| 1 | greg | 2.1 | #ifndef lint | 
| 2 | greg | 2.9 | static const char RCSid[] = "$Id: bsdfrep.c,v 2.8 2012/11/09 02:16:29 greg Exp $"; | 
| 3 | greg | 2.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | * Support BSDF representation as radial basis functions. | 
| 6 |  |  | * | 
| 7 |  |  | *      G. Ward | 
| 8 |  |  | */ | 
| 9 |  |  |  | 
| 10 |  |  | #define _USE_MATH_DEFINES | 
| 11 |  |  | #include <stdlib.h> | 
| 12 | greg | 2.2 | #include <string.h> | 
| 13 | greg | 2.1 | #include <math.h> | 
| 14 |  |  | #include "rtio.h" | 
| 15 |  |  | #include "resolu.h" | 
| 16 |  |  | #include "bsdfrep.h" | 
| 17 | greg | 2.5 | /* active grid resolution */ | 
| 18 |  |  | int                     grid_res = GRIDRES; | 
| 19 |  |  |  | 
| 20 | greg | 2.4 | /* coverage/symmetry using INP_QUAD? flags */ | 
| 21 | greg | 2.1 | int                     inp_coverage = 0; | 
| 22 |  |  | /* all incident angles in-plane so far? */ | 
| 23 |  |  | int                     single_plane_incident = -1; | 
| 24 |  |  |  | 
| 25 |  |  | /* input/output orientations */ | 
| 26 |  |  | int                     input_orient = 0; | 
| 27 |  |  | int                     output_orient = 0; | 
| 28 |  |  |  | 
| 29 |  |  | /* processed incident DSF measurements */ | 
| 30 |  |  | RBFNODE                 *dsf_list = NULL; | 
| 31 |  |  |  | 
| 32 |  |  | /* RBF-linking matrices (edges) */ | 
| 33 |  |  | MIGRATION               *mig_list = NULL; | 
| 34 |  |  |  | 
| 35 |  |  | /* current input direction */ | 
| 36 |  |  | double                  theta_in_deg, phi_in_deg; | 
| 37 |  |  |  | 
| 38 |  |  | /* Register new input direction */ | 
| 39 |  |  | int | 
| 40 |  |  | new_input_direction(double new_theta, double new_phi) | 
| 41 |  |  | { | 
| 42 |  |  | if (!input_orient)              /* check input orientation */ | 
| 43 |  |  | input_orient = 1 - 2*(new_theta > 90.); | 
| 44 |  |  | else if (input_orient > 0 ^ new_theta < 90.) { | 
| 45 |  |  | fprintf(stderr, | 
| 46 |  |  | "%s: Cannot handle input angles on both sides of surface\n", | 
| 47 |  |  | progname); | 
| 48 |  |  | return(0); | 
| 49 |  |  | } | 
| 50 |  |  | /* normalize angle ranges */ | 
| 51 |  |  | while (new_theta < -180.) | 
| 52 |  |  | new_theta += 360.; | 
| 53 |  |  | while (new_theta > 180.) | 
| 54 |  |  | new_theta -= 360.; | 
| 55 |  |  | if (new_theta < 0) { | 
| 56 |  |  | new_theta = -new_theta; | 
| 57 |  |  | new_phi += 180.; | 
| 58 |  |  | } | 
| 59 | greg | 2.6 | if ((theta_in_deg = new_theta) < 1.0) | 
| 60 |  |  | return(1);              /* don't rely on phi near normal */ | 
| 61 | greg | 2.1 | while (new_phi < 0) | 
| 62 |  |  | new_phi += 360.; | 
| 63 |  |  | while (new_phi >= 360.) | 
| 64 |  |  | new_phi -= 360.; | 
| 65 |  |  | if (single_plane_incident > 0)  /* check input coverage */ | 
| 66 |  |  | single_plane_incident = (round(new_phi) == round(phi_in_deg)); | 
| 67 |  |  | else if (single_plane_incident < 0) | 
| 68 |  |  | single_plane_incident = 1; | 
| 69 |  |  | phi_in_deg = new_phi; | 
| 70 |  |  | if ((1. < new_phi) & (new_phi < 89.)) | 
| 71 |  |  | inp_coverage |= INP_QUAD1; | 
| 72 |  |  | else if ((91. < new_phi) & (new_phi < 179.)) | 
| 73 |  |  | inp_coverage |= INP_QUAD2; | 
| 74 |  |  | else if ((181. < new_phi) & (new_phi < 269.)) | 
| 75 |  |  | inp_coverage |= INP_QUAD3; | 
| 76 |  |  | else if ((271. < new_phi) & (new_phi < 359.)) | 
| 77 |  |  | inp_coverage |= INP_QUAD4; | 
| 78 |  |  | return(1); | 
| 79 |  |  | } | 
| 80 |  |  |  | 
| 81 |  |  | /* Apply symmetry to the given vector based on distribution */ | 
| 82 |  |  | int | 
| 83 |  |  | use_symmetry(FVECT vec) | 
| 84 |  |  | { | 
| 85 |  |  | double  phi = get_phi360(vec); | 
| 86 |  |  |  | 
| 87 |  |  | switch (inp_coverage) { | 
| 88 |  |  | case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: | 
| 89 |  |  | break; | 
| 90 |  |  | case INP_QUAD1|INP_QUAD2: | 
| 91 |  |  | if ((-FTINY > phi) | (phi > 180.+FTINY)) | 
| 92 |  |  | goto mir_y; | 
| 93 |  |  | break; | 
| 94 |  |  | case INP_QUAD2|INP_QUAD3: | 
| 95 |  |  | if ((90.-FTINY > phi) | (phi > 270.+FTINY)) | 
| 96 |  |  | goto mir_x; | 
| 97 |  |  | break; | 
| 98 |  |  | case INP_QUAD3|INP_QUAD4: | 
| 99 |  |  | if ((180.-FTINY > phi) | (phi > 360.+FTINY)) | 
| 100 |  |  | goto mir_y; | 
| 101 |  |  | break; | 
| 102 |  |  | case INP_QUAD4|INP_QUAD1: | 
| 103 |  |  | if ((270.-FTINY > phi) & (phi > 90.+FTINY)) | 
| 104 |  |  | goto mir_x; | 
| 105 |  |  | break; | 
| 106 |  |  | case INP_QUAD1: | 
| 107 |  |  | if ((-FTINY > phi) | (phi > 90.+FTINY)) | 
| 108 |  |  | switch ((int)(phi*(1./90.))) { | 
| 109 |  |  | case 1: goto mir_x; | 
| 110 |  |  | case 2: goto mir_xy; | 
| 111 |  |  | case 3: goto mir_y; | 
| 112 |  |  | } | 
| 113 |  |  | break; | 
| 114 |  |  | case INP_QUAD2: | 
| 115 |  |  | if ((90.-FTINY > phi) | (phi > 180.+FTINY)) | 
| 116 |  |  | switch ((int)(phi*(1./90.))) { | 
| 117 |  |  | case 0: goto mir_x; | 
| 118 |  |  | case 2: goto mir_y; | 
| 119 |  |  | case 3: goto mir_xy; | 
| 120 |  |  | } | 
| 121 |  |  | break; | 
| 122 |  |  | case INP_QUAD3: | 
| 123 |  |  | if ((180.-FTINY > phi) | (phi > 270.+FTINY)) | 
| 124 |  |  | switch ((int)(phi*(1./90.))) { | 
| 125 |  |  | case 0: goto mir_xy; | 
| 126 |  |  | case 1: goto mir_y; | 
| 127 |  |  | case 3: goto mir_x; | 
| 128 |  |  | } | 
| 129 |  |  | break; | 
| 130 |  |  | case INP_QUAD4: | 
| 131 |  |  | if ((270.-FTINY > phi) | (phi > 360.+FTINY)) | 
| 132 |  |  | switch ((int)(phi*(1./90.))) { | 
| 133 |  |  | case 0: goto mir_y; | 
| 134 |  |  | case 1: goto mir_xy; | 
| 135 |  |  | case 2: goto mir_x; | 
| 136 |  |  | } | 
| 137 |  |  | break; | 
| 138 |  |  | default: | 
| 139 |  |  | fprintf(stderr, "%s: Illegal input coverage (%d)\n", | 
| 140 |  |  | progname, inp_coverage); | 
| 141 |  |  | exit(1); | 
| 142 |  |  | } | 
| 143 |  |  | return(0);              /* in range */ | 
| 144 |  |  | mir_x: | 
| 145 |  |  | vec[0] = -vec[0]; | 
| 146 |  |  | return(MIRROR_X); | 
| 147 |  |  | mir_y: | 
| 148 |  |  | vec[1] = -vec[1]; | 
| 149 |  |  | return(MIRROR_Y); | 
| 150 |  |  | mir_xy: | 
| 151 |  |  | vec[0] = -vec[0]; | 
| 152 |  |  | vec[1] = -vec[1]; | 
| 153 |  |  | return(MIRROR_X|MIRROR_Y); | 
| 154 |  |  | } | 
| 155 |  |  |  | 
| 156 |  |  | /* Reverse symmetry based on what was done before */ | 
| 157 |  |  | void | 
| 158 |  |  | rev_symmetry(FVECT vec, int sym) | 
| 159 |  |  | { | 
| 160 |  |  | if (sym & MIRROR_X) | 
| 161 |  |  | vec[0] = -vec[0]; | 
| 162 |  |  | if (sym & MIRROR_Y) | 
| 163 |  |  | vec[1] = -vec[1]; | 
| 164 |  |  | } | 
| 165 |  |  |  | 
| 166 |  |  | /* Reverse symmetry for an RBF distribution */ | 
| 167 |  |  | void | 
| 168 |  |  | rev_rbf_symmetry(RBFNODE *rbf, int sym) | 
| 169 |  |  | { | 
| 170 |  |  | int     n; | 
| 171 |  |  |  | 
| 172 |  |  | rev_symmetry(rbf->invec, sym); | 
| 173 |  |  | if (sym & MIRROR_X) | 
| 174 |  |  | for (n = rbf->nrbf; n-- > 0; ) | 
| 175 | greg | 2.5 | rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx; | 
| 176 | greg | 2.1 | if (sym & MIRROR_Y) | 
| 177 |  |  | for (n = rbf->nrbf; n-- > 0; ) | 
| 178 | greg | 2.5 | rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy; | 
| 179 | greg | 2.1 | } | 
| 180 |  |  |  | 
| 181 | greg | 2.6 | /* Rotate RBF to correspond to given incident vector */ | 
| 182 |  |  | void | 
| 183 |  |  | rotate_rbf(RBFNODE *rbf, const FVECT invec) | 
| 184 |  |  | { | 
| 185 |  |  | static const FVECT      vnorm = {.0, .0, 1.}; | 
| 186 |  |  | const double            phi = atan2(invec[1],invec[0]) - | 
| 187 |  |  | atan2(rbf->invec[1],rbf->invec[0]); | 
| 188 |  |  | FVECT                   outvec; | 
| 189 |  |  | int                     pos[2]; | 
| 190 |  |  | int                     n; | 
| 191 | greg | 2.8 |  | 
| 192 | greg | 2.6 | for (n = rbf->nrbf; n-- > 0; ) { | 
| 193 |  |  | ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); | 
| 194 |  |  | spinvector(outvec, outvec, vnorm, phi); | 
| 195 |  |  | pos_from_vec(pos, outvec); | 
| 196 |  |  | rbf->rbfa[n].gx = pos[0]; | 
| 197 |  |  | rbf->rbfa[n].gy = pos[1]; | 
| 198 |  |  | } | 
| 199 |  |  | VCOPY(rbf->invec, invec); | 
| 200 |  |  | } | 
| 201 |  |  |  | 
| 202 | greg | 2.1 | /* Compute volume associated with Gaussian lobe */ | 
| 203 |  |  | double | 
| 204 |  |  | rbf_volume(const RBFVAL *rbfp) | 
| 205 |  |  | { | 
| 206 |  |  | double  rad = R2ANG(rbfp->crad); | 
| 207 |  |  |  | 
| 208 |  |  | return((2.*M_PI) * rbfp->peak * rad*rad); | 
| 209 |  |  | } | 
| 210 |  |  |  | 
| 211 |  |  | /* Compute outgoing vector from grid position */ | 
| 212 |  |  | void | 
| 213 |  |  | ovec_from_pos(FVECT vec, int xpos, int ypos) | 
| 214 |  |  | { | 
| 215 |  |  | double  uv[2]; | 
| 216 |  |  | double  r2; | 
| 217 |  |  |  | 
| 218 | greg | 2.8 | SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); | 
| 219 | greg | 2.1 | /* uniform hemispherical projection */ | 
| 220 |  |  | r2 = uv[0]*uv[0] + uv[1]*uv[1]; | 
| 221 |  |  | vec[0] = vec[1] = sqrt(2. - r2); | 
| 222 |  |  | vec[0] *= uv[0]; | 
| 223 |  |  | vec[1] *= uv[1]; | 
| 224 |  |  | vec[2] = output_orient*(1. - r2); | 
| 225 |  |  | } | 
| 226 |  |  |  | 
| 227 |  |  | /* Compute grid position from normalized input/output vector */ | 
| 228 |  |  | void | 
| 229 |  |  | pos_from_vec(int pos[2], const FVECT vec) | 
| 230 |  |  | { | 
| 231 |  |  | double  sq[2];          /* uniform hemispherical projection */ | 
| 232 |  |  | double  norm = 1./sqrt(1. + fabs(vec[2])); | 
| 233 |  |  |  | 
| 234 |  |  | SDdisk2square(sq, vec[0]*norm, vec[1]*norm); | 
| 235 |  |  |  | 
| 236 | greg | 2.5 | pos[0] = (int)(sq[0]*grid_res); | 
| 237 |  |  | pos[1] = (int)(sq[1]*grid_res); | 
| 238 | greg | 2.1 | } | 
| 239 |  |  |  | 
| 240 |  |  | /* Evaluate RBF for DSF at the given normalized outgoing direction */ | 
| 241 |  |  | double | 
| 242 |  |  | eval_rbfrep(const RBFNODE *rp, const FVECT outvec) | 
| 243 |  |  | { | 
| 244 | greg | 2.8 | double          res = 0; | 
| 245 | greg | 2.1 | const RBFVAL    *rbfp; | 
| 246 |  |  | FVECT           odir; | 
| 247 |  |  | double          sig2; | 
| 248 |  |  | int             n; | 
| 249 |  |  |  | 
| 250 |  |  | if (rp == NULL) | 
| 251 |  |  | return(.0); | 
| 252 |  |  | rbfp = rp->rbfa; | 
| 253 |  |  | for (n = rp->nrbf; n--; rbfp++) { | 
| 254 |  |  | ovec_from_pos(odir, rbfp->gx, rbfp->gy); | 
| 255 |  |  | sig2 = R2ANG(rbfp->crad); | 
| 256 |  |  | sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); | 
| 257 |  |  | if (sig2 > -19.) | 
| 258 |  |  | res += rbfp->peak * exp(sig2); | 
| 259 |  |  | } | 
| 260 |  |  | return(res); | 
| 261 |  |  | } | 
| 262 |  |  |  | 
| 263 |  |  | /* Insert a new directional scattering function in our global list */ | 
| 264 |  |  | int | 
| 265 |  |  | insert_dsf(RBFNODE *newrbf) | 
| 266 |  |  | { | 
| 267 |  |  | RBFNODE         *rbf, *rbf_last; | 
| 268 |  |  | int             pos; | 
| 269 |  |  | /* check for redundant meas. */ | 
| 270 |  |  | for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) | 
| 271 |  |  | if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { | 
| 272 |  |  | fprintf(stderr, | 
| 273 |  |  | "%s: Duplicate incident measurement (ignored)\n", | 
| 274 |  |  | progname); | 
| 275 |  |  | free(newrbf); | 
| 276 |  |  | return(-1); | 
| 277 |  |  | } | 
| 278 |  |  | /* keep in ascending theta order */ | 
| 279 |  |  | for (rbf_last = NULL, rbf = dsf_list; rbf != NULL; | 
| 280 |  |  | rbf_last = rbf, rbf = rbf->next) | 
| 281 |  |  | if (single_plane_incident && input_orient*rbf->invec[2] < | 
| 282 |  |  | input_orient*newrbf->invec[2]) | 
| 283 |  |  | break; | 
| 284 |  |  | if (rbf_last == NULL) {         /* insert new node in list */ | 
| 285 |  |  | newrbf->ord = 0; | 
| 286 |  |  | newrbf->next = dsf_list; | 
| 287 |  |  | dsf_list = newrbf; | 
| 288 |  |  | } else { | 
| 289 |  |  | newrbf->ord = rbf_last->ord + 1; | 
| 290 |  |  | newrbf->next = rbf; | 
| 291 |  |  | rbf_last->next = newrbf; | 
| 292 |  |  | } | 
| 293 |  |  | rbf_last = newrbf; | 
| 294 |  |  | while (rbf != NULL) {           /* update ordinal positions */ | 
| 295 |  |  | rbf->ord = rbf_last->ord + 1; | 
| 296 |  |  | rbf_last = rbf; | 
| 297 |  |  | rbf = rbf->next; | 
| 298 |  |  | } | 
| 299 |  |  | return(newrbf->ord); | 
| 300 |  |  | } | 
| 301 |  |  |  | 
| 302 |  |  | /* Get the DSF indicated by its ordinal position */ | 
| 303 |  |  | RBFNODE * | 
| 304 |  |  | get_dsf(int ord) | 
| 305 |  |  | { | 
| 306 |  |  | RBFNODE         *rbf; | 
| 307 |  |  |  | 
| 308 |  |  | for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) | 
| 309 | greg | 2.3 | if (rbf->ord == ord) | 
| 310 | greg | 2.1 | return(rbf); | 
| 311 |  |  | return(NULL); | 
| 312 |  |  | } | 
| 313 |  |  |  | 
| 314 |  |  | /* Get triangle surface orientation (unnormalized) */ | 
| 315 |  |  | void | 
| 316 |  |  | tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3) | 
| 317 |  |  | { | 
| 318 |  |  | FVECT   v2minus1, v3minus2; | 
| 319 |  |  |  | 
| 320 |  |  | VSUB(v2minus1, v2, v1); | 
| 321 |  |  | VSUB(v3minus2, v3, v2); | 
| 322 |  |  | VCROSS(vres, v2minus1, v3minus2); | 
| 323 |  |  | } | 
| 324 |  |  |  | 
| 325 |  |  | /* Determine if vertex order is reversed (inward normal) */ | 
| 326 |  |  | int | 
| 327 |  |  | is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3) | 
| 328 |  |  | { | 
| 329 |  |  | FVECT   tor; | 
| 330 |  |  |  | 
| 331 |  |  | tri_orient(tor, v1, v2, v3); | 
| 332 |  |  |  | 
| 333 |  |  | return(DOT(tor, v2) < 0.); | 
| 334 |  |  | } | 
| 335 |  |  |  | 
| 336 |  |  | /* Find vertices completing triangles on either side of the given edge */ | 
| 337 |  |  | int | 
| 338 |  |  | get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) | 
| 339 |  |  | { | 
| 340 | greg | 2.4 | const MIGRATION *ej1, *ej2; | 
| 341 | greg | 2.1 | RBFNODE         *tv; | 
| 342 |  |  |  | 
| 343 |  |  | rbfv[0] = rbfv[1] = NULL; | 
| 344 |  |  | if (mig == NULL) | 
| 345 |  |  | return(0); | 
| 346 | greg | 2.4 | for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; | 
| 347 |  |  | ej1 = nextedge(mig->rbfv[0],ej1)) { | 
| 348 |  |  | if (ej1 == mig) | 
| 349 | greg | 2.1 | continue; | 
| 350 | greg | 2.4 | tv = opp_rbf(mig->rbfv[0],ej1); | 
| 351 | greg | 2.1 | for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) | 
| 352 |  |  | if (opp_rbf(tv,ej2) == mig->rbfv[1]) { | 
| 353 |  |  | rbfv[is_rev_tri(mig->rbfv[0]->invec, | 
| 354 |  |  | mig->rbfv[1]->invec, | 
| 355 |  |  | tv->invec)] = tv; | 
| 356 |  |  | break; | 
| 357 |  |  | } | 
| 358 |  |  | } | 
| 359 |  |  | return((rbfv[0] != NULL) + (rbfv[1] != NULL)); | 
| 360 |  |  | } | 
| 361 |  |  |  | 
| 362 | greg | 2.4 | /* Clear our BSDF representation and free memory */ | 
| 363 |  |  | void | 
| 364 |  |  | clear_bsdf_rep(void) | 
| 365 |  |  | { | 
| 366 |  |  | while (mig_list != NULL) { | 
| 367 |  |  | MIGRATION       *mig = mig_list; | 
| 368 |  |  | mig_list = mig->next; | 
| 369 |  |  | free(mig); | 
| 370 |  |  | } | 
| 371 |  |  | while (dsf_list != NULL) { | 
| 372 |  |  | RBFNODE         *rbf = dsf_list; | 
| 373 |  |  | dsf_list = rbf->next; | 
| 374 |  |  | free(rbf); | 
| 375 |  |  | } | 
| 376 |  |  | inp_coverage = 0; | 
| 377 |  |  | single_plane_incident = -1; | 
| 378 |  |  | input_orient = output_orient = 0; | 
| 379 | greg | 2.5 | grid_res = GRIDRES; | 
| 380 | greg | 2.4 | } | 
| 381 |  |  |  | 
| 382 | greg | 2.1 | /* Write our BSDF mesh interpolant out to the given binary stream */ | 
| 383 |  |  | void | 
| 384 |  |  | save_bsdf_rep(FILE *ofp) | 
| 385 |  |  | { | 
| 386 |  |  | RBFNODE         *rbf; | 
| 387 |  |  | MIGRATION       *mig; | 
| 388 |  |  | int             i, n; | 
| 389 |  |  | /* finish header */ | 
| 390 | greg | 2.2 | fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); | 
| 391 |  |  | fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); | 
| 392 | greg | 2.5 | fprintf(ofp, "GRIDRES=%d\n", grid_res); | 
| 393 | greg | 2.1 | fputformat(BSDFREP_FMT, ofp); | 
| 394 |  |  | fputc('\n', ofp); | 
| 395 |  |  | /* write each DSF */ | 
| 396 |  |  | for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { | 
| 397 |  |  | putint(rbf->ord, 4, ofp); | 
| 398 |  |  | putflt(rbf->invec[0], ofp); | 
| 399 |  |  | putflt(rbf->invec[1], ofp); | 
| 400 |  |  | putflt(rbf->invec[2], ofp); | 
| 401 |  |  | putflt(rbf->vtotal, ofp); | 
| 402 |  |  | putint(rbf->nrbf, 4, ofp); | 
| 403 |  |  | for (i = 0; i < rbf->nrbf; i++) { | 
| 404 |  |  | putflt(rbf->rbfa[i].peak, ofp); | 
| 405 |  |  | putint(rbf->rbfa[i].crad, 2, ofp); | 
| 406 |  |  | putint(rbf->rbfa[i].gx, 1, ofp); | 
| 407 |  |  | putint(rbf->rbfa[i].gy, 1, ofp); | 
| 408 |  |  | } | 
| 409 |  |  | } | 
| 410 |  |  | putint(-1, 4, ofp);             /* terminator */ | 
| 411 |  |  | /* write each migration matrix */ | 
| 412 | greg | 2.2 | for (mig = mig_list; mig != NULL; mig = mig->next) { | 
| 413 |  |  | int     zerocnt = 0; | 
| 414 | greg | 2.1 | putint(mig->rbfv[0]->ord, 4, ofp); | 
| 415 |  |  | putint(mig->rbfv[1]->ord, 4, ofp); | 
| 416 | greg | 2.2 | /* write out as sparse data */ | 
| 417 | greg | 2.1 | n = mtx_nrows(mig) * mtx_ncols(mig); | 
| 418 | greg | 2.2 | for (i = 0; i < n; i++) { | 
| 419 | greg | 2.3 | if (zerocnt == 0xff) { | 
| 420 |  |  | putint(0xff, 1, ofp); zerocnt = 0; | 
| 421 | greg | 2.2 | } | 
| 422 |  |  | if (mig->mtx[i] != 0) { | 
| 423 |  |  | putint(zerocnt, 1, ofp); zerocnt = 0; | 
| 424 |  |  | putflt(mig->mtx[i], ofp); | 
| 425 |  |  | } else | 
| 426 |  |  | ++zerocnt; | 
| 427 |  |  | } | 
| 428 |  |  | putint(zerocnt, 1, ofp); | 
| 429 | greg | 2.1 | } | 
| 430 |  |  | putint(-1, 4, ofp);             /* terminator */ | 
| 431 |  |  | putint(-1, 4, ofp); | 
| 432 |  |  | if (fflush(ofp) == EOF) { | 
| 433 |  |  | fprintf(stderr, "%s: error writing BSDF interpolant\n", | 
| 434 |  |  | progname); | 
| 435 |  |  | exit(1); | 
| 436 |  |  | } | 
| 437 |  |  | } | 
| 438 |  |  |  | 
| 439 | greg | 2.2 | /* Check header line for critical information */ | 
| 440 |  |  | static int | 
| 441 |  |  | headline(char *s, void *p) | 
| 442 |  |  | { | 
| 443 |  |  | char    fmt[32]; | 
| 444 |  |  |  | 
| 445 |  |  | if (!strncmp(s, "SYMMETRY=", 9)) { | 
| 446 |  |  | inp_coverage = atoi(s+9); | 
| 447 |  |  | single_plane_incident = !inp_coverage; | 
| 448 |  |  | return(0); | 
| 449 |  |  | } | 
| 450 |  |  | if (!strncmp(s, "IO_SIDES=", 9)) { | 
| 451 |  |  | sscanf(s+9, "%d %d", &input_orient, &output_orient); | 
| 452 |  |  | return(0); | 
| 453 |  |  | } | 
| 454 | greg | 2.5 | if (!strncmp(s, "GRIDRES=", 8)) { | 
| 455 |  |  | sscanf(s+8, "%d", &grid_res); | 
| 456 |  |  | return(0); | 
| 457 |  |  | } | 
| 458 | greg | 2.2 | if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) | 
| 459 |  |  | return(-1); | 
| 460 |  |  | return(0); | 
| 461 |  |  | } | 
| 462 |  |  |  | 
| 463 | greg | 2.1 | /* Read a BSDF mesh interpolant from the given binary stream */ | 
| 464 |  |  | int | 
| 465 |  |  | load_bsdf_rep(FILE *ifp) | 
| 466 |  |  | { | 
| 467 |  |  | RBFNODE         rbfh; | 
| 468 |  |  | int             from_ord, to_ord; | 
| 469 |  |  | int             i; | 
| 470 | greg | 2.4 |  | 
| 471 |  |  | clear_bsdf_rep(); | 
| 472 | greg | 2.5 | if (ifp == NULL) | 
| 473 |  |  | return(0); | 
| 474 | greg | 2.2 | if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | | 
| 475 |  |  | !input_orient | !output_orient) { | 
| 476 | greg | 2.1 | fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", | 
| 477 |  |  | progname); | 
| 478 |  |  | return(0); | 
| 479 |  |  | } | 
| 480 |  |  | rbfh.next = NULL;               /* read each DSF */ | 
| 481 |  |  | rbfh.ejl = NULL; | 
| 482 |  |  | while ((rbfh.ord = getint(4, ifp)) >= 0) { | 
| 483 |  |  | RBFNODE         *newrbf; | 
| 484 |  |  |  | 
| 485 |  |  | rbfh.invec[0] = getflt(ifp); | 
| 486 |  |  | rbfh.invec[1] = getflt(ifp); | 
| 487 |  |  | rbfh.invec[2] = getflt(ifp); | 
| 488 | greg | 2.9 | if (normalize(rbfh.invec) == 0) { | 
| 489 |  |  | fprintf(stderr, "%s: zero incident vector\n", progname); | 
| 490 |  |  | return(0); | 
| 491 |  |  | } | 
| 492 | greg | 2.3 | rbfh.vtotal = getflt(ifp); | 
| 493 | greg | 2.1 | rbfh.nrbf = getint(4, ifp); | 
| 494 |  |  | newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + | 
| 495 |  |  | sizeof(RBFVAL)*(rbfh.nrbf-1)); | 
| 496 |  |  | if (newrbf == NULL) | 
| 497 |  |  | goto memerr; | 
| 498 | greg | 2.8 | memcpy(newrbf, &rbfh, sizeof(RBFNODE)-sizeof(RBFVAL)); | 
| 499 | greg | 2.1 | for (i = 0; i < rbfh.nrbf; i++) { | 
| 500 |  |  | newrbf->rbfa[i].peak = getflt(ifp); | 
| 501 |  |  | newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; | 
| 502 |  |  | newrbf->rbfa[i].gx = getint(1, ifp) & 0xff; | 
| 503 |  |  | newrbf->rbfa[i].gy = getint(1, ifp) & 0xff; | 
| 504 |  |  | } | 
| 505 |  |  | if (feof(ifp)) | 
| 506 |  |  | goto badEOF; | 
| 507 |  |  | /* insert in global list */ | 
| 508 |  |  | if (insert_dsf(newrbf) != rbfh.ord) { | 
| 509 |  |  | fprintf(stderr, "%s: error adding DSF\n", progname); | 
| 510 |  |  | return(0); | 
| 511 |  |  | } | 
| 512 |  |  | } | 
| 513 |  |  | /* read each migration matrix */ | 
| 514 |  |  | while ((from_ord = getint(4, ifp)) >= 0 && | 
| 515 |  |  | (to_ord = getint(4, ifp)) >= 0) { | 
| 516 |  |  | RBFNODE         *from_rbf = get_dsf(from_ord); | 
| 517 |  |  | RBFNODE         *to_rbf = get_dsf(to_ord); | 
| 518 |  |  | MIGRATION       *newmig; | 
| 519 |  |  | int             n; | 
| 520 |  |  |  | 
| 521 |  |  | if ((from_rbf == NULL) | (to_rbf == NULL)) { | 
| 522 |  |  | fprintf(stderr, | 
| 523 |  |  | "%s: bad DSF reference in migration edge\n", | 
| 524 |  |  | progname); | 
| 525 |  |  | return(0); | 
| 526 |  |  | } | 
| 527 |  |  | n = from_rbf->nrbf * to_rbf->nrbf; | 
| 528 |  |  | newmig = (MIGRATION *)malloc(sizeof(MIGRATION) + | 
| 529 |  |  | sizeof(float)*(n-1)); | 
| 530 |  |  | if (newmig == NULL) | 
| 531 |  |  | goto memerr; | 
| 532 |  |  | newmig->rbfv[0] = from_rbf; | 
| 533 |  |  | newmig->rbfv[1] = to_rbf; | 
| 534 | greg | 2.2 | memset(newmig->mtx, 0, sizeof(float)*n); | 
| 535 |  |  | for (i = 0; ; ) {       /* read sparse data */ | 
| 536 |  |  | int     zc = getint(1, ifp) & 0xff; | 
| 537 |  |  | if ((i += zc) >= n) | 
| 538 |  |  | break; | 
| 539 | greg | 2.3 | if (zc == 0xff) | 
| 540 |  |  | continue; | 
| 541 | greg | 2.2 | newmig->mtx[i++] = getflt(ifp); | 
| 542 |  |  | } | 
| 543 | greg | 2.1 | if (feof(ifp)) | 
| 544 |  |  | goto badEOF; | 
| 545 |  |  | /* insert in edge lists */ | 
| 546 |  |  | newmig->enxt[0] = from_rbf->ejl; | 
| 547 |  |  | from_rbf->ejl = newmig; | 
| 548 |  |  | newmig->enxt[1] = to_rbf->ejl; | 
| 549 |  |  | to_rbf->ejl = newmig; | 
| 550 |  |  | /* push onto global list */ | 
| 551 |  |  | newmig->next = mig_list; | 
| 552 |  |  | mig_list = newmig; | 
| 553 |  |  | } | 
| 554 |  |  | return(1);                      /* success! */ | 
| 555 |  |  | memerr: | 
| 556 |  |  | fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname); | 
| 557 |  |  | exit(1); | 
| 558 |  |  | badEOF: | 
| 559 |  |  | fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname); | 
| 560 |  |  | return(0); | 
| 561 |  |  | } |