| 1 | greg | 2.1 | #ifndef lint | 
| 2 | greg | 2.2 | static const char RCSid[] = "$Id: bsdfinterp.c,v 2.1 2012/10/19 04:14:29 greg Exp $"; | 
| 3 | greg | 2.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | * Interpolate BSDF data from radial basis functions in advection mesh. | 
| 6 |  |  | * | 
| 7 |  |  | *      G. Ward | 
| 8 |  |  | */ | 
| 9 |  |  |  | 
| 10 |  |  | #define _USE_MATH_DEFINES | 
| 11 |  |  | #include <stdio.h> | 
| 12 |  |  | #include <stdlib.h> | 
| 13 |  |  | #include <string.h> | 
| 14 |  |  | #include <math.h> | 
| 15 |  |  | #include "bsdfrep.h" | 
| 16 |  |  | /* migration edges drawn in raster fashion */ | 
| 17 |  |  | MIGRATION               *mig_grid[GRIDRES][GRIDRES]; | 
| 18 |  |  |  | 
| 19 |  |  | #ifdef DEBUG | 
| 20 |  |  | #include "random.h" | 
| 21 |  |  | #include "bmpfile.h" | 
| 22 |  |  | /* Hash pointer to byte value (must return 0 for NULL) */ | 
| 23 |  |  | static int | 
| 24 |  |  | byte_hash(const void *p) | 
| 25 |  |  | { | 
| 26 |  |  | size_t  h = (size_t)p; | 
| 27 |  |  | h ^= (size_t)p >> 8; | 
| 28 |  |  | h ^= (size_t)p >> 16; | 
| 29 |  |  | h ^= (size_t)p >> 24; | 
| 30 |  |  | return(h & 0xff); | 
| 31 |  |  | } | 
| 32 |  |  | /* Write out BMP image showing edges */ | 
| 33 |  |  | static void | 
| 34 |  |  | write_edge_image(const char *fname) | 
| 35 |  |  | { | 
| 36 |  |  | BMPHeader       *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256); | 
| 37 |  |  | BMPWriter       *wtr; | 
| 38 |  |  | int             i, j; | 
| 39 |  |  |  | 
| 40 |  |  | fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname); | 
| 41 |  |  | hdr->compr = BI_RLE8; | 
| 42 |  |  | for (i = 256; --i; ) {                  /* assign random color map */ | 
| 43 |  |  | hdr->palette[i].r = random() & 0xff; | 
| 44 |  |  | hdr->palette[i].g = random() & 0xff; | 
| 45 |  |  | hdr->palette[i].b = random() & 0xff; | 
| 46 |  |  | /* reject dark colors */ | 
| 47 |  |  | i += (hdr->palette[i].r + hdr->palette[i].g + | 
| 48 |  |  | hdr->palette[i].b < 128); | 
| 49 |  |  | } | 
| 50 |  |  | hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0; | 
| 51 |  |  | /* open output */ | 
| 52 |  |  | wtr = BMPopenOutputFile(fname, hdr); | 
| 53 |  |  | if (wtr == NULL) { | 
| 54 |  |  | free(hdr); | 
| 55 |  |  | return; | 
| 56 |  |  | } | 
| 57 |  |  | for (i = 0; i < GRIDRES; i++) {         /* write scanlines */ | 
| 58 |  |  | for (j = 0; j < GRIDRES; j++) | 
| 59 |  |  | wtr->scanline[j] = byte_hash(mig_grid[i][j]); | 
| 60 |  |  | if (BMPwriteScanline(wtr) != BIR_OK) | 
| 61 |  |  | break; | 
| 62 |  |  | } | 
| 63 |  |  | BMPcloseOutput(wtr);                    /* close & clean up */ | 
| 64 |  |  | } | 
| 65 |  |  | #endif | 
| 66 |  |  |  | 
| 67 |  |  | /* Draw edge list into mig_grid array */ | 
| 68 |  |  | void | 
| 69 |  |  | draw_edges(void) | 
| 70 |  |  | { | 
| 71 |  |  | int             nnull = 0, ntot = 0; | 
| 72 |  |  | MIGRATION       *ej; | 
| 73 |  |  | int             p0[2], p1[2]; | 
| 74 |  |  |  | 
| 75 |  |  | memset(mig_grid, 0, sizeof(mig_grid)); | 
| 76 |  |  | for (ej = mig_list; ej != NULL; ej = ej->next) { | 
| 77 |  |  | ++ntot; | 
| 78 |  |  | pos_from_vec(p0, ej->rbfv[0]->invec); | 
| 79 |  |  | pos_from_vec(p1, ej->rbfv[1]->invec); | 
| 80 |  |  | if ((p0[0] == p1[0]) & (p0[1] == p1[1])) { | 
| 81 |  |  | ++nnull; | 
| 82 |  |  | mig_grid[p0[0]][p0[1]] = ej; | 
| 83 |  |  | continue; | 
| 84 |  |  | } | 
| 85 |  |  | if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) { | 
| 86 |  |  | const int       xstep = 2*(p1[0] > p0[0]) - 1; | 
| 87 |  |  | const double    ystep = (double)((p1[1]-p0[1])*xstep) / | 
| 88 |  |  | (double)(p1[0]-p0[0]); | 
| 89 |  |  | int             x; | 
| 90 |  |  | double          y; | 
| 91 |  |  | for (x = p0[0], y = p0[1]+.5; x != p1[0]; | 
| 92 |  |  | x += xstep, y += ystep) | 
| 93 |  |  | mig_grid[x][(int)y] = ej; | 
| 94 |  |  | mig_grid[x][(int)y] = ej; | 
| 95 |  |  | } else { | 
| 96 |  |  | const int       ystep = 2*(p1[1] > p0[1]) - 1; | 
| 97 |  |  | const double    xstep = (double)((p1[0]-p0[0])*ystep) / | 
| 98 |  |  | (double)(p1[1]-p0[1]); | 
| 99 |  |  | int             y; | 
| 100 |  |  | double          x; | 
| 101 |  |  | for (y = p0[1], x = p0[0]+.5; y != p1[1]; | 
| 102 |  |  | y += ystep, x += xstep) | 
| 103 |  |  | mig_grid[(int)x][y] = ej; | 
| 104 |  |  | mig_grid[(int)x][y] = ej; | 
| 105 |  |  | } | 
| 106 |  |  | } | 
| 107 |  |  | if (nnull) | 
| 108 |  |  | fprintf(stderr, "Warning: %d of %d edges are null\n", | 
| 109 |  |  | nnull, ntot); | 
| 110 |  |  | #ifdef DEBUG | 
| 111 |  |  | write_edge_image("bsdf_edges.bmp"); | 
| 112 |  |  | #endif | 
| 113 |  |  | } | 
| 114 |  |  |  | 
| 115 |  |  | /* Identify enclosing triangle for this position (flood fill raster check) */ | 
| 116 |  |  | static int | 
| 117 |  |  | identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8], | 
| 118 |  |  | int px, int py) | 
| 119 |  |  | { | 
| 120 |  |  | const int       btest = 1<<(py&07); | 
| 121 |  |  |  | 
| 122 |  |  | if (vmap[px][py>>3] & btest)            /* already visited here? */ | 
| 123 |  |  | return(1); | 
| 124 |  |  | /* else mark it */ | 
| 125 |  |  | vmap[px][py>>3] |= btest; | 
| 126 |  |  |  | 
| 127 |  |  | if (mig_grid[px][py] != NULL) {         /* are we on an edge? */ | 
| 128 |  |  | int     i; | 
| 129 |  |  | for (i = 0; i < 3; i++) { | 
| 130 |  |  | if (miga[i] == mig_grid[px][py]) | 
| 131 |  |  | return(1); | 
| 132 |  |  | if (miga[i] != NULL) | 
| 133 |  |  | continue; | 
| 134 |  |  | miga[i] = mig_grid[px][py]; | 
| 135 |  |  | return(1); | 
| 136 |  |  | } | 
| 137 |  |  | return(0);                      /* outside triangle! */ | 
| 138 |  |  | } | 
| 139 |  |  | /* check neighbors (flood) */ | 
| 140 |  |  | if (px > 0 && !identify_tri(miga, vmap, px-1, py)) | 
| 141 |  |  | return(0); | 
| 142 |  |  | if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py)) | 
| 143 |  |  | return(0); | 
| 144 |  |  | if (py > 0 && !identify_tri(miga, vmap, px, py-1)) | 
| 145 |  |  | return(0); | 
| 146 |  |  | if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1)) | 
| 147 |  |  | return(0); | 
| 148 |  |  | return(1);                              /* this neighborhood done */ | 
| 149 |  |  | } | 
| 150 |  |  |  | 
| 151 |  |  | /* Insert vertex in ordered list */ | 
| 152 |  |  | static void | 
| 153 |  |  | insert_vert(RBFNODE **vlist, RBFNODE *v) | 
| 154 |  |  | { | 
| 155 |  |  | int     i, j; | 
| 156 |  |  |  | 
| 157 |  |  | for (i = 0; vlist[i] != NULL; i++) { | 
| 158 |  |  | if (v == vlist[i]) | 
| 159 |  |  | return; | 
| 160 |  |  | if (v->ord < vlist[i]->ord) | 
| 161 |  |  | break; | 
| 162 |  |  | } | 
| 163 |  |  | for (j = i; vlist[j] != NULL; j++) | 
| 164 |  |  | ; | 
| 165 |  |  | while (j > i) { | 
| 166 |  |  | vlist[j] = vlist[j-1]; | 
| 167 |  |  | --j; | 
| 168 |  |  | } | 
| 169 |  |  | vlist[i] = v; | 
| 170 |  |  | } | 
| 171 |  |  |  | 
| 172 |  |  | /* Sort triangle edges in standard order */ | 
| 173 |  |  | static int | 
| 174 |  |  | order_triangle(MIGRATION *miga[3]) | 
| 175 |  |  | { | 
| 176 |  |  | RBFNODE         *vert[7]; | 
| 177 |  |  | MIGRATION       *ord[3]; | 
| 178 |  |  | int             i; | 
| 179 |  |  | /* order vertices, first */ | 
| 180 |  |  | memset(vert, 0, sizeof(vert)); | 
| 181 |  |  | for (i = 3; i--; ) { | 
| 182 |  |  | if (miga[i] == NULL) | 
| 183 |  |  | return(0); | 
| 184 |  |  | insert_vert(vert, miga[i]->rbfv[0]); | 
| 185 |  |  | insert_vert(vert, miga[i]->rbfv[1]); | 
| 186 |  |  | } | 
| 187 |  |  | /* should be just 3 vertices */ | 
| 188 |  |  | if ((vert[3] == NULL) | (vert[4] != NULL)) | 
| 189 |  |  | return(0); | 
| 190 |  |  | /* identify edge 0 */ | 
| 191 |  |  | for (i = 3; i--; ) | 
| 192 |  |  | if (miga[i]->rbfv[0] == vert[0] && | 
| 193 |  |  | miga[i]->rbfv[1] == vert[1]) { | 
| 194 |  |  | ord[0] = miga[i]; | 
| 195 |  |  | break; | 
| 196 |  |  | } | 
| 197 |  |  | if (i < 0) | 
| 198 |  |  | return(0); | 
| 199 |  |  | /* identify edge 1 */ | 
| 200 |  |  | for (i = 3; i--; ) | 
| 201 |  |  | if (miga[i]->rbfv[0] == vert[1] && | 
| 202 |  |  | miga[i]->rbfv[1] == vert[2]) { | 
| 203 |  |  | ord[1] = miga[i]; | 
| 204 |  |  | break; | 
| 205 |  |  | } | 
| 206 |  |  | if (i < 0) | 
| 207 |  |  | return(0); | 
| 208 |  |  | /* identify edge 2 */ | 
| 209 |  |  | for (i = 3; i--; ) | 
| 210 |  |  | if (miga[i]->rbfv[0] == vert[0] && | 
| 211 |  |  | miga[i]->rbfv[1] == vert[2]) { | 
| 212 |  |  | ord[2] = miga[i]; | 
| 213 |  |  | break; | 
| 214 |  |  | } | 
| 215 |  |  | if (i < 0) | 
| 216 |  |  | return(0); | 
| 217 |  |  | /* reassign order */ | 
| 218 |  |  | miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2]; | 
| 219 |  |  | return(1); | 
| 220 |  |  | } | 
| 221 |  |  |  | 
| 222 |  |  | /* Find edge(s) for interpolating the given vector, applying symmetry */ | 
| 223 |  |  | int | 
| 224 |  |  | get_interp(MIGRATION *miga[3], FVECT invec) | 
| 225 |  |  | { | 
| 226 |  |  | miga[0] = miga[1] = miga[2] = NULL; | 
| 227 |  |  | if (single_plane_incident) {            /* isotropic BSDF? */ | 
| 228 |  |  | RBFNODE *rbf;                   /* find edge we're on */ | 
| 229 |  |  | for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { | 
| 230 |  |  | if (input_orient*rbf->invec[2] < input_orient*invec[2]) | 
| 231 |  |  | break; | 
| 232 |  |  | if (rbf->next != NULL && | 
| 233 |  |  | input_orient*rbf->next->invec[2] < | 
| 234 |  |  | input_orient*invec[2]) { | 
| 235 |  |  | for (miga[0] = rbf->ejl; miga[0] != NULL; | 
| 236 |  |  | miga[0] = nextedge(rbf,miga[0])) | 
| 237 |  |  | if (opp_rbf(rbf,miga[0]) == rbf->next) | 
| 238 |  |  | return(0); | 
| 239 |  |  | break; | 
| 240 |  |  | } | 
| 241 |  |  | } | 
| 242 |  |  | return(-1);                     /* outside range! */ | 
| 243 |  |  | } | 
| 244 |  |  | {                                       /* else use triangle mesh */ | 
| 245 |  |  | const int       sym = use_symmetry(invec); | 
| 246 |  |  | unsigned char   floodmap[GRIDRES][(GRIDRES+7)/8]; | 
| 247 |  |  | int             pstart[2]; | 
| 248 |  |  | RBFNODE         *vother; | 
| 249 |  |  | MIGRATION       *ej; | 
| 250 |  |  | int             i; | 
| 251 |  |  |  | 
| 252 |  |  | pos_from_vec(pstart, invec); | 
| 253 |  |  | memset(floodmap, 0, sizeof(floodmap)); | 
| 254 |  |  | /* call flooding function */ | 
| 255 |  |  | if (!identify_tri(miga, floodmap, pstart[0], pstart[1])) | 
| 256 |  |  | return(-1);             /* outside mesh */ | 
| 257 |  |  | if ((miga[0] == NULL) | (miga[2] == NULL)) | 
| 258 |  |  | return(-1);             /* should never happen */ | 
| 259 |  |  | if (miga[1] == NULL) | 
| 260 |  |  | return(sym);            /* on edge */ | 
| 261 |  |  | /* verify triangle */ | 
| 262 |  |  | if (!order_triangle(miga)) { | 
| 263 |  |  | #ifdef DEBUG | 
| 264 |  |  | fputs("Munged triangle in get_interp()\n", stderr); | 
| 265 |  |  | #endif | 
| 266 |  |  | vother = NULL;          /* find triangle from edge */ | 
| 267 |  |  | for (i = 3; i--; ) { | 
| 268 |  |  | RBFNODE     *tpair[2]; | 
| 269 |  |  | if (get_triangles(tpair, miga[i]) && | 
| 270 |  |  | (vother = tpair[ is_rev_tri( | 
| 271 |  |  | miga[i]->rbfv[0]->invec, | 
| 272 |  |  | miga[i]->rbfv[1]->invec, | 
| 273 |  |  | invec) ]) != NULL) | 
| 274 |  |  | break; | 
| 275 |  |  | } | 
| 276 |  |  | if (vother == NULL) {   /* couldn't find 3rd vertex */ | 
| 277 |  |  | #ifdef DEBUG | 
| 278 |  |  | fputs("No triangle in get_interp()\n", stderr); | 
| 279 |  |  | #endif | 
| 280 |  |  | return(-1); | 
| 281 |  |  | } | 
| 282 |  |  | /* reassign other two edges */ | 
| 283 |  |  | for (ej = vother->ejl; ej != NULL; | 
| 284 |  |  | ej = nextedge(vother,ej)) { | 
| 285 |  |  | RBFNODE *vorig = opp_rbf(vother,ej); | 
| 286 |  |  | if (vorig == miga[i]->rbfv[0]) | 
| 287 |  |  | miga[(i+1)%3] = ej; | 
| 288 |  |  | else if (vorig == miga[i]->rbfv[1]) | 
| 289 |  |  | miga[(i+2)%3] = ej; | 
| 290 |  |  | } | 
| 291 |  |  | if (!order_triangle(miga)) { | 
| 292 |  |  | #ifdef DEBUG | 
| 293 |  |  | fputs("Bad triangle in get_interp()\n", stderr); | 
| 294 |  |  | #endif | 
| 295 |  |  | return(-1); | 
| 296 |  |  | } | 
| 297 |  |  | } | 
| 298 |  |  | return(sym);                    /* return in standard order */ | 
| 299 |  |  | } | 
| 300 |  |  | } | 
| 301 |  |  |  | 
| 302 |  |  | /* Advect and allocate new RBF along edge */ | 
| 303 |  |  | static RBFNODE * | 
| 304 |  |  | e_advect_rbf(const MIGRATION *mig, const FVECT invec) | 
| 305 |  |  | { | 
| 306 |  |  | RBFNODE         *rbf; | 
| 307 |  |  | int             n, i, j; | 
| 308 |  |  | double          t, full_dist; | 
| 309 |  |  | /* get relative position */ | 
| 310 |  |  | t = acos(DOT(invec, mig->rbfv[0]->invec)); | 
| 311 |  |  | if (t < M_PI/GRIDRES) {                 /* near first DSF */ | 
| 312 |  |  | n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); | 
| 313 |  |  | rbf = (RBFNODE *)malloc(n); | 
| 314 |  |  | if (rbf == NULL) | 
| 315 |  |  | goto memerr; | 
| 316 |  |  | memcpy(rbf, mig->rbfv[0], n);   /* just duplicate */ | 
| 317 |  |  | return(rbf); | 
| 318 |  |  | } | 
| 319 |  |  | full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); | 
| 320 |  |  | if (t > full_dist-M_PI/GRIDRES) {       /* near second DSF */ | 
| 321 |  |  | n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); | 
| 322 |  |  | rbf = (RBFNODE *)malloc(n); | 
| 323 |  |  | if (rbf == NULL) | 
| 324 |  |  | goto memerr; | 
| 325 |  |  | memcpy(rbf, mig->rbfv[1], n);   /* just duplicate */ | 
| 326 |  |  | return(rbf); | 
| 327 |  |  | } | 
| 328 |  |  | t /= full_dist; | 
| 329 |  |  | n = 0;                                  /* count migrating particles */ | 
| 330 |  |  | for (i = 0; i < mtx_nrows(mig); i++) | 
| 331 |  |  | for (j = 0; j < mtx_ncols(mig); j++) | 
| 332 | greg | 2.2 | n += (mtx_coef(mig,i,j) > FTINY); | 
| 333 | greg | 2.1 | #ifdef DEBUG | 
| 334 |  |  | fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", | 
| 335 |  |  | mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); | 
| 336 |  |  | #endif | 
| 337 |  |  | rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); | 
| 338 |  |  | if (rbf == NULL) | 
| 339 |  |  | goto memerr; | 
| 340 |  |  | rbf->next = NULL; rbf->ejl = NULL; | 
| 341 |  |  | VCOPY(rbf->invec, invec); | 
| 342 |  |  | rbf->nrbf = n; | 
| 343 |  |  | rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; | 
| 344 |  |  | n = 0;                                  /* advect RBF lobes */ | 
| 345 |  |  | for (i = 0; i < mtx_nrows(mig); i++) { | 
| 346 |  |  | const RBFVAL        *rbf0i = &mig->rbfv[0]->rbfa[i]; | 
| 347 |  |  | const float         peak0 = rbf0i->peak; | 
| 348 |  |  | const double        rad0 = R2ANG(rbf0i->crad); | 
| 349 |  |  | FVECT               v0; | 
| 350 |  |  | float               mv; | 
| 351 |  |  | ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); | 
| 352 |  |  | for (j = 0; j < mtx_ncols(mig); j++) | 
| 353 | greg | 2.2 | if ((mv = mtx_coef(mig,i,j)) > FTINY) { | 
| 354 | greg | 2.1 | const RBFVAL    *rbf1j = &mig->rbfv[1]->rbfa[j]; | 
| 355 |  |  | double          rad1 = R2ANG(rbf1j->crad); | 
| 356 |  |  | FVECT           v; | 
| 357 |  |  | int             pos[2]; | 
| 358 |  |  | rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; | 
| 359 |  |  | rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + | 
| 360 |  |  | rad1*rad1*t)); | 
| 361 |  |  | ovec_from_pos(v, rbf1j->gx, rbf1j->gy); | 
| 362 |  |  | geodesic(v, v0, v, t, GEOD_REL); | 
| 363 |  |  | pos_from_vec(pos, v); | 
| 364 |  |  | rbf->rbfa[n].gx = pos[0]; | 
| 365 |  |  | rbf->rbfa[n].gy = pos[1]; | 
| 366 |  |  | ++n; | 
| 367 |  |  | } | 
| 368 |  |  | } | 
| 369 |  |  | rbf->vtotal *= mig->rbfv[0]->vtotal;    /* turn ratio into actual */ | 
| 370 |  |  | return(rbf); | 
| 371 |  |  | memerr: | 
| 372 |  |  | fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); | 
| 373 |  |  | exit(1); | 
| 374 |  |  | return(NULL);   /* pro forma return */ | 
| 375 |  |  | } | 
| 376 |  |  |  | 
| 377 |  |  | /* Partially advect between recorded incident angles and allocate new RBF */ | 
| 378 |  |  | RBFNODE * | 
| 379 |  |  | advect_rbf(const FVECT invec) | 
| 380 |  |  | { | 
| 381 |  |  | FVECT           sivec; | 
| 382 |  |  | MIGRATION       *miga[3]; | 
| 383 |  |  | RBFNODE         *rbf; | 
| 384 |  |  | int             sym; | 
| 385 |  |  | float           mbfact, mcfact; | 
| 386 |  |  | int             n, i, j, k; | 
| 387 |  |  | FVECT           v0, v1, v2; | 
| 388 |  |  | double          s, t; | 
| 389 |  |  |  | 
| 390 |  |  | VCOPY(sivec, invec);                    /* find triangle/edge */ | 
| 391 |  |  | sym = get_interp(miga, sivec); | 
| 392 |  |  | if (sym < 0)                            /* can't interpolate? */ | 
| 393 |  |  | return(NULL); | 
| 394 |  |  | if (miga[1] == NULL) {                  /* advect along edge? */ | 
| 395 |  |  | rbf = e_advect_rbf(miga[0], sivec); | 
| 396 |  |  | rev_rbf_symmetry(rbf, sym); | 
| 397 |  |  | return(rbf); | 
| 398 |  |  | } | 
| 399 |  |  | #ifdef DEBUG | 
| 400 |  |  | if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | | 
| 401 |  |  | miga[0]->rbfv[1] != miga[1]->rbfv[0] | | 
| 402 |  |  | miga[1]->rbfv[1] != miga[2]->rbfv[1]) { | 
| 403 |  |  | fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); | 
| 404 |  |  | exit(1); | 
| 405 |  |  | } | 
| 406 |  |  | #endif | 
| 407 |  |  | /* figure out position */ | 
| 408 |  |  | fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec); | 
| 409 |  |  | normalize(v0); | 
| 410 |  |  | fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec); | 
| 411 |  |  | normalize(v2); | 
| 412 |  |  | fcross(v1, sivec, miga[1]->rbfv[1]->invec); | 
| 413 |  |  | normalize(v1); | 
| 414 |  |  | s = acos(DOT(v0,v1)) / acos(DOT(v0,v2)); | 
| 415 |  |  | geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, | 
| 416 |  |  | s, GEOD_REL); | 
| 417 |  |  | t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); | 
| 418 |  |  | n = 0;                                  /* count migrating particles */ | 
| 419 |  |  | for (i = 0; i < mtx_nrows(miga[0]); i++) | 
| 420 |  |  | for (j = 0; j < mtx_ncols(miga[0]); j++) | 
| 421 | greg | 2.2 | for (k = (mtx_coef(miga[0],i,j) > FTINY) * | 
| 422 | greg | 2.1 | mtx_ncols(miga[2]); k--; ) | 
| 423 | greg | 2.2 | n += (mtx_coef(miga[2],i,k) > FTINY && | 
| 424 |  |  | mtx_coef(miga[1],j,k) > FTINY); | 
| 425 | greg | 2.1 | #ifdef DEBUG | 
| 426 |  |  | fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", | 
| 427 |  |  | miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, | 
| 428 |  |  | miga[2]->rbfv[1]->nrbf, n); | 
| 429 |  |  | #endif | 
| 430 |  |  | rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); | 
| 431 |  |  | if (rbf == NULL) { | 
| 432 |  |  | fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname); | 
| 433 |  |  | exit(1); | 
| 434 |  |  | } | 
| 435 |  |  | rbf->next = NULL; rbf->ejl = NULL; | 
| 436 |  |  | VCOPY(rbf->invec, sivec); | 
| 437 |  |  | rbf->nrbf = n; | 
| 438 |  |  | n = 0;                                  /* compute RBF lobes */ | 
| 439 |  |  | mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal * | 
| 440 |  |  | (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal); | 
| 441 |  |  | mcfact = (1.-s) * | 
| 442 |  |  | (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal); | 
| 443 |  |  | for (i = 0; i < mtx_nrows(miga[0]); i++) { | 
| 444 |  |  | const RBFVAL        *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; | 
| 445 |  |  | const float         w0i = rbf0i->peak; | 
| 446 |  |  | const double        rad0i = R2ANG(rbf0i->crad); | 
| 447 |  |  | ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); | 
| 448 |  |  | for (j = 0; j < mtx_ncols(miga[0]); j++) { | 
| 449 | greg | 2.2 | const float     ma = mtx_coef(miga[0],i,j); | 
| 450 | greg | 2.1 | const RBFVAL    *rbf1j; | 
| 451 |  |  | double          rad1j, srad2; | 
| 452 |  |  | if (ma <= FTINY) | 
| 453 |  |  | continue; | 
| 454 |  |  | rbf1j = &miga[0]->rbfv[1]->rbfa[j]; | 
| 455 |  |  | rad1j = R2ANG(rbf1j->crad); | 
| 456 |  |  | srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; | 
| 457 |  |  | ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); | 
| 458 |  |  | geodesic(v1, v0, v1, s, GEOD_REL); | 
| 459 |  |  | for (k = 0; k < mtx_ncols(miga[2]); k++) { | 
| 460 | greg | 2.2 | float               mb = mtx_coef(miga[1],j,k); | 
| 461 |  |  | float               mc = mtx_coef(miga[2],i,k); | 
| 462 | greg | 2.1 | const RBFVAL        *rbf2k; | 
| 463 |  |  | double              rad2k; | 
| 464 |  |  | FVECT               vout; | 
| 465 |  |  | int                 pos[2]; | 
| 466 |  |  | if ((mb <= FTINY) | (mc <= FTINY)) | 
| 467 |  |  | continue; | 
| 468 |  |  | rbf2k = &miga[2]->rbfv[1]->rbfa[k]; | 
| 469 |  |  | rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); | 
| 470 |  |  | rad2k = R2ANG(rbf2k->crad); | 
| 471 |  |  | rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); | 
| 472 |  |  | ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); | 
| 473 |  |  | geodesic(vout, v1, v2, t, GEOD_REL); | 
| 474 |  |  | pos_from_vec(pos, vout); | 
| 475 |  |  | rbf->rbfa[n].gx = pos[0]; | 
| 476 |  |  | rbf->rbfa[n].gy = pos[1]; | 
| 477 |  |  | ++n; | 
| 478 |  |  | } | 
| 479 |  |  | } | 
| 480 |  |  | } | 
| 481 |  |  | rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact); | 
| 482 |  |  | rev_rbf_symmetry(rbf, sym); | 
| 483 |  |  | return(rbf); | 
| 484 |  |  | } |