| 7 |
|
* G. Ward |
| 8 |
|
*/ |
| 9 |
|
|
| 10 |
+ |
/**************************************************************** |
| 11 |
+ |
1) Collect samples into a grid using the Shirley-Chiu |
| 12 |
+ |
angular mapping from a hemisphere to a square. |
| 13 |
+ |
|
| 14 |
+ |
2) Compute an adaptive quadtree by subdividing the grid so that |
| 15 |
+ |
each leaf node has at least one sample up to as many |
| 16 |
+ |
samples as fit nicely on a plane to within a certain |
| 17 |
+ |
MSE tolerance. |
| 18 |
+ |
|
| 19 |
+ |
3) Place one Gaussian lobe at each leaf node in the quadtree, |
| 20 |
+ |
sizing it to have a radius equal to the leaf size and |
| 21 |
+ |
a volume equal to the energy in that node. |
| 22 |
+ |
*****************************************************************/ |
| 23 |
+ |
|
| 24 |
|
#define _USE_MATH_DEFINES |
| 25 |
|
#include <stdio.h> |
| 26 |
|
#include <stdlib.h> |
| 29 |
|
#include "bsdfrep.h" |
| 30 |
|
|
| 31 |
|
#ifndef RSCA |
| 32 |
< |
#define RSCA 2.7 /* radius scaling factor (empirical) */ |
| 32 |
> |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
| 33 |
|
#endif |
| 34 |
< |
/* our loaded grid for this incident angle */ |
| 34 |
> |
#ifndef SMOOTH_MSE |
| 35 |
> |
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
| 36 |
> |
#endif |
| 37 |
> |
#ifndef SMOOTH_MSER |
| 38 |
> |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
| 39 |
> |
#endif |
| 40 |
> |
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
| 41 |
> |
|
| 42 |
> |
#define RBFALLOCB 10 /* RBF allocation block size */ |
| 43 |
> |
|
| 44 |
> |
/* loaded grid or comparison DSFs */ |
| 45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
| 46 |
|
|
| 47 |
|
/* Start new DSF input grid */ |
| 73 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
| 74 |
|
|
| 75 |
|
if (!isDSF) |
| 76 |
< |
val *= ovec[2]; /* convert from BSDF to DSF */ |
| 76 |
> |
val *= COSF(ovec[2]); /* convert from BSDF to DSF */ |
| 77 |
|
|
| 78 |
|
/* update BSDF histogram */ |
| 79 |
|
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
| 81 |
|
|
| 82 |
|
pos_from_vec(pos, ovec); |
| 83 |
|
|
| 84 |
< |
dsf_grid[pos[0]][pos[1]].vsum += val; |
| 85 |
< |
dsf_grid[pos[0]][pos[1]].nval++; |
| 84 |
> |
dsf_grid[pos[0]][pos[1]].sum.v += val; |
| 85 |
> |
dsf_grid[pos[0]][pos[1]].sum.n++; |
| 86 |
|
} |
| 87 |
|
|
| 88 |
< |
/* Compute radii for non-empty bins */ |
| 65 |
< |
/* (distance to furthest empty bin for which non-empty bin is the closest) */ |
| 88 |
> |
/* Compute minimum BSDF from histogram (does not clear) */ |
| 89 |
|
static void |
| 90 |
< |
compute_radii(void) |
| 90 |
> |
comp_bsdf_min() |
| 91 |
|
{ |
| 92 |
< |
unsigned int fill_grid[GRIDRES][GRIDRES]; |
| 93 |
< |
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
| 71 |
< |
FVECT ovec0, ovec1; |
| 72 |
< |
double ang2, lastang2; |
| 73 |
< |
int r, i, j, jn, ii, jj, inear, jnear; |
| 92 |
> |
unsigned long cnt, target; |
| 93 |
> |
int i; |
| 94 |
|
|
| 95 |
< |
r = GRIDRES/2; /* proceed in zig-zag */ |
| 96 |
< |
for (i = 0; i < GRIDRES; i++) |
| 97 |
< |
for (jn = 0; jn < GRIDRES; jn++) { |
| 98 |
< |
j = (i&1) ? jn : GRIDRES-1-jn; |
| 99 |
< |
if (dsf_grid[i][j].nval) /* find empty grid pos. */ |
| 100 |
< |
continue; |
| 101 |
< |
ovec_from_pos(ovec0, i, j); |
| 102 |
< |
inear = jnear = -1; /* find nearest non-empty */ |
| 103 |
< |
lastang2 = M_PI*M_PI; |
| 104 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
| 105 |
< |
if (ii < 0) continue; |
| 106 |
< |
if (ii >= GRIDRES) break; |
| 107 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
| 108 |
< |
if (jj < 0) continue; |
| 109 |
< |
if (jj >= GRIDRES) break; |
| 110 |
< |
if (!dsf_grid[ii][jj].nval) |
| 111 |
< |
continue; |
| 112 |
< |
ovec_from_pos(ovec1, ii, jj); |
| 113 |
< |
ang2 = 2. - 2.*DOT(ovec0,ovec1); |
| 114 |
< |
if (ang2 >= lastang2) |
| 115 |
< |
continue; |
| 116 |
< |
lastang2 = ang2; |
| 117 |
< |
inear = ii; jnear = jj; |
| 118 |
< |
} |
| 95 |
> |
cnt = 0; |
| 96 |
> |
for (i = HISTLEN; i--; ) |
| 97 |
> |
cnt += bsdf_hist[i]; |
| 98 |
> |
if (!cnt) { /* shouldn't happen */ |
| 99 |
> |
bsdf_min = 0; |
| 100 |
> |
return; |
| 101 |
> |
} |
| 102 |
> |
target = cnt/100; /* ignore bottom 1% */ |
| 103 |
> |
cnt = 0; |
| 104 |
> |
for (i = 0; cnt <= target; i++) |
| 105 |
> |
cnt += bsdf_hist[i]; |
| 106 |
> |
bsdf_min = histval(i-1); |
| 107 |
> |
} |
| 108 |
> |
|
| 109 |
> |
/* Determine if the given region is empty of grid samples */ |
| 110 |
> |
static int |
| 111 |
> |
empty_region(int x0, int x1, int y0, int y1) |
| 112 |
> |
{ |
| 113 |
> |
int x, y; |
| 114 |
> |
|
| 115 |
> |
for (x = x0; x < x1; x++) |
| 116 |
> |
for (y = y0; y < y1; y++) |
| 117 |
> |
if (dsf_grid[x][y].sum.n) |
| 118 |
> |
return(0); |
| 119 |
> |
return(1); |
| 120 |
> |
} |
| 121 |
> |
|
| 122 |
> |
/* Determine if the given region is smooth enough to be a single lobe */ |
| 123 |
> |
static int |
| 124 |
> |
smooth_region(int x0, int x1, int y0, int y1) |
| 125 |
> |
{ |
| 126 |
> |
RREAL rMtx[3][3]; |
| 127 |
> |
FVECT xvec; |
| 128 |
> |
double A, B, C, nvs, sqerr; |
| 129 |
> |
int x, y, n; |
| 130 |
> |
/* compute planar regression */ |
| 131 |
> |
memset(rMtx, 0, sizeof(rMtx)); |
| 132 |
> |
memset(xvec, 0, sizeof(xvec)); |
| 133 |
> |
for (x = x0; x < x1; x++) |
| 134 |
> |
for (y = y0; y < y1; y++) |
| 135 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 136 |
> |
double z = dsf_grid[x][y].sum.v; |
| 137 |
> |
rMtx[0][0] += x*x*(double)n; |
| 138 |
> |
rMtx[0][1] += x*y*(double)n; |
| 139 |
> |
rMtx[0][2] += x*(double)n; |
| 140 |
> |
rMtx[1][1] += y*y*(double)n; |
| 141 |
> |
rMtx[1][2] += y*(double)n; |
| 142 |
> |
rMtx[2][2] += (double)n; |
| 143 |
> |
xvec[0] += x*z; |
| 144 |
> |
xvec[1] += y*z; |
| 145 |
> |
xvec[2] += z; |
| 146 |
|
} |
| 147 |
< |
if (inear < 0) { |
| 148 |
< |
fprintf(stderr, |
| 149 |
< |
"%s: Could not find non-empty neighbor!\n", |
| 150 |
< |
progname); |
| 151 |
< |
exit(1); |
| 147 |
> |
rMtx[1][0] = rMtx[0][1]; |
| 148 |
> |
rMtx[2][0] = rMtx[0][2]; |
| 149 |
> |
rMtx[2][1] = rMtx[1][2]; |
| 150 |
> |
nvs = rMtx[2][2]; |
| 151 |
> |
if (SDinvXform(rMtx, rMtx) != SDEnone) |
| 152 |
> |
return(1); /* colinear values */ |
| 153 |
> |
A = DOT(rMtx[0], xvec); |
| 154 |
> |
B = DOT(rMtx[1], xvec); |
| 155 |
> |
C = DOT(rMtx[2], xvec); |
| 156 |
> |
sqerr = 0.0; /* compute mean squared error */ |
| 157 |
> |
for (x = x0; x < x1; x++) |
| 158 |
> |
for (y = y0; y < y1; y++) |
| 159 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 160 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
| 161 |
> |
sqerr += n*d*d; |
| 162 |
|
} |
| 163 |
< |
ang2 = sqrt(lastang2); |
| 164 |
< |
r = ANG2R(ang2); /* record if > previous */ |
| 165 |
< |
if (r > dsf_grid[inear][jnear].crad) |
| 166 |
< |
dsf_grid[inear][jnear].crad = r; |
| 110 |
< |
/* next search radius */ |
| 111 |
< |
r = ang2*(2.*GRIDRES/M_PI) + 3; |
| 112 |
< |
} |
| 113 |
< |
/* blur radii over hemisphere */ |
| 114 |
< |
memset(fill_grid, 0, sizeof(fill_grid)); |
| 115 |
< |
memset(fill_cnt, 0, sizeof(fill_cnt)); |
| 116 |
< |
for (i = 0; i < GRIDRES; i++) |
| 117 |
< |
for (j = 0; j < GRIDRES; j++) { |
| 118 |
< |
if (!dsf_grid[i][j].crad) |
| 119 |
< |
continue; /* missing distance */ |
| 120 |
< |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI); |
| 121 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
| 122 |
< |
if (ii < 0) continue; |
| 123 |
< |
if (ii >= GRIDRES) break; |
| 124 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
| 125 |
< |
if (jj < 0) continue; |
| 126 |
< |
if (jj >= GRIDRES) break; |
| 127 |
< |
if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r) |
| 128 |
< |
continue; |
| 129 |
< |
fill_grid[ii][jj] += dsf_grid[i][j].crad; |
| 130 |
< |
fill_cnt[ii][jj]++; |
| 131 |
< |
} |
| 132 |
< |
} |
| 133 |
< |
} |
| 134 |
< |
/* copy back blurred radii */ |
| 135 |
< |
for (i = 0; i < GRIDRES; i++) |
| 136 |
< |
for (j = 0; j < GRIDRES; j++) |
| 137 |
< |
if (fill_cnt[i][j]) |
| 138 |
< |
dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j]; |
| 163 |
> |
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
| 164 |
> |
return(1); |
| 165 |
> |
/* OR below relative MSE threshold? */ |
| 166 |
> |
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER); |
| 167 |
|
} |
| 168 |
|
|
| 169 |
< |
/* Cull points for more uniform distribution, leave all nval 0 or 1 */ |
| 170 |
< |
static void |
| 171 |
< |
cull_values(void) |
| 169 |
> |
/* Create new lobe based on integrated samples in region */ |
| 170 |
> |
static int |
| 171 |
> |
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
| 172 |
|
{ |
| 173 |
< |
FVECT ovec0, ovec1; |
| 174 |
< |
double maxang, maxang2; |
| 175 |
< |
int i, j, ii, jj, r; |
| 176 |
< |
/* simple greedy algorithm */ |
| 177 |
< |
for (i = 0; i < GRIDRES; i++) |
| 178 |
< |
for (j = 0; j < GRIDRES; j++) { |
| 179 |
< |
if (!dsf_grid[i][j].nval) |
| 180 |
< |
continue; |
| 181 |
< |
if (!dsf_grid[i][j].crad) |
| 182 |
< |
continue; /* shouldn't happen */ |
| 183 |
< |
ovec_from_pos(ovec0, i, j); |
| 184 |
< |
maxang = 2.*R2ANG(dsf_grid[i][j].crad); |
| 185 |
< |
if (maxang > ovec0[2]) /* clamp near horizon */ |
| 186 |
< |
maxang = ovec0[2]; |
| 187 |
< |
r = maxang*(2.*GRIDRES/M_PI) + 1; |
| 188 |
< |
maxang2 = maxang*maxang; |
| 189 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
| 162 |
< |
if (ii < 0) continue; |
| 163 |
< |
if (ii >= GRIDRES) break; |
| 164 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
| 165 |
< |
if (jj < 0) continue; |
| 166 |
< |
if (jj >= GRIDRES) break; |
| 167 |
< |
if (!dsf_grid[ii][jj].nval) |
| 168 |
< |
continue; |
| 169 |
< |
if ((ii == i) & (jj == j)) |
| 170 |
< |
continue; /* don't get self-absorbed */ |
| 171 |
< |
ovec_from_pos(ovec1, ii, jj); |
| 172 |
< |
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
| 173 |
< |
continue; |
| 174 |
< |
/* absorb sum */ |
| 175 |
< |
dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum; |
| 176 |
< |
dsf_grid[i][j].nval += dsf_grid[ii][jj].nval; |
| 177 |
< |
/* keep value, though */ |
| 178 |
< |
dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval; |
| 179 |
< |
dsf_grid[ii][jj].nval = 0; |
| 173 |
> |
double vtot = 0.0; |
| 174 |
> |
int nv = 0; |
| 175 |
> |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
| 176 |
> |
double rad; |
| 177 |
> |
int x, y; |
| 178 |
> |
/* compute average for region */ |
| 179 |
> |
for (x = x0; x < x1; x++) |
| 180 |
> |
for (y = y0; y < y1; y++) |
| 181 |
> |
if (dsf_grid[x][y].sum.n) { |
| 182 |
> |
const double v = dsf_grid[x][y].sum.v; |
| 183 |
> |
const int n = dsf_grid[x][y].sum.n; |
| 184 |
> |
|
| 185 |
> |
if (v > 0) { |
| 186 |
> |
double wt = v / (double)n; |
| 187 |
> |
wxsum += wt * x; |
| 188 |
> |
wysum += wt * y; |
| 189 |
> |
wtsum += wt; |
| 190 |
|
} |
| 191 |
+ |
vtot += v; |
| 192 |
+ |
nv += n; |
| 193 |
|
} |
| 194 |
< |
} |
| 195 |
< |
/* final averaging pass */ |
| 196 |
< |
for (i = 0; i < GRIDRES; i++) |
| 197 |
< |
for (j = 0; j < GRIDRES; j++) |
| 198 |
< |
if (dsf_grid[i][j].nval > 1) { |
| 199 |
< |
dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval; |
| 200 |
< |
dsf_grid[i][j].nval = 1; |
| 201 |
< |
} |
| 194 |
> |
if (!nv) { |
| 195 |
> |
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
| 196 |
> |
progname); |
| 197 |
> |
exit(1); |
| 198 |
> |
} |
| 199 |
> |
if (vtot <= 0) /* only create positive lobes */ |
| 200 |
> |
return(0); |
| 201 |
> |
/* peak value based on integral */ |
| 202 |
> |
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
| 203 |
> |
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
| 204 |
> |
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
| 205 |
> |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
| 206 |
> |
rvp->gx = (int)(wxsum/wtsum + .5); |
| 207 |
> |
rvp->gy = (int)(wysum/wtsum + .5); |
| 208 |
> |
return(1); |
| 209 |
|
} |
| 210 |
|
|
| 211 |
+ |
/* Recursive function to build radial basis function representation */ |
| 212 |
+ |
static int |
| 213 |
+ |
build_rbfrep(RBFVAL **arp, int *np, int x0, int x1, int y0, int y1) |
| 214 |
+ |
{ |
| 215 |
+ |
int xmid = (x0+x1)>>1; |
| 216 |
+ |
int ymid = (y0+y1)>>1; |
| 217 |
+ |
int branched[4]; |
| 218 |
+ |
int nadded, nleaves; |
| 219 |
+ |
/* need to make this a leaf? */ |
| 220 |
+ |
if (empty_region(x0, xmid, y0, ymid) || |
| 221 |
+ |
empty_region(xmid, x1, y0, ymid) || |
| 222 |
+ |
empty_region(x0, xmid, ymid, y1) || |
| 223 |
+ |
empty_region(xmid, x1, ymid, y1)) |
| 224 |
+ |
return(0); |
| 225 |
+ |
/* add children (branches+leaves) */ |
| 226 |
+ |
if ((branched[0] = build_rbfrep(arp, np, x0, xmid, y0, ymid)) < 0) |
| 227 |
+ |
return(-1); |
| 228 |
+ |
if ((branched[1] = build_rbfrep(arp, np, xmid, x1, y0, ymid)) < 0) |
| 229 |
+ |
return(-1); |
| 230 |
+ |
if ((branched[2] = build_rbfrep(arp, np, x0, xmid, ymid, y1)) < 0) |
| 231 |
+ |
return(-1); |
| 232 |
+ |
if ((branched[3] = build_rbfrep(arp, np, xmid, x1, ymid, y1)) < 0) |
| 233 |
+ |
return(-1); |
| 234 |
+ |
nadded = branched[0] + branched[1] + branched[2] + branched[3]; |
| 235 |
+ |
nleaves = !branched[0] + !branched[1] + !branched[2] + !branched[3]; |
| 236 |
+ |
if (!nleaves) /* nothing but branches? */ |
| 237 |
+ |
return(nadded); |
| 238 |
+ |
/* combine 4 leaves into 1? */ |
| 239 |
+ |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) && |
| 240 |
+ |
smooth_region(x0, x1, y0, y1)) |
| 241 |
+ |
return(0); |
| 242 |
+ |
/* need more array space? */ |
| 243 |
+ |
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) { |
| 244 |
+ |
*arp = (RBFVAL *)realloc(*arp, |
| 245 |
+ |
sizeof(RBFVAL)*(*np+nleaves-1+(1<<RBFALLOCB))); |
| 246 |
+ |
if (*arp == NULL) |
| 247 |
+ |
return(-1); |
| 248 |
+ |
} |
| 249 |
+ |
/* create lobes for leaves */ |
| 250 |
+ |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
| 251 |
+ |
++(*np); ++nadded; |
| 252 |
+ |
} |
| 253 |
+ |
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
| 254 |
+ |
++(*np); ++nadded; |
| 255 |
+ |
} |
| 256 |
+ |
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
| 257 |
+ |
++(*np); ++nadded; |
| 258 |
+ |
} |
| 259 |
+ |
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
| 260 |
+ |
++(*np); ++nadded; |
| 261 |
+ |
} |
| 262 |
+ |
return(nadded); |
| 263 |
+ |
} |
| 264 |
+ |
|
| 265 |
|
/* Count up filled nodes and build RBF representation from current grid */ |
| 266 |
|
RBFNODE * |
| 267 |
< |
make_rbfrep(void) |
| 267 |
> |
make_rbfrep() |
| 268 |
|
{ |
| 196 |
– |
int niter = 16; |
| 197 |
– |
double lastVar, thisVar = 100.; |
| 198 |
– |
int nn; |
| 269 |
|
RBFNODE *newnode; |
| 270 |
< |
RBFVAL *itera; |
| 271 |
< |
int i, j; |
| 272 |
< |
/* compute RBF radii */ |
| 273 |
< |
compute_radii(); |
| 274 |
< |
/* coagulate lobes */ |
| 275 |
< |
cull_values(); |
| 276 |
< |
nn = 0; /* count selected bins */ |
| 277 |
< |
for (i = 0; i < GRIDRES; i++) |
| 278 |
< |
for (j = 0; j < GRIDRES; j++) |
| 279 |
< |
nn += dsf_grid[i][j].nval; |
| 280 |
< |
/* allocate RBF array */ |
| 281 |
< |
newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
| 270 |
> |
RBFVAL *rbfarr; |
| 271 |
> |
int nn; |
| 272 |
> |
/* compute minimum BSDF */ |
| 273 |
> |
comp_bsdf_min(); |
| 274 |
> |
/* create RBF node list */ |
| 275 |
> |
rbfarr = NULL; nn = 0; |
| 276 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
| 277 |
> |
if (nn) |
| 278 |
> |
goto memerr; |
| 279 |
> |
fprintf(stderr, |
| 280 |
> |
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
| 281 |
> |
progname, theta_in_deg, phi_in_deg); |
| 282 |
> |
return(NULL); |
| 283 |
> |
} |
| 284 |
> |
/* (re)allocate RBF array */ |
| 285 |
> |
newnode = (RBFNODE *)realloc(rbfarr, |
| 286 |
> |
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
| 287 |
|
if (newnode == NULL) |
| 288 |
|
goto memerr; |
| 289 |
+ |
/* copy computed lobes into RBF node */ |
| 290 |
+ |
memmove(newnode->rbfa, newnode, sizeof(RBFVAL)*nn); |
| 291 |
|
newnode->ord = -1; |
| 292 |
|
newnode->next = NULL; |
| 293 |
|
newnode->ejl = NULL; |
| 295 |
|
newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
| 296 |
|
newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
| 297 |
|
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]); |
| 298 |
< |
newnode->vtotal = 0; |
| 298 |
> |
newnode->vtotal = .0; |
| 299 |
|
newnode->nrbf = nn; |
| 300 |
< |
nn = 0; /* fill RBF array */ |
| 301 |
< |
for (i = 0; i < GRIDRES; i++) |
| 302 |
< |
for (j = 0; j < GRIDRES; j++) |
| 226 |
< |
if (dsf_grid[i][j].nval) { |
| 227 |
< |
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
| 228 |
< |
newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5; |
| 229 |
< |
newnode->rbfa[nn].gx = i; |
| 230 |
< |
newnode->rbfa[nn].gy = j; |
| 231 |
< |
++nn; |
| 232 |
< |
} |
| 233 |
< |
/* iterate to improve interpolation accuracy */ |
| 234 |
< |
itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf); |
| 235 |
< |
if (itera == NULL) |
| 236 |
< |
goto memerr; |
| 237 |
< |
memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf); |
| 238 |
< |
do { |
| 239 |
< |
double dsum = 0, dsum2 = 0; |
| 240 |
< |
nn = 0; |
| 241 |
< |
for (i = 0; i < GRIDRES; i++) |
| 242 |
< |
for (j = 0; j < GRIDRES; j++) |
| 243 |
< |
if (dsf_grid[i][j].nval) { |
| 244 |
< |
FVECT odir; |
| 245 |
< |
double corr; |
| 246 |
< |
ovec_from_pos(odir, i, j); |
| 247 |
< |
itera[nn++].peak *= corr = |
| 248 |
< |
dsf_grid[i][j].vsum / |
| 249 |
< |
eval_rbfrep(newnode, odir); |
| 250 |
< |
dsum += 1. - corr; |
| 251 |
< |
dsum2 += (1.-corr)*(1.-corr); |
| 252 |
< |
} |
| 253 |
< |
memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf); |
| 254 |
< |
lastVar = thisVar; |
| 255 |
< |
thisVar = dsum2/(double)nn; |
| 300 |
> |
/* compute sum for normalization */ |
| 301 |
> |
while (nn-- > 0) |
| 302 |
> |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn]); |
| 303 |
|
#ifdef DEBUG |
| 304 |
< |
fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n", |
| 258 |
< |
100.*dsum/(double)nn, |
| 259 |
< |
100.*sqrt(thisVar)); |
| 260 |
< |
#endif |
| 261 |
< |
} while (--niter > 0 && lastVar-thisVar > 0.02*lastVar); |
| 262 |
< |
|
| 263 |
< |
free(itera); |
| 264 |
< |
nn = 0; /* compute sum for normalization */ |
| 265 |
< |
while (nn < newnode->nrbf) |
| 266 |
< |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]); |
| 267 |
< |
#ifdef DEBUG |
| 304 |
> |
fprintf(stderr, "Built RBF with %d lobes\n", newnode->nrbf); |
| 305 |
|
fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n", |
| 306 |
|
get_theta180(newnode->invec), get_phi360(newnode->invec), |
| 307 |
|
newnode->vtotal); |
| 308 |
|
#endif |
| 309 |
|
insert_dsf(newnode); |
| 273 |
– |
|
| 310 |
|
return(newnode); |
| 311 |
|
memerr: |
| 312 |
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |