| 1 | 
greg | 
2.1 | 
#ifndef lint | 
| 2 | 
greg | 
2.9 | 
static const char RCSid[] = "$Id: bsdfmesh.c,v 2.8 2013/03/20 01:00:22 greg Exp $"; | 
| 3 | 
greg | 
2.1 | 
#endif | 
| 4 | 
  | 
  | 
/* | 
| 5 | 
  | 
  | 
 * Create BSDF advection mesh from radial basis functions. | 
| 6 | 
  | 
  | 
 * | 
| 7 | 
  | 
  | 
 *      G. Ward | 
| 8 | 
  | 
  | 
 */ | 
| 9 | 
  | 
  | 
 | 
| 10 | 
  | 
  | 
#ifndef _WIN32 | 
| 11 | 
  | 
  | 
#include <unistd.h> | 
| 12 | 
  | 
  | 
#include <sys/wait.h> | 
| 13 | 
  | 
  | 
#include <sys/mman.h> | 
| 14 | 
  | 
  | 
#endif | 
| 15 | 
  | 
  | 
#define _USE_MATH_DEFINES | 
| 16 | 
  | 
  | 
#include <stdio.h> | 
| 17 | 
  | 
  | 
#include <stdlib.h> | 
| 18 | 
  | 
  | 
#include <string.h> | 
| 19 | 
  | 
  | 
#include <math.h> | 
| 20 | 
  | 
  | 
#include "bsdfrep.h" | 
| 21 | 
  | 
  | 
                                /* number of processes to run */ | 
| 22 | 
  | 
  | 
int                     nprocs = 1; | 
| 23 | 
  | 
  | 
                                /* number of children (-1 in child) */ | 
| 24 | 
  | 
  | 
static int              nchild = 0; | 
| 25 | 
  | 
  | 
 | 
| 26 | 
greg | 
2.3 | 
typedef struct { | 
| 27 | 
  | 
  | 
        int             nrows, ncols;   /* array size (matches migration) */ | 
| 28 | 
  | 
  | 
        float           *price;         /* migration prices */ | 
| 29 | 
  | 
  | 
        short           *sord;          /* sort for each row, low to high */ | 
| 30 | 
  | 
  | 
} PRICEMAT;                     /* sorted pricing matrix */ | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
#define pricerow(p,i)   ((p)->price + (i)*(p)->ncols) | 
| 33 | 
  | 
  | 
#define psortrow(p,i)   ((p)->sord + (i)*(p)->ncols) | 
| 34 | 
  | 
  | 
 | 
| 35 | 
greg | 
2.2 | 
/* Create a new migration holder (sharing memory for multiprocessing) */ | 
| 36 | 
  | 
  | 
static MIGRATION * | 
| 37 | 
  | 
  | 
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) | 
| 38 | 
  | 
  | 
{ | 
| 39 | 
  | 
  | 
        size_t          memlen = sizeof(MIGRATION) + | 
| 40 | 
  | 
  | 
                                sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); | 
| 41 | 
  | 
  | 
        MIGRATION       *newmig; | 
| 42 | 
  | 
  | 
#ifdef _WIN32 | 
| 43 | 
  | 
  | 
        if (nprocs > 1) | 
| 44 | 
  | 
  | 
                fprintf(stderr, "%s: warning - multiprocessing not supported\n", | 
| 45 | 
  | 
  | 
                                progname); | 
| 46 | 
  | 
  | 
        nprocs = 1; | 
| 47 | 
  | 
  | 
        newmig = (MIGRATION *)malloc(memlen); | 
| 48 | 
  | 
  | 
#else | 
| 49 | 
  | 
  | 
        if (nprocs <= 1) {                      /* single process? */ | 
| 50 | 
  | 
  | 
                newmig = (MIGRATION *)malloc(memlen); | 
| 51 | 
  | 
  | 
        } else {                                /* else need to share memory */ | 
| 52 | 
  | 
  | 
                newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, | 
| 53 | 
  | 
  | 
                                                MAP_ANON|MAP_SHARED, -1, 0); | 
| 54 | 
  | 
  | 
                if ((void *)newmig == MAP_FAILED) | 
| 55 | 
  | 
  | 
                        newmig = NULL; | 
| 56 | 
  | 
  | 
        } | 
| 57 | 
  | 
  | 
#endif | 
| 58 | 
  | 
  | 
        if (newmig == NULL) { | 
| 59 | 
  | 
  | 
                fprintf(stderr, "%s: cannot allocate new migration\n", progname); | 
| 60 | 
  | 
  | 
                exit(1); | 
| 61 | 
  | 
  | 
        } | 
| 62 | 
  | 
  | 
        newmig->rbfv[0] = from_rbf; | 
| 63 | 
  | 
  | 
        newmig->rbfv[1] = to_rbf; | 
| 64 | 
  | 
  | 
                                                /* insert in edge lists */ | 
| 65 | 
  | 
  | 
        newmig->enxt[0] = from_rbf->ejl; | 
| 66 | 
  | 
  | 
        from_rbf->ejl = newmig; | 
| 67 | 
  | 
  | 
        newmig->enxt[1] = to_rbf->ejl; | 
| 68 | 
  | 
  | 
        to_rbf->ejl = newmig; | 
| 69 | 
  | 
  | 
        newmig->next = mig_list;                /* push onto global list */ | 
| 70 | 
  | 
  | 
        return(mig_list = newmig); | 
| 71 | 
  | 
  | 
} | 
| 72 | 
  | 
  | 
 | 
| 73 | 
  | 
  | 
#ifdef _WIN32 | 
| 74 | 
  | 
  | 
#define await_children(n)       (void)(n) | 
| 75 | 
  | 
  | 
#define run_subprocess()        0 | 
| 76 | 
  | 
  | 
#define end_subprocess()        (void)0 | 
| 77 | 
  | 
  | 
#else | 
| 78 | 
  | 
  | 
 | 
| 79 | 
  | 
  | 
/* Wait for the specified number of child processes to complete */ | 
| 80 | 
  | 
  | 
static void | 
| 81 | 
  | 
  | 
await_children(int n) | 
| 82 | 
  | 
  | 
{ | 
| 83 | 
  | 
  | 
        int     exit_status = 0; | 
| 84 | 
  | 
  | 
 | 
| 85 | 
  | 
  | 
        if (n > nchild) | 
| 86 | 
  | 
  | 
                n = nchild; | 
| 87 | 
  | 
  | 
        while (n-- > 0) { | 
| 88 | 
  | 
  | 
                int     status; | 
| 89 | 
  | 
  | 
                if (wait(&status) < 0) { | 
| 90 | 
  | 
  | 
                        fprintf(stderr, "%s: missing child(ren)!\n", progname); | 
| 91 | 
  | 
  | 
                        nchild = 0; | 
| 92 | 
  | 
  | 
                        break; | 
| 93 | 
  | 
  | 
                } | 
| 94 | 
  | 
  | 
                --nchild; | 
| 95 | 
  | 
  | 
                if (status) {                   /* something wrong */ | 
| 96 | 
  | 
  | 
                        if ((status = WEXITSTATUS(status))) | 
| 97 | 
  | 
  | 
                                exit_status = status; | 
| 98 | 
  | 
  | 
                        else | 
| 99 | 
  | 
  | 
                                exit_status += !exit_status; | 
| 100 | 
  | 
  | 
                        fprintf(stderr, "%s: subprocess died\n", progname); | 
| 101 | 
  | 
  | 
                        n = nchild;             /* wait for the rest */ | 
| 102 | 
  | 
  | 
                } | 
| 103 | 
  | 
  | 
        } | 
| 104 | 
  | 
  | 
        if (exit_status) | 
| 105 | 
  | 
  | 
                exit(exit_status); | 
| 106 | 
  | 
  | 
} | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
/* Start child process if multiprocessing selected */ | 
| 109 | 
  | 
  | 
static pid_t | 
| 110 | 
  | 
  | 
run_subprocess(void) | 
| 111 | 
  | 
  | 
{ | 
| 112 | 
  | 
  | 
        int     status; | 
| 113 | 
  | 
  | 
        pid_t   pid; | 
| 114 | 
  | 
  | 
 | 
| 115 | 
  | 
  | 
        if (nprocs <= 1)                        /* any children requested? */ | 
| 116 | 
  | 
  | 
                return(0); | 
| 117 | 
  | 
  | 
        await_children(nchild + 1 - nprocs);    /* free up child process */ | 
| 118 | 
  | 
  | 
        if ((pid = fork())) { | 
| 119 | 
  | 
  | 
                if (pid < 0) { | 
| 120 | 
  | 
  | 
                        fprintf(stderr, "%s: cannot fork subprocess\n", | 
| 121 | 
  | 
  | 
                                        progname); | 
| 122 | 
greg | 
2.6 | 
                        await_children(nchild); | 
| 123 | 
greg | 
2.2 | 
                        exit(1); | 
| 124 | 
  | 
  | 
                } | 
| 125 | 
  | 
  | 
                ++nchild;                       /* subprocess started */ | 
| 126 | 
  | 
  | 
                return(pid); | 
| 127 | 
  | 
  | 
        } | 
| 128 | 
  | 
  | 
        nchild = -1; | 
| 129 | 
  | 
  | 
        return(0);                              /* put child to work */ | 
| 130 | 
  | 
  | 
} | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
/* If we are in subprocess, call exit */ | 
| 133 | 
  | 
  | 
#define end_subprocess()        if (nchild < 0) _exit(0); else | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
#endif  /* ! _WIN32 */ | 
| 136 | 
  | 
  | 
 | 
| 137 | 
greg | 
2.3 | 
/* Comparison routine needed for sorting price row */ | 
| 138 | 
  | 
  | 
static int | 
| 139 | 
  | 
  | 
msrt_cmp(void *b, const void *p1, const void *p2) | 
| 140 | 
  | 
  | 
{ | 
| 141 | 
  | 
  | 
        PRICEMAT        *pm = (PRICEMAT *)b; | 
| 142 | 
  | 
  | 
        int             ri = ((const short *)p1 - pm->sord) / pm->ncols; | 
| 143 | 
  | 
  | 
        float           c1 = pricerow(pm,ri)[*(const short *)p1]; | 
| 144 | 
  | 
  | 
        float           c2 = pricerow(pm,ri)[*(const short *)p2]; | 
| 145 | 
  | 
  | 
 | 
| 146 | 
  | 
  | 
        if (c1 > c2) return(1); | 
| 147 | 
  | 
  | 
        if (c1 < c2) return(-1); | 
| 148 | 
  | 
  | 
        return(0); | 
| 149 | 
  | 
  | 
} | 
| 150 | 
  | 
  | 
 | 
| 151 | 
greg | 
2.1 | 
/* Compute (and allocate) migration price matrix for optimization */ | 
| 152 | 
greg | 
2.3 | 
static void | 
| 153 | 
  | 
  | 
price_routes(PRICEMAT *pm, const RBFNODE *from_rbf, const RBFNODE *to_rbf) | 
| 154 | 
greg | 
2.1 | 
{ | 
| 155 | 
  | 
  | 
        FVECT   *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); | 
| 156 | 
  | 
  | 
        int     i, j; | 
| 157 | 
  | 
  | 
 | 
| 158 | 
greg | 
2.3 | 
        pm->nrows = from_rbf->nrbf; | 
| 159 | 
  | 
  | 
        pm->ncols = to_rbf->nrbf; | 
| 160 | 
  | 
  | 
        pm->price = (float *)malloc(sizeof(float) * pm->nrows*pm->ncols); | 
| 161 | 
  | 
  | 
        pm->sord = (short *)malloc(sizeof(short) * pm->nrows*pm->ncols); | 
| 162 | 
  | 
  | 
         | 
| 163 | 
  | 
  | 
        if ((pm->price == NULL) | (pm->sord == NULL) | (vto == NULL)) { | 
| 164 | 
greg | 
2.1 | 
                fprintf(stderr, "%s: Out of memory in migration_costs()\n", | 
| 165 | 
  | 
  | 
                                progname); | 
| 166 | 
  | 
  | 
                exit(1); | 
| 167 | 
  | 
  | 
        } | 
| 168 | 
  | 
  | 
        for (j = to_rbf->nrbf; j--; )           /* save repetitive ops. */ | 
| 169 | 
  | 
  | 
                ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); | 
| 170 | 
  | 
  | 
 | 
| 171 | 
  | 
  | 
        for (i = from_rbf->nrbf; i--; ) { | 
| 172 | 
  | 
  | 
            const double        from_ang = R2ANG(from_rbf->rbfa[i].crad); | 
| 173 | 
  | 
  | 
            FVECT               vfrom; | 
| 174 | 
  | 
  | 
            ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); | 
| 175 | 
greg | 
2.3 | 
            for (j = to_rbf->nrbf; j--; ) { | 
| 176 | 
greg | 
2.7 | 
                double          dprod = DOT(vfrom, vto[j]); | 
| 177 | 
  | 
  | 
                pricerow(pm,i)[j] = ((dprod >= 1.) ? .0 : acos(dprod)) + | 
| 178 | 
greg | 
2.1 | 
                                fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang); | 
| 179 | 
greg | 
2.3 | 
                psortrow(pm,i)[j] = j; | 
| 180 | 
  | 
  | 
            } | 
| 181 | 
  | 
  | 
            qsort_r(psortrow(pm,i), pm->ncols, sizeof(short), pm, &msrt_cmp); | 
| 182 | 
greg | 
2.1 | 
        } | 
| 183 | 
  | 
  | 
        free(vto); | 
| 184 | 
  | 
  | 
} | 
| 185 | 
  | 
  | 
 | 
| 186 | 
greg | 
2.3 | 
/* Free price matrix */ | 
| 187 | 
  | 
  | 
static void | 
| 188 | 
  | 
  | 
free_routes(PRICEMAT *pm) | 
| 189 | 
greg | 
2.1 | 
{ | 
| 190 | 
greg | 
2.3 | 
        free(pm->price); pm->price = NULL; | 
| 191 | 
  | 
  | 
        free(pm->sord); pm->sord = NULL; | 
| 192 | 
greg | 
2.1 | 
} | 
| 193 | 
  | 
  | 
 | 
| 194 | 
  | 
  | 
/* Compute minimum (optimistic) cost for moving the given source material */ | 
| 195 | 
  | 
  | 
static double | 
| 196 | 
greg | 
2.3 | 
min_cost(double amt2move, const double *avail, const PRICEMAT *pm, int s) | 
| 197 | 
greg | 
2.1 | 
{ | 
| 198 | 
  | 
  | 
        double          total_cost = 0; | 
| 199 | 
greg | 
2.3 | 
        int             j; | 
| 200 | 
greg | 
2.1 | 
 | 
| 201 | 
  | 
  | 
        if (amt2move <= FTINY)                  /* pre-emptive check */ | 
| 202 | 
greg | 
2.5 | 
                return(.0); | 
| 203 | 
greg | 
2.1 | 
                                                /* move cheapest first */ | 
| 204 | 
greg | 
2.3 | 
        for (j = 0; j < pm->ncols && amt2move > FTINY; j++) { | 
| 205 | 
  | 
  | 
                int     d = psortrow(pm,s)[j]; | 
| 206 | 
greg | 
2.1 | 
                double  amt = (amt2move < avail[d]) ? amt2move : avail[d]; | 
| 207 | 
  | 
  | 
 | 
| 208 | 
greg | 
2.3 | 
                total_cost += amt * pricerow(pm,s)[d]; | 
| 209 | 
greg | 
2.1 | 
                amt2move -= amt; | 
| 210 | 
  | 
  | 
        } | 
| 211 | 
  | 
  | 
        return(total_cost); | 
| 212 | 
  | 
  | 
} | 
| 213 | 
  | 
  | 
 | 
| 214 | 
  | 
  | 
/* Take a step in migration by choosing optimal bucket to transfer */ | 
| 215 | 
  | 
  | 
static double | 
| 216 | 
greg | 
2.3 | 
migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const PRICEMAT *pm) | 
| 217 | 
greg | 
2.1 | 
{ | 
| 218 | 
greg | 
2.4 | 
        const double    maxamt = 1./(double)pm->ncols; | 
| 219 | 
greg | 
2.2 | 
        const double    minamt = maxamt*5e-6; | 
| 220 | 
greg | 
2.5 | 
        double          *src_cost; | 
| 221 | 
greg | 
2.1 | 
        struct { | 
| 222 | 
  | 
  | 
                int     s, d;   /* source and destination */ | 
| 223 | 
  | 
  | 
                double  price;  /* price estimate per amount moved */ | 
| 224 | 
  | 
  | 
                double  amt;    /* amount we can move */ | 
| 225 | 
  | 
  | 
        } cur, best; | 
| 226 | 
  | 
  | 
        int             i; | 
| 227 | 
greg | 
2.5 | 
                                                /* allocate cost array */ | 
| 228 | 
  | 
  | 
        src_cost = (double *)malloc(sizeof(double)*pm->nrows); | 
| 229 | 
  | 
  | 
        if (src_cost == NULL) { | 
| 230 | 
  | 
  | 
                fprintf(stderr, "%s: Out of memory in migration_step()\n", | 
| 231 | 
  | 
  | 
                                progname); | 
| 232 | 
  | 
  | 
                exit(1); | 
| 233 | 
greg | 
2.1 | 
        } | 
| 234 | 
greg | 
2.3 | 
        for (i = pm->nrows; i--; )              /* starting costs for diff. */ | 
| 235 | 
  | 
  | 
                src_cost[i] = min_cost(src_rem[i], dst_rem, pm, i); | 
| 236 | 
greg | 
2.1 | 
 | 
| 237 | 
  | 
  | 
                                                /* find best source & dest. */ | 
| 238 | 
  | 
  | 
        best.s = best.d = -1; best.price = FHUGE; best.amt = 0; | 
| 239 | 
greg | 
2.3 | 
        for (cur.s = pm->nrows; cur.s--; ) { | 
| 240 | 
greg | 
2.1 | 
            double      cost_others = 0; | 
| 241 | 
greg | 
2.5 | 
 | 
| 242 | 
greg | 
2.2 | 
            if (src_rem[cur.s] <= minamt) | 
| 243 | 
greg | 
2.1 | 
                    continue; | 
| 244 | 
greg | 
2.4 | 
                                                /* examine cheapest dest. */ | 
| 245 | 
  | 
  | 
            for (i = 0; i < pm->ncols; i++) | 
| 246 | 
greg | 
2.5 | 
                if (dst_rem[ cur.d = psortrow(pm,cur.s)[i] ] > minamt) | 
| 247 | 
greg | 
2.4 | 
                        break; | 
| 248 | 
  | 
  | 
            if (i >= pm->ncols) | 
| 249 | 
greg | 
2.5 | 
                break; | 
| 250 | 
greg | 
2.4 | 
            if ((cur.price = pricerow(pm,cur.s)[cur.d]) >= best.price) | 
| 251 | 
greg | 
2.5 | 
                continue;                       /* no point checking further */ | 
| 252 | 
greg | 
2.1 | 
            cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? | 
| 253 | 
  | 
  | 
                                src_rem[cur.s] : dst_rem[cur.d]; | 
| 254 | 
  | 
  | 
            if (cur.amt > maxamt) cur.amt = maxamt; | 
| 255 | 
  | 
  | 
            dst_rem[cur.d] -= cur.amt;          /* add up differential costs */ | 
| 256 | 
greg | 
2.3 | 
            for (i = pm->nrows; i--; ) | 
| 257 | 
greg | 
2.1 | 
                if (i != cur.s) | 
| 258 | 
greg | 
2.3 | 
                        cost_others += min_cost(src_rem[i], dst_rem, pm, i) | 
| 259 | 
greg | 
2.1 | 
                                        - src_cost[i]; | 
| 260 | 
  | 
  | 
            dst_rem[cur.d] += cur.amt;          /* undo trial move */ | 
| 261 | 
  | 
  | 
            cur.price += cost_others/cur.amt;   /* adjust effective price */ | 
| 262 | 
  | 
  | 
            if (cur.price < best.price)         /* are we better than best? */ | 
| 263 | 
  | 
  | 
                    best = cur; | 
| 264 | 
  | 
  | 
        } | 
| 265 | 
greg | 
2.5 | 
        free(src_cost);                         /* finish up */ | 
| 266 | 
  | 
  | 
 | 
| 267 | 
  | 
  | 
        if ((best.s < 0) | (best.d < 0))        /* nothing left to move? */ | 
| 268 | 
greg | 
2.1 | 
                return(.0); | 
| 269 | 
greg | 
2.5 | 
                                                /* else make the actual move */ | 
| 270 | 
greg | 
2.2 | 
        mtx_coef(mig,best.s,best.d) += best.amt; | 
| 271 | 
greg | 
2.1 | 
        src_rem[best.s] -= best.amt; | 
| 272 | 
  | 
  | 
        dst_rem[best.d] -= best.amt; | 
| 273 | 
  | 
  | 
        return(best.amt); | 
| 274 | 
  | 
  | 
} | 
| 275 | 
  | 
  | 
 | 
| 276 | 
  | 
  | 
/* Compute and insert migration along directed edge (may fork child) */ | 
| 277 | 
  | 
  | 
static MIGRATION * | 
| 278 | 
  | 
  | 
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) | 
| 279 | 
  | 
  | 
{ | 
| 280 | 
greg | 
2.2 | 
        const double    end_thresh = 5e-6; | 
| 281 | 
greg | 
2.3 | 
        PRICEMAT        pmtx; | 
| 282 | 
greg | 
2.1 | 
        MIGRATION       *newmig; | 
| 283 | 
  | 
  | 
        double          *src_rem, *dst_rem; | 
| 284 | 
  | 
  | 
        double          total_rem = 1., move_amt; | 
| 285 | 
greg | 
2.6 | 
        int             i, j; | 
| 286 | 
greg | 
2.1 | 
                                                /* check if exists already */ | 
| 287 | 
  | 
  | 
        for (newmig = from_rbf->ejl; newmig != NULL; | 
| 288 | 
  | 
  | 
                        newmig = nextedge(from_rbf,newmig)) | 
| 289 | 
  | 
  | 
                if (newmig->rbfv[1] == to_rbf) | 
| 290 | 
  | 
  | 
                        return(NULL); | 
| 291 | 
  | 
  | 
                                                /* else allocate */ | 
| 292 | 
greg | 
2.7 | 
#ifdef DEBUG | 
| 293 | 
  | 
  | 
        fprintf(stderr, "Building path from (theta,phi) (%.0f,%.0f) ", | 
| 294 | 
  | 
  | 
                        get_theta180(from_rbf->invec), | 
| 295 | 
  | 
  | 
                        get_phi360(from_rbf->invec)); | 
| 296 | 
  | 
  | 
        fprintf(stderr, "to (%.0f,%.0f) with %d x %d matrix\n", | 
| 297 | 
  | 
  | 
                        get_theta180(to_rbf->invec), | 
| 298 | 
  | 
  | 
                        get_phi360(to_rbf->invec),  | 
| 299 | 
  | 
  | 
                        from_rbf->nrbf, to_rbf->nrbf); | 
| 300 | 
  | 
  | 
#endif | 
| 301 | 
greg | 
2.1 | 
        newmig = new_migration(from_rbf, to_rbf); | 
| 302 | 
  | 
  | 
        if (run_subprocess()) | 
| 303 | 
  | 
  | 
                return(newmig);                 /* child continues */ | 
| 304 | 
greg | 
2.3 | 
        price_routes(&pmtx, from_rbf, to_rbf); | 
| 305 | 
greg | 
2.1 | 
        src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); | 
| 306 | 
  | 
  | 
        dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); | 
| 307 | 
  | 
  | 
        if ((src_rem == NULL) | (dst_rem == NULL)) { | 
| 308 | 
  | 
  | 
                fprintf(stderr, "%s: Out of memory in create_migration()\n", | 
| 309 | 
  | 
  | 
                                progname); | 
| 310 | 
  | 
  | 
                exit(1); | 
| 311 | 
  | 
  | 
        } | 
| 312 | 
  | 
  | 
                                                /* starting quantities */ | 
| 313 | 
  | 
  | 
        memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); | 
| 314 | 
  | 
  | 
        for (i = from_rbf->nrbf; i--; ) | 
| 315 | 
  | 
  | 
                src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; | 
| 316 | 
greg | 
2.6 | 
        for (j = to_rbf->nrbf; j--; ) | 
| 317 | 
  | 
  | 
                dst_rem[j] = rbf_volume(&to_rbf->rbfa[j]) / to_rbf->vtotal; | 
| 318 | 
  | 
  | 
 | 
| 319 | 
greg | 
2.1 | 
        do {                                    /* move a bit at a time */ | 
| 320 | 
greg | 
2.3 | 
                move_amt = migration_step(newmig, src_rem, dst_rem, &pmtx); | 
| 321 | 
greg | 
2.1 | 
                total_rem -= move_amt; | 
| 322 | 
greg | 
2.2 | 
        } while ((total_rem > end_thresh) & (move_amt > 0)); | 
| 323 | 
greg | 
2.6 | 
 | 
| 324 | 
greg | 
2.1 | 
        for (i = from_rbf->nrbf; i--; ) {       /* normalize final matrix */ | 
| 325 | 
greg | 
2.6 | 
            double      nf = rbf_volume(&from_rbf->rbfa[i]); | 
| 326 | 
greg | 
2.1 | 
            if (nf <= FTINY) continue; | 
| 327 | 
  | 
  | 
            nf = from_rbf->vtotal / nf; | 
| 328 | 
  | 
  | 
            for (j = to_rbf->nrbf; j--; ) | 
| 329 | 
greg | 
2.6 | 
                mtx_coef(newmig,i,j) *= nf;     /* row now sums to 1.0 */ | 
| 330 | 
greg | 
2.1 | 
        } | 
| 331 | 
  | 
  | 
        end_subprocess();                       /* exit here if subprocess */ | 
| 332 | 
greg | 
2.3 | 
        free_routes(&pmtx);                     /* free working arrays */ | 
| 333 | 
greg | 
2.1 | 
        free(src_rem); | 
| 334 | 
  | 
  | 
        free(dst_rem); | 
| 335 | 
  | 
  | 
        return(newmig); | 
| 336 | 
  | 
  | 
} | 
| 337 | 
  | 
  | 
 | 
| 338 | 
  | 
  | 
/* Check if prospective vertex would create overlapping triangle */ | 
| 339 | 
  | 
  | 
static int | 
| 340 | 
  | 
  | 
overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) | 
| 341 | 
  | 
  | 
{ | 
| 342 | 
  | 
  | 
        const MIGRATION *ej; | 
| 343 | 
  | 
  | 
        RBFNODE         *vother[2]; | 
| 344 | 
  | 
  | 
        int             im_rev; | 
| 345 | 
  | 
  | 
                                                /* find shared edge in mesh */ | 
| 346 | 
  | 
  | 
        for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { | 
| 347 | 
  | 
  | 
                const RBFNODE   *tv = opp_rbf(pv,ej); | 
| 348 | 
  | 
  | 
                if (tv == bv0) { | 
| 349 | 
  | 
  | 
                        im_rev = is_rev_tri(ej->rbfv[0]->invec, | 
| 350 | 
  | 
  | 
                                        ej->rbfv[1]->invec, bv1->invec); | 
| 351 | 
  | 
  | 
                        break; | 
| 352 | 
  | 
  | 
                } | 
| 353 | 
  | 
  | 
                if (tv == bv1) { | 
| 354 | 
  | 
  | 
                        im_rev = is_rev_tri(ej->rbfv[0]->invec, | 
| 355 | 
  | 
  | 
                                        ej->rbfv[1]->invec, bv0->invec); | 
| 356 | 
  | 
  | 
                        break; | 
| 357 | 
  | 
  | 
                } | 
| 358 | 
  | 
  | 
        } | 
| 359 | 
  | 
  | 
        if (!get_triangles(vother, ej))         /* triangle on same side? */ | 
| 360 | 
  | 
  | 
                return(0); | 
| 361 | 
  | 
  | 
        return(vother[im_rev] != NULL); | 
| 362 | 
  | 
  | 
} | 
| 363 | 
  | 
  | 
 | 
| 364 | 
  | 
  | 
/* Find context hull vertex to complete triangle (oriented call) */ | 
| 365 | 
  | 
  | 
static RBFNODE * | 
| 366 | 
  | 
  | 
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) | 
| 367 | 
  | 
  | 
{ | 
| 368 | 
  | 
  | 
        FVECT   vmid, vejn, vp; | 
| 369 | 
  | 
  | 
        RBFNODE *rbf, *rbfbest = NULL; | 
| 370 | 
  | 
  | 
        double  dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; | 
| 371 | 
  | 
  | 
 | 
| 372 | 
  | 
  | 
        VSUB(vejn, rbf1->invec, rbf0->invec); | 
| 373 | 
  | 
  | 
        VADD(vmid, rbf0->invec, rbf1->invec); | 
| 374 | 
  | 
  | 
        if (normalize(vejn) == 0 || normalize(vmid) == 0) | 
| 375 | 
  | 
  | 
                return(NULL); | 
| 376 | 
  | 
  | 
                                                /* XXX exhaustive search */ | 
| 377 | 
  | 
  | 
        /* Find triangle with minimum rotation from perpendicular */ | 
| 378 | 
  | 
  | 
        for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { | 
| 379 | 
  | 
  | 
                if ((rbf == rbf0) | (rbf == rbf1)) | 
| 380 | 
  | 
  | 
                        continue; | 
| 381 | 
  | 
  | 
                tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); | 
| 382 | 
  | 
  | 
                if (DOT(vp, vmid) <= FTINY) | 
| 383 | 
  | 
  | 
                        continue;               /* wrong orientation */ | 
| 384 | 
  | 
  | 
                area2 = .25*DOT(vp,vp); | 
| 385 | 
  | 
  | 
                VSUB(vp, rbf->invec, rbf0->invec); | 
| 386 | 
  | 
  | 
                dprod = -DOT(vp, vejn); | 
| 387 | 
  | 
  | 
                VSUM(vp, vp, vejn, dprod);      /* above guarantees non-zero */ | 
| 388 | 
  | 
  | 
                dprod = DOT(vp, vmid) / VLEN(vp); | 
| 389 | 
  | 
  | 
                if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) | 
| 390 | 
  | 
  | 
                        continue;               /* found better already */ | 
| 391 | 
  | 
  | 
                if (overlaps_tri(rbf0, rbf1, rbf)) | 
| 392 | 
  | 
  | 
                        continue;               /* overlaps another triangle */ | 
| 393 | 
  | 
  | 
                rbfbest = rbf; | 
| 394 | 
  | 
  | 
                bestdprod = dprod;              /* new one to beat */ | 
| 395 | 
  | 
  | 
                bestarea2 = area2; | 
| 396 | 
  | 
  | 
        } | 
| 397 | 
  | 
  | 
        return(rbfbest); | 
| 398 | 
  | 
  | 
} | 
| 399 | 
  | 
  | 
 | 
| 400 | 
  | 
  | 
/* Create new migration edge and grow mesh recursively around it */ | 
| 401 | 
  | 
  | 
static void | 
| 402 | 
  | 
  | 
mesh_from_edge(MIGRATION *edge) | 
| 403 | 
  | 
  | 
{ | 
| 404 | 
  | 
  | 
        MIGRATION       *ej0, *ej1; | 
| 405 | 
  | 
  | 
        RBFNODE         *tvert[2]; | 
| 406 | 
  | 
  | 
         | 
| 407 | 
  | 
  | 
        if (edge == NULL) | 
| 408 | 
  | 
  | 
                return; | 
| 409 | 
  | 
  | 
                                                /* triangle on either side? */ | 
| 410 | 
  | 
  | 
        get_triangles(tvert, edge); | 
| 411 | 
  | 
  | 
        if (tvert[0] == NULL) {                 /* grow mesh on right */ | 
| 412 | 
  | 
  | 
                tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); | 
| 413 | 
  | 
  | 
                if (tvert[0] != NULL) { | 
| 414 | 
  | 
  | 
                        if (tvert[0]->ord > edge->rbfv[0]->ord) | 
| 415 | 
  | 
  | 
                                ej0 = create_migration(edge->rbfv[0], tvert[0]); | 
| 416 | 
  | 
  | 
                        else | 
| 417 | 
  | 
  | 
                                ej0 = create_migration(tvert[0], edge->rbfv[0]); | 
| 418 | 
  | 
  | 
                        if (tvert[0]->ord > edge->rbfv[1]->ord) | 
| 419 | 
  | 
  | 
                                ej1 = create_migration(edge->rbfv[1], tvert[0]); | 
| 420 | 
  | 
  | 
                        else | 
| 421 | 
  | 
  | 
                                ej1 = create_migration(tvert[0], edge->rbfv[1]); | 
| 422 | 
  | 
  | 
                        mesh_from_edge(ej0); | 
| 423 | 
  | 
  | 
                        mesh_from_edge(ej1); | 
| 424 | 
  | 
  | 
                } | 
| 425 | 
  | 
  | 
        } else if (tvert[1] == NULL) {          /* grow mesh on left */ | 
| 426 | 
  | 
  | 
                tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); | 
| 427 | 
  | 
  | 
                if (tvert[1] != NULL) { | 
| 428 | 
  | 
  | 
                        if (tvert[1]->ord > edge->rbfv[0]->ord) | 
| 429 | 
  | 
  | 
                                ej0 = create_migration(edge->rbfv[0], tvert[1]); | 
| 430 | 
  | 
  | 
                        else | 
| 431 | 
  | 
  | 
                                ej0 = create_migration(tvert[1], edge->rbfv[0]); | 
| 432 | 
  | 
  | 
                        if (tvert[1]->ord > edge->rbfv[1]->ord) | 
| 433 | 
  | 
  | 
                                ej1 = create_migration(edge->rbfv[1], tvert[1]); | 
| 434 | 
  | 
  | 
                        else | 
| 435 | 
  | 
  | 
                                ej1 = create_migration(tvert[1], edge->rbfv[1]); | 
| 436 | 
  | 
  | 
                        mesh_from_edge(ej0); | 
| 437 | 
  | 
  | 
                        mesh_from_edge(ej1); | 
| 438 | 
  | 
  | 
                } | 
| 439 | 
  | 
  | 
        } | 
| 440 | 
  | 
  | 
} | 
| 441 | 
  | 
  | 
         | 
| 442 | 
  | 
  | 
/* Build our triangle mesh from recorded RBFs */ | 
| 443 | 
  | 
  | 
void | 
| 444 | 
  | 
  | 
build_mesh(void) | 
| 445 | 
  | 
  | 
{ | 
| 446 | 
  | 
  | 
        double          best2 = M_PI*M_PI; | 
| 447 | 
  | 
  | 
        RBFNODE         *shrt_edj[2]; | 
| 448 | 
  | 
  | 
        RBFNODE         *rbf0, *rbf1; | 
| 449 | 
  | 
  | 
                                                /* check if isotropic */ | 
| 450 | 
  | 
  | 
        if (single_plane_incident) { | 
| 451 | 
  | 
  | 
                for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) | 
| 452 | 
  | 
  | 
                        if (rbf0->next != NULL) | 
| 453 | 
  | 
  | 
                                create_migration(rbf0, rbf0->next); | 
| 454 | 
  | 
  | 
                await_children(nchild); | 
| 455 | 
  | 
  | 
                return; | 
| 456 | 
  | 
  | 
        } | 
| 457 | 
  | 
  | 
        shrt_edj[0] = shrt_edj[1] = NULL;       /* start w/ shortest edge */ | 
| 458 | 
  | 
  | 
        for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) | 
| 459 | 
  | 
  | 
            for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { | 
| 460 | 
  | 
  | 
                double  dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); | 
| 461 | 
  | 
  | 
                if (dist2 < best2) { | 
| 462 | 
  | 
  | 
                        shrt_edj[0] = rbf0; | 
| 463 | 
  | 
  | 
                        shrt_edj[1] = rbf1; | 
| 464 | 
  | 
  | 
                        best2 = dist2; | 
| 465 | 
  | 
  | 
                } | 
| 466 | 
  | 
  | 
        } | 
| 467 | 
  | 
  | 
        if (shrt_edj[0] == NULL) { | 
| 468 | 
  | 
  | 
                fprintf(stderr, "%s: Cannot find shortest edge\n", progname); | 
| 469 | 
  | 
  | 
                exit(1); | 
| 470 | 
  | 
  | 
        } | 
| 471 | 
  | 
  | 
                                                /* build mesh from this edge */ | 
| 472 | 
  | 
  | 
        if (shrt_edj[0]->ord < shrt_edj[1]->ord) | 
| 473 | 
  | 
  | 
                mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); | 
| 474 | 
  | 
  | 
        else | 
| 475 | 
  | 
  | 
                mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); | 
| 476 | 
  | 
  | 
                                                /* complete migrations */ | 
| 477 | 
  | 
  | 
        await_children(nchild); | 
| 478 | 
  | 
  | 
} |