| 29 |
|
#include "bsdfrep.h" |
| 30 |
|
|
| 31 |
|
#ifndef RSCA |
| 32 |
< |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
| 32 |
> |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
| 33 |
|
#endif |
| 34 |
+ |
#ifndef MAXSLOPE |
| 35 |
+ |
#define MAXSLOPE 200.0 /* maximum slope for smooth region */ |
| 36 |
+ |
#endif |
| 37 |
|
#ifndef SMOOTH_MSE |
| 38 |
|
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
| 39 |
|
#endif |
| 40 |
|
#ifndef SMOOTH_MSER |
| 41 |
< |
#define SMOOTH_MSER 0.07 /* acceptable relative MSE */ |
| 41 |
> |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
| 42 |
|
#endif |
| 43 |
|
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
| 44 |
|
|
| 45 |
|
#define RBFALLOCB 10 /* RBF allocation block size */ |
| 46 |
|
|
| 47 |
< |
/* our loaded grid for this incident angle */ |
| 47 |
> |
/* loaded grid or comparison DSFs */ |
| 48 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
| 49 |
+ |
/* allocated chrominance sums if any */ |
| 50 |
+ |
float (*spec_grid)[GRIDRES][GRIDRES]; |
| 51 |
+ |
int nspec_grid = 0; |
| 52 |
|
|
| 53 |
+ |
/* Set up visible spectrum sampling */ |
| 54 |
+ |
void |
| 55 |
+ |
set_spectral_samples(int nspec) |
| 56 |
+ |
{ |
| 57 |
+ |
if (rbf_colorimetry == RBCunknown) { |
| 58 |
+ |
if (nspec_grid > 0) { |
| 59 |
+ |
free(spec_grid); |
| 60 |
+ |
spec_grid = NULL; |
| 61 |
+ |
nspec_grid = 0; |
| 62 |
+ |
} |
| 63 |
+ |
if (nspec == 1) { |
| 64 |
+ |
rbf_colorimetry = RBCphotopic; |
| 65 |
+ |
return; |
| 66 |
+ |
} |
| 67 |
+ |
if (nspec == 3) { |
| 68 |
+ |
rbf_colorimetry = RBCtristimulus; |
| 69 |
+ |
spec_grid = (float (*)[GRIDRES][GRIDRES])calloc( |
| 70 |
+ |
2*GRIDRES*GRIDRES, sizeof(float) ); |
| 71 |
+ |
if (spec_grid == NULL) |
| 72 |
+ |
goto mem_error; |
| 73 |
+ |
nspec_grid = 2; |
| 74 |
+ |
return; |
| 75 |
+ |
} |
| 76 |
+ |
fprintf(stderr, |
| 77 |
+ |
"%s: only 1 or 3 spectral samples currently supported\n", |
| 78 |
+ |
progname); |
| 79 |
+ |
exit(1); |
| 80 |
+ |
} |
| 81 |
+ |
if (nspec != nspec_grid+1) { |
| 82 |
+ |
fprintf(stderr, |
| 83 |
+ |
"%s: number of spectral samples cannot be changed\n", |
| 84 |
+ |
progname); |
| 85 |
+ |
exit(1); |
| 86 |
+ |
} |
| 87 |
+ |
return; |
| 88 |
+ |
mem_error: |
| 89 |
+ |
fprintf(stderr, "%s: out of memory in set_spectral_samples()\n", |
| 90 |
+ |
progname); |
| 91 |
+ |
exit(1); |
| 92 |
+ |
} |
| 93 |
+ |
|
| 94 |
|
/* Start new DSF input grid */ |
| 95 |
|
void |
| 96 |
|
new_bsdf_data(double new_theta, double new_phi) |
| 98 |
|
if (!new_input_direction(new_theta, new_phi)) |
| 99 |
|
exit(1); |
| 100 |
|
memset(dsf_grid, 0, sizeof(dsf_grid)); |
| 101 |
+ |
if (nspec_grid > 0) |
| 102 |
+ |
memset(spec_grid, 0, sizeof(float)*GRIDRES*GRIDRES*nspec_grid); |
| 103 |
|
} |
| 104 |
|
|
| 105 |
|
/* Add BSDF data point */ |
| 106 |
|
void |
| 107 |
< |
add_bsdf_data(double theta_out, double phi_out, double val, int isDSF) |
| 107 |
> |
add_bsdf_data(double theta_out, double phi_out, const double val[], int isDSF) |
| 108 |
|
{ |
| 109 |
|
FVECT ovec; |
| 110 |
+ |
double cfact, Yval; |
| 111 |
|
int pos[2]; |
| 112 |
|
|
| 113 |
+ |
if (nspec_grid > 2) { |
| 114 |
+ |
fprintf(stderr, "%s: unsupported color space\n", progname); |
| 115 |
+ |
exit(1); |
| 116 |
+ |
} |
| 117 |
|
if (!output_orient) /* check output orientation */ |
| 118 |
|
output_orient = 1 - 2*(theta_out > 90.); |
| 119 |
|
else if (output_orient > 0 ^ theta_out < 90.) { |
| 120 |
< |
fputs("Cannot handle output angles on both sides of surface\n", |
| 121 |
< |
stderr); |
| 120 |
> |
fprintf(stderr, |
| 121 |
> |
"%s: cannot handle output angles on both sides of surface\n", |
| 122 |
> |
progname); |
| 123 |
|
exit(1); |
| 124 |
|
} |
| 125 |
|
ovec[2] = sin((M_PI/180.)*theta_out); |
| 126 |
|
ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2]; |
| 127 |
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
| 128 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
| 129 |
+ |
/* BSDF to DSF correction */ |
| 130 |
+ |
cfact = isDSF ? 1. : ovec[2]; |
| 131 |
|
|
| 132 |
< |
if (val <= 0) /* truncate to zero */ |
| 76 |
< |
val = 0; |
| 77 |
< |
else if (!isDSF) |
| 78 |
< |
val *= ovec[2]; /* convert from BSDF to DSF */ |
| 79 |
< |
|
| 132 |
> |
Yval = cfact * val[rbf_colorimetry==RBCtristimulus]; |
| 133 |
|
/* update BSDF histogram */ |
| 134 |
< |
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
| 135 |
< |
++bsdf_hist[histndx(val/ovec[2])]; |
| 134 |
> |
if (BSDF2SML*ovec[2] < Yval && Yval < BSDF2BIG*ovec[2]) |
| 135 |
> |
++bsdf_hist[histndx(Yval/ovec[2])]; |
| 136 |
|
|
| 137 |
|
pos_from_vec(pos, ovec); |
| 138 |
|
|
| 139 |
< |
dsf_grid[pos[0]][pos[1]].vsum += val; |
| 140 |
< |
dsf_grid[pos[0]][pos[1]].nval++; |
| 139 |
> |
dsf_grid[pos[0]][pos[1]].sum.v += Yval; |
| 140 |
> |
dsf_grid[pos[0]][pos[1]].sum.n++; |
| 141 |
> |
/* add in X and Z values */ |
| 142 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
| 143 |
> |
spec_grid[0][pos[0]][pos[1]] += cfact * val[0]; |
| 144 |
> |
spec_grid[1][pos[0]][pos[1]] += cfact * val[2]; |
| 145 |
> |
} |
| 146 |
|
} |
| 147 |
|
|
| 148 |
|
/* Compute minimum BSDF from histogram (does not clear) */ |
| 149 |
|
static void |
| 150 |
|
comp_bsdf_min() |
| 151 |
|
{ |
| 152 |
< |
int cnt; |
| 153 |
< |
int i, target; |
| 152 |
> |
unsigned long cnt, target; |
| 153 |
> |
int i; |
| 154 |
|
|
| 155 |
|
cnt = 0; |
| 156 |
|
for (i = HISTLEN; i--; ) |
| 174 |
|
|
| 175 |
|
for (x = x0; x < x1; x++) |
| 176 |
|
for (y = y0; y < y1; y++) |
| 177 |
< |
if (dsf_grid[x][y].nval) |
| 177 |
> |
if (dsf_grid[x][y].sum.n) |
| 178 |
|
return(0); |
| 179 |
|
return(1); |
| 180 |
|
} |
| 192 |
|
memset(xvec, 0, sizeof(xvec)); |
| 193 |
|
for (x = x0; x < x1; x++) |
| 194 |
|
for (y = y0; y < y1; y++) |
| 195 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
| 196 |
< |
double z = dsf_grid[x][y].vsum; |
| 195 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 196 |
> |
double z = dsf_grid[x][y].sum.v; |
| 197 |
|
rMtx[0][0] += x*x*(double)n; |
| 198 |
|
rMtx[0][1] += x*y*(double)n; |
| 199 |
|
rMtx[0][2] += x*(double)n; |
| 212 |
|
return(1); /* colinear values */ |
| 213 |
|
A = DOT(rMtx[0], xvec); |
| 214 |
|
B = DOT(rMtx[1], xvec); |
| 215 |
+ |
if (A*A + B*B > MAXSLOPE*MAXSLOPE) /* too steep? */ |
| 216 |
+ |
return(0); |
| 217 |
|
C = DOT(rMtx[2], xvec); |
| 218 |
|
sqerr = 0.0; /* compute mean squared error */ |
| 219 |
|
for (x = x0; x < x1; x++) |
| 220 |
|
for (y = y0; y < y1; y++) |
| 221 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
| 222 |
< |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
| 221 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 222 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
| 223 |
|
sqerr += n*d*d; |
| 224 |
|
} |
| 225 |
|
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
| 229 |
|
} |
| 230 |
|
|
| 231 |
|
/* Create new lobe based on integrated samples in region */ |
| 232 |
< |
static void |
| 232 |
> |
static int |
| 233 |
|
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
| 234 |
|
{ |
| 235 |
|
double vtot = 0.0; |
| 236 |
+ |
double CIEXtot = 0.0, CIEZtot = 0.0; |
| 237 |
|
int nv = 0; |
| 238 |
+ |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
| 239 |
|
double rad; |
| 240 |
|
int x, y; |
| 241 |
|
/* compute average for region */ |
| 242 |
|
for (x = x0; x < x1; x++) |
| 243 |
< |
for (y = y0; y < y1; y++) { |
| 244 |
< |
vtot += dsf_grid[x][y].vsum; |
| 245 |
< |
nv += dsf_grid[x][y].nval; |
| 246 |
< |
} |
| 243 |
> |
for (y = y0; y < y1; y++) |
| 244 |
> |
if (dsf_grid[x][y].sum.n) { |
| 245 |
> |
const double v = dsf_grid[x][y].sum.v; |
| 246 |
> |
const int n = dsf_grid[x][y].sum.n; |
| 247 |
> |
|
| 248 |
> |
if (v > 0) { |
| 249 |
> |
const double wt = v / (double)n; |
| 250 |
> |
wxsum += wt * x; |
| 251 |
> |
wysum += wt * y; |
| 252 |
> |
wtsum += wt; |
| 253 |
> |
} |
| 254 |
> |
vtot += v; |
| 255 |
> |
nv += n; |
| 256 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
| 257 |
> |
CIEXtot += spec_grid[0][x][y]; |
| 258 |
> |
CIEZtot += spec_grid[1][x][y]; |
| 259 |
> |
} |
| 260 |
> |
} |
| 261 |
|
if (!nv) { |
| 262 |
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
| 263 |
|
progname); |
| 264 |
|
exit(1); |
| 265 |
|
} |
| 266 |
+ |
if (vtot <= 0) /* only create positive lobes */ |
| 267 |
+ |
return(0); |
| 268 |
+ |
/* assign color */ |
| 269 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
| 270 |
+ |
const double df = 1.0 / (CIEXtot + vtot + CIEZtot); |
| 271 |
+ |
C_COLOR cclr; |
| 272 |
+ |
c_cset(&cclr, CIEXtot*df, vtot*df); |
| 273 |
+ |
rvp->chroma = c_encodeChroma(&cclr); |
| 274 |
+ |
} else |
| 275 |
+ |
rvp->chroma = c_dfchroma; |
| 276 |
|
/* peak value based on integral */ |
| 277 |
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
| 278 |
|
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
| 279 |
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
| 280 |
< |
rvp->crad = ANG2R(rad); |
| 281 |
< |
rvp->gx = (x0+x1)>>1; |
| 282 |
< |
rvp->gy = (y0+y1)>>1; |
| 280 |
> |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
| 281 |
> |
rvp->gx = (int)(wxsum/wtsum + .5); |
| 282 |
> |
rvp->gy = (int)(wysum/wtsum + .5); |
| 283 |
> |
return(1); |
| 284 |
|
} |
| 285 |
|
|
| 286 |
|
/* Recursive function to build radial basis function representation */ |
| 322 |
|
return(-1); |
| 323 |
|
} |
| 324 |
|
/* create lobes for leaves */ |
| 325 |
< |
if (!branched[0]) |
| 326 |
< |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
| 327 |
< |
if (!branched[1]) |
| 328 |
< |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
| 329 |
< |
if (!branched[2]) |
| 330 |
< |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
| 331 |
< |
if (!branched[3]) |
| 332 |
< |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
| 333 |
< |
nadded += nleaves; |
| 325 |
> |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
| 326 |
> |
++(*np); ++nadded; |
| 327 |
> |
} |
| 328 |
> |
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
| 329 |
> |
++(*np); ++nadded; |
| 330 |
> |
} |
| 331 |
> |
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
| 332 |
> |
++(*np); ++nadded; |
| 333 |
> |
} |
| 334 |
> |
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
| 335 |
> |
++(*np); ++nadded; |
| 336 |
> |
} |
| 337 |
|
return(nadded); |
| 338 |
|
} |
| 339 |
|
|
| 348 |
|
comp_bsdf_min(); |
| 349 |
|
/* create RBF node list */ |
| 350 |
|
rbfarr = NULL; nn = 0; |
| 351 |
< |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
| 352 |
< |
goto memerr; |
| 351 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
| 352 |
> |
if (nn) |
| 353 |
> |
goto memerr; |
| 354 |
> |
fprintf(stderr, |
| 355 |
> |
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
| 356 |
> |
progname, theta_in_deg, phi_in_deg); |
| 357 |
> |
return(NULL); |
| 358 |
> |
} |
| 359 |
|
/* (re)allocate RBF array */ |
| 360 |
|
newnode = (RBFNODE *)realloc(rbfarr, |
| 361 |
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
| 382 |
|
newnode->vtotal); |
| 383 |
|
#endif |
| 384 |
|
insert_dsf(newnode); |
| 289 |
– |
|
| 385 |
|
return(newnode); |
| 386 |
|
memerr: |
| 387 |
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |