| 29 |
|
#include "bsdfrep.h" |
| 30 |
|
|
| 31 |
|
#ifndef RSCA |
| 32 |
< |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
| 32 |
> |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
| 33 |
|
#endif |
| 34 |
|
#ifndef SMOOTH_MSE |
| 35 |
|
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
| 36 |
|
#endif |
| 37 |
|
#ifndef SMOOTH_MSER |
| 38 |
< |
#define SMOOTH_MSER 0.07 /* acceptable relative MSE */ |
| 38 |
> |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
| 39 |
|
#endif |
| 40 |
|
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
| 41 |
|
|
| 42 |
|
#define RBFALLOCB 10 /* RBF allocation block size */ |
| 43 |
|
|
| 44 |
< |
/* our loaded grid for this incident angle */ |
| 44 |
> |
/* loaded grid or comparison DSFs */ |
| 45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
| 46 |
|
|
| 47 |
|
/* Start new DSF input grid */ |
| 72 |
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
| 73 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
| 74 |
|
|
| 75 |
< |
if (val <= 0) /* truncate to zero */ |
| 76 |
< |
val = 0; |
| 77 |
< |
else if (!isDSF) |
| 78 |
< |
val *= ovec[2]; /* convert from BSDF to DSF */ |
| 75 |
> |
if (!isDSF) |
| 76 |
> |
val *= COSF(ovec[2]); /* convert from BSDF to DSF */ |
| 77 |
|
|
| 78 |
|
/* update BSDF histogram */ |
| 79 |
|
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
| 81 |
|
|
| 82 |
|
pos_from_vec(pos, ovec); |
| 83 |
|
|
| 84 |
< |
dsf_grid[pos[0]][pos[1]].vsum += val; |
| 85 |
< |
dsf_grid[pos[0]][pos[1]].nval++; |
| 84 |
> |
dsf_grid[pos[0]][pos[1]].sum.v += val; |
| 85 |
> |
dsf_grid[pos[0]][pos[1]].sum.n++; |
| 86 |
|
} |
| 87 |
|
|
| 88 |
|
/* Compute minimum BSDF from histogram (does not clear) */ |
| 89 |
|
static void |
| 90 |
|
comp_bsdf_min() |
| 91 |
|
{ |
| 92 |
< |
int cnt; |
| 93 |
< |
int i, target; |
| 92 |
> |
unsigned long cnt, target; |
| 93 |
> |
int i; |
| 94 |
|
|
| 95 |
|
cnt = 0; |
| 96 |
|
for (i = HISTLEN; i--; ) |
| 114 |
|
|
| 115 |
|
for (x = x0; x < x1; x++) |
| 116 |
|
for (y = y0; y < y1; y++) |
| 117 |
< |
if (dsf_grid[x][y].nval) |
| 117 |
> |
if (dsf_grid[x][y].sum.n) |
| 118 |
|
return(0); |
| 119 |
|
return(1); |
| 120 |
|
} |
| 132 |
|
memset(xvec, 0, sizeof(xvec)); |
| 133 |
|
for (x = x0; x < x1; x++) |
| 134 |
|
for (y = y0; y < y1; y++) |
| 135 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
| 136 |
< |
double z = dsf_grid[x][y].vsum; |
| 135 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 136 |
> |
double z = dsf_grid[x][y].sum.v; |
| 137 |
|
rMtx[0][0] += x*x*(double)n; |
| 138 |
|
rMtx[0][1] += x*y*(double)n; |
| 139 |
|
rMtx[0][2] += x*(double)n; |
| 149 |
|
rMtx[2][1] = rMtx[1][2]; |
| 150 |
|
nvs = rMtx[2][2]; |
| 151 |
|
if (SDinvXform(rMtx, rMtx) != SDEnone) |
| 152 |
< |
return(0); |
| 152 |
> |
return(1); /* colinear values */ |
| 153 |
|
A = DOT(rMtx[0], xvec); |
| 154 |
|
B = DOT(rMtx[1], xvec); |
| 155 |
|
C = DOT(rMtx[2], xvec); |
| 156 |
|
sqerr = 0.0; /* compute mean squared error */ |
| 157 |
|
for (x = x0; x < x1; x++) |
| 158 |
|
for (y = y0; y < y1; y++) |
| 159 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
| 160 |
< |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
| 159 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
| 160 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
| 161 |
|
sqerr += n*d*d; |
| 162 |
|
} |
| 163 |
|
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
| 167 |
|
} |
| 168 |
|
|
| 169 |
|
/* Create new lobe based on integrated samples in region */ |
| 170 |
< |
static void |
| 170 |
> |
static int |
| 171 |
|
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
| 172 |
|
{ |
| 173 |
|
double vtot = 0.0; |
| 174 |
|
int nv = 0; |
| 175 |
+ |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
| 176 |
|
double rad; |
| 177 |
|
int x, y; |
| 178 |
|
/* compute average for region */ |
| 179 |
|
for (x = x0; x < x1; x++) |
| 180 |
< |
for (y = y0; y < y1; y++) { |
| 181 |
< |
vtot += dsf_grid[x][y].vsum; |
| 182 |
< |
nv += dsf_grid[x][y].nval; |
| 183 |
< |
} |
| 180 |
> |
for (y = y0; y < y1; y++) |
| 181 |
> |
if (dsf_grid[x][y].sum.n) { |
| 182 |
> |
const double v = dsf_grid[x][y].sum.v; |
| 183 |
> |
const int n = dsf_grid[x][y].sum.n; |
| 184 |
> |
|
| 185 |
> |
if (v > 0) { |
| 186 |
> |
double wt = v / (double)n; |
| 187 |
> |
wxsum += wt * x; |
| 188 |
> |
wysum += wt * y; |
| 189 |
> |
wtsum += wt; |
| 190 |
> |
} |
| 191 |
> |
vtot += v; |
| 192 |
> |
nv += n; |
| 193 |
> |
} |
| 194 |
|
if (!nv) { |
| 195 |
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
| 196 |
|
progname); |
| 197 |
|
exit(1); |
| 198 |
|
} |
| 199 |
+ |
if (vtot <= 0) /* only create positive lobes */ |
| 200 |
+ |
return(0); |
| 201 |
|
/* peak value based on integral */ |
| 202 |
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
| 203 |
|
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
| 204 |
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
| 205 |
< |
rvp->crad = ANG2R(rad); |
| 206 |
< |
rvp->gx = (x0+x1)>>1; |
| 207 |
< |
rvp->gy = (y0+y1)>>1; |
| 205 |
> |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
| 206 |
> |
rvp->gx = (int)(wxsum/wtsum + .5); |
| 207 |
> |
rvp->gy = (int)(wysum/wtsum + .5); |
| 208 |
> |
return(1); |
| 209 |
|
} |
| 210 |
|
|
| 211 |
|
/* Recursive function to build radial basis function representation */ |
| 247 |
|
return(-1); |
| 248 |
|
} |
| 249 |
|
/* create lobes for leaves */ |
| 250 |
< |
if (!branched[0]) |
| 251 |
< |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
| 252 |
< |
if (!branched[1]) |
| 253 |
< |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
| 254 |
< |
if (!branched[2]) |
| 255 |
< |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
| 256 |
< |
if (!branched[3]) |
| 257 |
< |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
| 258 |
< |
nadded += nleaves; |
| 250 |
> |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
| 251 |
> |
++(*np); ++nadded; |
| 252 |
> |
} |
| 253 |
> |
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
| 254 |
> |
++(*np); ++nadded; |
| 255 |
> |
} |
| 256 |
> |
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
| 257 |
> |
++(*np); ++nadded; |
| 258 |
> |
} |
| 259 |
> |
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
| 260 |
> |
++(*np); ++nadded; |
| 261 |
> |
} |
| 262 |
|
return(nadded); |
| 263 |
|
} |
| 264 |
|
|
| 273 |
|
comp_bsdf_min(); |
| 274 |
|
/* create RBF node list */ |
| 275 |
|
rbfarr = NULL; nn = 0; |
| 276 |
< |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
| 277 |
< |
goto memerr; |
| 276 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
| 277 |
> |
if (nn) |
| 278 |
> |
goto memerr; |
| 279 |
> |
fprintf(stderr, |
| 280 |
> |
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
| 281 |
> |
progname, theta_in_deg, phi_in_deg); |
| 282 |
> |
return(NULL); |
| 283 |
> |
} |
| 284 |
|
/* (re)allocate RBF array */ |
| 285 |
|
newnode = (RBFNODE *)realloc(rbfarr, |
| 286 |
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
| 307 |
|
newnode->vtotal); |
| 308 |
|
#endif |
| 309 |
|
insert_dsf(newnode); |
| 289 |
– |
|
| 310 |
|
return(newnode); |
| 311 |
|
memerr: |
| 312 |
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |