 1384 |
> |
char *name |
| 1385 |
> |
) |
| 1386 |
|
{ |
| 1387 |
|
putrect(shp, fp, mod, name, ".1", 0, 1, 5, 4); |
| 1388 |
|
putrect(shp, fp, mod, name, ".2", 1, 3, 7, 5); |
| 1389 |
|
putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7); |
| 1390 |
|
putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6); |
| 1391 |
|
} |
| 726 |
– |
|
| 1392 |
|
|
| 1393 |
< |
putrect(shp, fp, mod, name, suffix, a, b, c, d) /* put out a rectangle */ |
| 1394 |
< |
SHAPE *shp; |
| 1395 |
< |
FILE *fp; |
| 1396 |
< |
char *mod, *name, *suffix; |
| 1397 |
< |
int a, b, c, d; |
| 1393 |
> |
/* putrect - put out a rectangle |
| 1394 |
> |
* |
| 1395 |
> |
* putrect generates the "polygon" primitive which describes a |
| 1396 |
> |
* rectangle. |
| 1397 |
> |
*/ |
| 1398 |
> |
void |
| 1399 |
> |
putrect( |
| 1400 |
> |
SRCINFO *shp, |
| 1401 |
> |
FILE *fp, |
| 1402 |
> |
char *mod, |
| 1403 |
> |
char *name, |
| 1404 |
> |
char *suffix, |
| 1405 |
> |
int a, |
| 1406 |
> |
int b, |
| 1407 |
> |
int c, |
| 1408 |
> |
int d |
| 1409 |
> |
) |
| 1410 |
|
{ |
| 1411 |
|
fprintf(fp, "\n%s polygon %s%s\n0\n0\n12\n", mod, name, suffix); |
| 1412 |
|
putpoint(shp, fp, a); |
| 1415 |
|
putpoint(shp, fp, d); |
| 1416 |
|
} |
| 1417 |
|
|
| 1418 |
< |
|
| 1419 |
< |
putpoint(shp, fp, p) /* put out a point */ |
| 1420 |
< |
register SHAPE *shp; |
| 1421 |
< |
FILE *fp; |
| 1422 |
< |
int p; |
| 1418 |
> |
/* putpoint -- output a the coordinates of a vertex |
| 1419 |
> |
* |
| 1420 |
> |
* putpoint maps vertex numbers to coordinates and outputs the |
| 1421 |
> |
* coordinates. |
| 1422 |
> |
*/ |
| 1423 |
> |
void |
| 1424 |
> |
putpoint( |
| 1425 |
> |
SRCINFO *shp, |
| 1426 |
> |
FILE *fp, |
| 1427 |
> |
int p |
| 1428 |
> |
) |
| 1429 |
|
{ |
| 1430 |
|
static double mult[2] = {-.5, .5}; |
| 1431 |
|
|
| 1435 |
|
mult[p>>2]*shp->h*meters2out); |
| 1436 |
|
} |
| 1437 |
|
|
| 1438 |
+ |
/* End of routines to output a box-shaped light source */ |
| 1439 |
|
|
| 1440 |
< |
putdisksrc(shp, fp, mod, name, up) /* put out a disk source */ |
| 1441 |
< |
register SHAPE *shp; |
| 1442 |
< |
FILE *fp; |
| 1443 |
< |
char *mod, *name; |
| 1444 |
< |
int up; |
| 1440 |
> |
/* Routines to output a cylindrical or disk shaped light source |
| 1441 |
> |
* |
| 1442 |
> |
* As with other shapes, the light source is centered on the origin. |
| 1443 |
> |
* The "ring" and "cylinder" primitives are used. |
| 1444 |
> |
* |
| 1445 |
> |
*/ |
| 1446 |
> |
void |
| 1447 |
> |
putdisksrc( /* put out a disk source */ |
| 1448 |
> |
SRCINFO *shp, |
| 1449 |
> |
FILE *fp, |
| 1450 |
> |
char *mod, |
| 1451 |
> |
char *name, |
| 1452 |
> |
int up |
| 1453 |
> |
) |
| 1454 |
|
{ |
| 1455 |
|
if (up) { |
| 1456 |
|
fprintf(fp, "\n%s ring %s.u\n", mod, name); |
| 1468 |
|
} |
| 1469 |
|
|
| 1470 |
|
|
| 1471 |
< |
putcyl(shp, fp, mod, name) /* put out a cylinder */ |
| 1472 |
< |
register SHAPE *shp; |
| 1473 |
< |
FILE *fp; |
| 1474 |
< |
char *mod, *name; |
| 1471 |
> |
void |
| 1472 |
> |
putcyl( /* put out a cylinder */ |
| 1473 |
> |
SRCINFO *shp, |
| 1474 |
> |
FILE *fp, |
| 1475 |
> |
char *mod, |
| 1476 |
> |
char *name |
| 1477 |
> |
) |
| 1478 |
|
{ |
| 1479 |
|
fprintf(fp, "\n%s cylinder %s.c\n", mod, name); |
| 1480 |
|
fprintf(fp, "0\n0\n7\n"); |
| 1483 |
|
fprintf(fp, "\t%g\n", .5*shp->w*meters2out); |
| 1484 |
|
} |
| 1485 |
|
|
| 1486 |
+ |
/* end of of routines to output cylinders and disks */ |
| 1487 |
|
|
| 1488 |
< |
putspheresrc(shp, fp, mod, name) /* put out a sphere source */ |
| 1489 |
< |
SHAPE *shp; |
| 1490 |
< |
FILE *fp; |
| 1491 |
< |
char *mod, *name; |
| 1488 |
> |
void |
| 1489 |
> |
putspheresrc( /* put out a sphere source */ |
| 1490 |
> |
SRCINFO *shp, |
| 1491 |
> |
FILE *fp, |
| 1492 |
> |
char *mod, |
| 1493 |
> |
char *name |
| 1494 |
> |
) |
| 1495 |
|
{ |
| 1496 |
|
fprintf(fp, "\n%s sphere %s.s\n", mod, name); |
| 1497 |
|
fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out); |
| 1498 |
|
} |
| 1499 |
|
|
| 1500 |
< |
|
| 1501 |
< |
cvdata(in, out, ndim, npts, mult, lim) /* convert data */ |
| 1502 |
< |
FILE *in, *out; |
| 1503 |
< |
int ndim, npts[]; |
| 1504 |
< |
double mult, lim[][2]; |
| 1500 |
> |
/* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format |
| 1501 |
> |
* |
| 1502 |
> |
* The files created by this routine are intended for use with the Radiance |
| 1503 |
> |
* "brightdata" material type. |
| 1504 |
> |
* |
| 1505 |
> |
* Two types of data are converted; one-dimensional tilt data, which |
| 1506 |
> |
* is given in polar coordinates, and two-dimensional candela data, |
| 1507 |
> |
* which is given in spherical co-ordinates. |
| 1508 |
> |
* |
| 1509 |
> |
* Return 0 for success, -1 for failure. |
| 1510 |
> |
* |
| 1511 |
> |
*/ |
| 1512 |
> |
int |
| 1513 |
> |
cvdata( |
| 1514 |
> |
FILE *in, /* Input file */ |
| 1515 |
> |
FILE *out, /* Output file */ |
| 1516 |
> |
int ndim, /* Number of dimensions; 1 for |
| 1517 |
> |
* tilt data, 2 for photometric data. */ |
| 1518 |
> |
int npts[], /* Number of points in each dimension */ |
| 1519 |
> |
double mult, /* Multiple each value by this |
| 1520 |
> |
* number. For tilt data, always |
| 1521 |
> |
* 1. For candela values, the |
| 1522 |
> |
* efficacy of white Radiance light. */ |
| 1523 |
> |
double lim[][2] /* The range of angles in each dimension. */ |
| 1524 |
> |
) |
| 1525 |
|
{ |
| 1526 |
< |
double *pt[4]; |
| 1527 |
< |
register int i, j; |
| 1526 |
> |
double *pt[4]; /* Four is the expected maximum of ndim. */ |
| 1527 |
> |
int i, j; |
| 1528 |
|
double val; |
| 1529 |
|
int total; |
| 1530 |
|
|
| 1531 |
+ |
/* Calculate and output the number of data values */ |
| 1532 |
|
total = 1; j = 0; |
| 1533 |
|
for (i = 0; i < ndim; i++) |
| 1534 |
|
if (npts[i] > 1) { |
| 1536 |
|
j++; |
| 1537 |
|
} |
| 1538 |
|
fprintf(out, "%d\n", j); |
| 1539 |
< |
/* get coordinates */ |
| 1539 |
> |
|
| 1540 |
> |
/* Read in the angle values, and note the first and last in |
| 1541 |
> |
* each dimension, if there is a place to store them. In the |
| 1542 |
> |
* case of tilt data, there is only one list of angles. In the |
| 1543 |
> |
* case of candela values, vertical angles appear first, and |
| 1544 |
> |
* horizontal angles occur second. */ |
| 1545 |
|
for (i = 0; i < ndim; i++) { |
| 1546 |
+ |
/* Allocate space for the angle values. */ |
| 1547 |
|
pt[i] = (double *)malloc(npts[i]*sizeof(double)); |
| 1548 |
|
for (j = 0; j < npts[i]; j++) |
| 1549 |
|
if (!scnflt(in, &pt[i][j])) |
| 1553 |
|
lim[i][1] = pt[i][npts[i]-1]; |
| 1554 |
|
} |
| 1555 |
|
} |
| 1556 |
< |
/* write out in reverse */ |
| 1556 |
> |
|
| 1557 |
> |
/* Output the angles. If this is candela data, horizontal |
| 1558 |
> |
* angles output first. There are two cases: the first where |
| 1559 |
> |
* the angles are evenly spaced, the second where they are |
| 1560 |
> |
* not. |
| 1561 |
> |
* |
| 1562 |
> |
* When the angles are evenly spaced, three numbers are |
| 1563 |
> |
* output: the first angle, the last angle, and the number of |
| 1564 |
> |
* angles. When the angles are not evenly spaced, instead |
| 1565 |
> |
* zero, zero, and the count of angles is given, followed by a |
| 1566 |
> |
* list of angles. In this case, angles are output four to a line. |
| 1567 |
> |
*/ |
| 1568 |
|
for (i = ndim-1; i >= 0; i--) { |
| 1569 |
|
if (npts[i] > 1) { |
| 1570 |
+ |
/* Determine if the angles are evenly spaces */ |
| 1571 |
|
for (j = 1; j < npts[i]-1; j++) |
| 1572 |
|
if (!FEQ(pt[i][j]-pt[i][j-1], |
| 1573 |
|
pt[i][j+1]-pt[i][j])) |
| 1574 |
|
break; |
| 1575 |
+ |
/* If they are, output the first angle, the |
| 1576 |
+ |
* last angle, and a count */ |
| 1577 |
|
if (j == npts[i]-1) |
| 1578 |
|
fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j], |
| 1579 |
|
npts[i]); |
| 1580 |
|
else { |
| 1581 |
+ |
/* otherwise, output 0, 0, and a |
| 1582 |
+ |
* count, followed by the list of |
| 1583 |
+ |
* angles, one to a line. */ |
| 1584 |
|
fprintf(out, "0 0 %d", npts[i]); |
| 1585 |
|
for (j = 0; j < npts[i]; j++) { |
| 1586 |
|
if (j%4 == 0) |
| 1590 |
|
putc('\n', out); |
| 1591 |
|
} |
| 1592 |
|
} |
| 1593 |
< |
free((char *)pt[i]); |
| 1593 |
> |
/* Free the storage containing the angle values. */ |
| 1594 |
> |
free((void *)pt[i]); |
| 1595 |
|
} |
| 1596 |
+ |
|
| 1597 |
+ |
/* Finally, read in the data values (candela or multiplier values, |
| 1598 |
+ |
* depending on the part of the file) and output them four to |
| 1599 |
+ |
* a line. */ |
| 1600 |
|
for (i = 0; i < total; i++) { |
| 1601 |
|
if (i%4 == 0) |
| 1602 |
|
putc('\n', out); |
| 1608 |
|
return(0); |
| 1609 |
|
} |
| 1610 |
|
|
| 1611 |
< |
|
| 1611 |
> |
/* getword - get an LM-63 delimited word from fp |
| 1612 |
> |
* |
| 1613 |
> |
* Getword gets a word from an IES file delimited by either white |
| 1614 |
> |
* space or a comma surrounded by white space. A pointer to the word |
| 1615 |
> |
* is returned, which will persist only until getword is called again. |
| 1616 |
> |
* At EOF, return NULL instead. |
| 1617 |
> |
* |
| 1618 |
> |
*/ |
| 1619 |
|
char * |
| 1620 |
< |
getword(fp) /* scan a word from fp */ |
| 1621 |
< |
register FILE *fp; |
| 1620 |
> |
getword( /* scan a word from fp */ |
| 1621 |
> |
FILE *fp |
| 1622 |
> |
) |
| 1623 |
|
{ |
| 1624 |
< |
static char word[MAXWORD]; |
| 1625 |
< |
register char *cp; |
| 1626 |
< |
register int c; |
| 1624 |
> |
static char wrd[RMAXWORD]; |
| 1625 |
> |
char *cp; |
| 1626 |
> |
int c; |
| 1627 |
|
|
| 1628 |
+ |
/* Skip initial spaces */ |
| 1629 |
|
while (isspace(c=getc(fp))) |
| 1630 |
|
; |
| 1631 |
< |
for (cp = word; c != EOF && cp < word+MAXWORD-1; |
| 1631 |
> |
/* Get characters to a delimiter or until wrd is full */ |
| 1632 |
> |
for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1; |
| 1633 |
|
*cp++ = c, c = getc(fp)) |
| 1634 |
|
if (isspace(c) || c == ',') { |
| 1635 |
+ |
/* If we find a delimiter */ |
| 1636 |
+ |
/* Gobble up whitespace */ |
| 1637 |
|
while (isspace(c)) |
| 1638 |
|
c = getc(fp); |
| 1639 |
< |
if (c != EOF & c != ',') |
| 1639 |
> |
/* If it's not a comma, put the first |
| 1640 |
> |
* character of the next data item back */ |
| 1641 |
> |
if ((c != EOF) & (c != ',')) |
| 1642 |
|
ungetc(c, fp); |
| 1643 |
+ |
/* Close out the strimg */ |
| 1644 |
|
*cp = '\0'; |
| 1645 |
< |
return(word); |
| 1645 |
> |
/* return it */ |
| 1646 |
> |
return(wrd); |
| 1647 |
|
} |
| 1648 |
+ |
/* If we ran out of space or are at the end of the file, |
| 1649 |
+ |
* return either the word or NULL, as appropriate. */ |
| 1650 |
|
*cp = '\0'; |
| 1651 |
< |
return(cp > word ? word : NULL); |
| 1651 |
> |
return(cp > wrd ? wrd : NULL); |
| 1652 |
|
} |
| 1653 |
|
|
| 1654 |
< |
|
| 1655 |
< |
cvtint(ip, word) /* convert a word to an integer */ |
| 1656 |
< |
int *ip; |
| 1657 |
< |
char *word; |
| 1654 |
> |
/* cvtint - convert an IES word to an integer |
| 1655 |
> |
* |
| 1656 |
> |
* A pointer to the word is passed in wrd; ip is expected to point to |
| 1657 |
> |
* an integer. cvtint() will silently truncate a floating point value |
| 1658 |
> |
* to an integer; "1", "1.0", and "1.5" will all return 1. |
| 1659 |
> |
* |
| 1660 |
> |
* cvtint() returns 0 if it fails, 1 if it succeeds. |
| 1661 |
> |
*/ |
| 1662 |
> |
int |
| 1663 |
> |
cvtint( |
| 1664 |
> |
int *ip, |
| 1665 |
> |
char *wrd |
| 1666 |
> |
) |
| 1667 |
|
{ |
| 1668 |
< |
if (word == NULL || !isint(word)) |
| 1668 |
> |
if (wrd == NULL || !isint(wrd)) |
| 1669 |
|
return(0); |
| 1670 |
< |
*ip = atoi(word); |
| 1670 |
> |
*ip = atoi(wrd); |
| 1671 |
|
return(1); |
| 1672 |
|
} |
| 1673 |
|
|
| 1674 |
|
|
| 1675 |
< |
cvtflt(rp, word) /* convert a word to a double */ |
| 1676 |
< |
double *rp; |
| 1677 |
< |
char *word; |
| 1675 |
> |
/* cvtflt - convert an IES word to a double precision floating-point number |
| 1676 |
> |
* |
| 1677 |
> |
* A pointer to the word is passed in wrd; rp is expected to point to |
| 1678 |
> |
* a double. |
| 1679 |
> |
* |
| 1680 |
> |
* cvtflt returns 0 if it fails, 1 if it succeeds. |
| 1681 |
> |
*/ |
| 1682 |
> |
int |
| 1683 |
> |
cvtflt( |
| 1684 |
> |
double *rp, |
| 1685 |
> |
char *wrd |
| 1686 |
> |
) |
| 1687 |
|
{ |
| 1688 |
< |
if (word == NULL || !isflt(word)) |
| 1688 |
> |
if (wrd == NULL || !isflt(wrd)) |
| 1689 |
|
return(0); |
| 1690 |
< |
*rp = atof(word); |
| 1690 |
> |
*rp = atof(wrd); |
| 1691 |
|
return(1); |
| 1692 |
|
} |
| 1693 |
+ |
|
| 1694 |
+ |
/* cvgeometry - process materials and geometry format luminaire data |
| 1695 |
+ |
* |
| 1696 |
+ |
* The materials and geometry format (MGF) for describing luminaires |
| 1697 |
+ |
* was a part of Radiance that was first adopted and then retracted by |
| 1698 |
+ |
* the IES as part of LM-63. It provides a way of describing |
| 1699 |
+ |
* luminaire geometry similar to the Radiance scene description |
| 1700 |
+ |
* format. |
| 1701 |
+ |
* |
| 1702 |
+ |
* cvgeometry() generates an mgf2rad command and then, if "-g" is given |
| 1703 |
+ |
* on the command line, an oconv command, both of which are then |
| 1704 |
+ |
* executed with the system() function. |
| 1705 |
+ |
* |
| 1706 |
+ |
* The generated commands are: |
| 1707 |
+ |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
| 1708 |
+ |
* | xform -s <scale_factor> \ |
| 1709 |
+ |
* >> <luminare_scene_description_file |
| 1710 |
+ |
* or: |
| 1711 |
+ |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
| 1712 |
+ |
* oconv - > <instance_filename> |
| 1713 |
+ |
*/ |
| 1714 |
+ |
int |
| 1715 |
+ |
cvgeometry( |
| 1716 |
+ |
char *inpname, |
| 1717 |
+ |
SRCINFO *sinf, |
| 1718 |
+ |
char *outname, |
| 1719 |
+ |
FILE *outfp /* close output file upon return */ |
| 1720 |
+ |
) |
| 1721 |
+ |
{ |
| 1722 |
+ |
char buf[256]; |
| 1723 |
+ |
char *cp; |
| 1724 |
+ |
|
| 1725 |
+ |
if (inpname == NULL || !inpname[0]) { /* no geometry file */ |
| 1726 |
+ |
fclose(outfp); |
| 1727 |
+ |
return(0); |
| 1728 |
+ |
} |
| 1729 |
+ |
putc('\n', outfp); |
| 1730 |
+ |
strcpy(buf, "mgf2rad "); /* build mgf2rad command */ |
| 1731 |
+ |
cp = buf+8; |
| 1732 |
+ |
if (!FEQ(sinf->mult, 1.0)) { |
| 1733 |
+ |
/* if there's an output multiplier, include in the |
| 1734 |
+ |
* mgf2rad command */ |
| 1735 |
+ |
sprintf(cp, "-e %f ", sinf->mult); |
| 1736 |
+ |
cp += strlen(cp); |
| 1737 |
+ |
} |
| 1738 |
+ |
/* Include the glow distance for the geometry */ |
| 1739 |
+ |
sprintf(cp, "-g %f %s ", |
| 1740 |
+ |
sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l), |
| 1741 |
+ |
inpname); |
| 1742 |
+ |
cp += strlen(cp); |
| 1743 |
+ |
if (instantiate) { /* instantiate octree */ |
| 1744 |
+ |
/* If "-g" is given on the command line, include an |
| 1745 |
+ |
* "oconv" command in the pipe. */ |
| 1746 |
+ |
strcpy(cp, "| oconv - > "); |
| 1747 |
+ |
cp += 12; |
| 1748 |
+ |
fullnam(cp,outname,T_OCT); |
| 1749 |
+ |
/* Only update if the input file is newer than the |
| 1750 |
+ |
* output file */ |
| 1751 |
+ |
if (fdate(inpname) > fdate(outname) && |
| 1752 |
+ |
system(buf)) { /* create octree */ |
| 1753 |
+ |
fclose(outfp); |
| 1754 |
+ |
return(-1); |
| 1755 |
+ |
} |
| 1756 |
+ |
/* Reference the instance file in the scene description */ |
| 1757 |
+ |
fprintf(outfp, "void instance %s_inst\n", outname); |
| 1758 |
+ |
/* If the geometry isn't in meters, scale it appropriately. */ |
| 1759 |
+ |
if (!FEQ(meters2out, 1.0)) |
| 1760 |
+ |
fprintf(outfp, "3 %s -s %f\n", |
| 1761 |
+ |
libname(buf,outname,T_OCT), |
| 1762 |
+ |
meters2out); |
| 1763 |
+ |
else |
| 1764 |
+ |
fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT)); |
| 1765 |
+ |
/* Close off the "instance" primitive. */ |
| 1766 |
+ |
fprintf(outfp, "0\n0\n"); |
| 1767 |
+ |
/* And the Radiance scene description. */ |
| 1768 |
+ |
fclose(outfp); |
| 1769 |
+ |
} else { /* else append to luminaire file */ |
| 1770 |
+ |
if (!FEQ(meters2out, 1.0)) { /* apply scalefactor */ |
| 1771 |
+ |
sprintf(cp, "| xform -s %f ", meters2out); |
| 1772 |
+ |
cp += strlen(cp); |
| 1773 |
+ |
} |
| 1774 |
+ |
if (!out2stdout) { |
| 1775 |
+ |
fclose(outfp); |
| 1776 |
+ |
strcpy(cp, ">> "); /* append works for DOS? */ |
| 1777 |
+ |
cp += 3; |
| 1778 |
+ |
fullnam(cp,outname,T_RAD); |
| 1779 |
+ |
} |
| 1780 |
+ |
if (system(buf)) |
| 1781 |
+ |
return(-1); |
| 1782 |
+ |
} |
| 1783 |
+ |
return(0); |
| 1784 |
+ |
} |
| 1785 |
+ |
|
| 1786 |
+ |
/* Set up emacs indentation */ |
| 1787 |
+ |
/* Local Variables: */ |
| 1788 |
+ |
/* c-file-style: "bsd" */ |
| 1789 |
+ |
/* End: */ |
| 1790 |
+ |
|
| 1791 |
+ |
/* For vim, use ":set tabstop=8 shiftwidth=8" */ |