| 1 |
greg |
2.1 |
#ifndef lint |
| 2 |
|
|
static const char RCSid[] = "$Id$"; |
| 3 |
|
|
#endif |
| 4 |
|
|
/* |
| 5 |
|
|
* Plot 3-D BSDF output based on scattering interpolant representation |
| 6 |
|
|
*/ |
| 7 |
|
|
|
| 8 |
|
|
#define _USE_MATH_DEFINES |
| 9 |
|
|
#include <stdio.h> |
| 10 |
|
|
#include <stdlib.h> |
| 11 |
|
|
#include <math.h> |
| 12 |
|
|
#include "bsdfrep.h" |
| 13 |
|
|
|
| 14 |
|
|
const float colarr[6][3] = { |
| 15 |
|
|
.7, 1., .7, |
| 16 |
|
|
1., .7, .7, |
| 17 |
|
|
.7, .7, 1., |
| 18 |
|
|
1., .5, 1., |
| 19 |
|
|
1., 1., .5, |
| 20 |
|
|
.5, 1., 1. |
| 21 |
|
|
}; |
| 22 |
|
|
|
| 23 |
|
|
char *progname; |
| 24 |
|
|
|
| 25 |
|
|
/* Produce a Radiance model plotting the indicated incident direction(s) */ |
| 26 |
|
|
int |
| 27 |
|
|
main(int argc, char *argv[]) |
| 28 |
|
|
{ |
| 29 |
|
|
char buf[128]; |
| 30 |
|
|
FILE *fp; |
| 31 |
|
|
RBFNODE *rbf; |
| 32 |
|
|
double bsdf, min_log; |
| 33 |
|
|
FVECT dir; |
| 34 |
|
|
int i, j, n; |
| 35 |
|
|
|
| 36 |
|
|
progname = argv[0]; |
| 37 |
|
|
if (argc < 4) { |
| 38 |
|
|
fprintf(stderr, "Usage: %s bsdf.sir theta1 phi1 .. > output.rad\n", argv[0]); |
| 39 |
|
|
return(1); |
| 40 |
|
|
} |
| 41 |
|
|
/* load input */ |
| 42 |
|
|
if ((fp = fopen(argv[1], "rb")) == NULL) { |
| 43 |
|
|
fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", |
| 44 |
|
|
argv[0], argv[1]); |
| 45 |
|
|
return(1); |
| 46 |
|
|
} |
| 47 |
|
|
if (!load_bsdf_rep(fp)) |
| 48 |
|
|
return(1); |
| 49 |
|
|
fclose(fp); |
| 50 |
|
|
min_log = log(bsdf_min*.5); |
| 51 |
|
|
/* output surface(s) */ |
| 52 |
|
|
for (n = 0; (n < 6) & (2*n+3 < argc); n++) { |
| 53 |
|
|
printf("void trans tmat\n0\n0\n7 %f %f %f .04 .04 .9 1\n", |
| 54 |
|
|
colarr[n][0], colarr[n][1], colarr[n][2]); |
| 55 |
|
|
fflush(stdout); |
| 56 |
|
|
sprintf(buf, "gensurf tmat bsdf - - - %d %d", GRIDRES-1, GRIDRES-1); |
| 57 |
|
|
fp = popen(buf, "w"); |
| 58 |
|
|
if (fp == NULL) { |
| 59 |
|
|
fprintf(stderr, "%s: cannot open '| %s'\n", argv[0], buf); |
| 60 |
|
|
return(1); |
| 61 |
|
|
} |
| 62 |
|
|
dir[2] = sin((M_PI/180.)*atof(argv[2*n+2])); |
| 63 |
|
|
dir[0] = dir[2] * cos((M_PI/180.)*atof(argv[2*n+3])); |
| 64 |
|
|
dir[1] = dir[2] * sin((M_PI/180.)*atof(argv[2*n+3])); |
| 65 |
|
|
dir[2] = input_orient * sqrt(1. - dir[2]*dir[2]); |
| 66 |
|
|
fprintf(stderr, "Computing DSF for incident direction (%.1f,%.1f)\n", |
| 67 |
|
|
get_theta180(dir), get_phi360(dir)); |
| 68 |
|
|
rbf = advect_rbf(dir, 15000); |
| 69 |
|
|
if (rbf == NULL) |
| 70 |
|
|
fputs("NULL RBF\n", stderr); |
| 71 |
|
|
else |
| 72 |
|
|
fprintf(stderr, "Hemispherical reflectance: %.3f\n", rbf->vtotal); |
| 73 |
|
|
for (i = 0; i < GRIDRES; i++) |
| 74 |
|
|
for (j = 0; j < GRIDRES; j++) { |
| 75 |
|
|
ovec_from_pos(dir, i, j); |
| 76 |
|
|
bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]); |
| 77 |
|
|
bsdf = log(bsdf) - min_log; |
| 78 |
|
|
fprintf(fp, "%.8e %.8e %.8e\n", |
| 79 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); |
| 80 |
|
|
} |
| 81 |
|
|
if (rbf != NULL) |
| 82 |
|
|
free(rbf); |
| 83 |
|
|
if (pclose(fp)) |
| 84 |
|
|
return(1); |
| 85 |
|
|
} |
| 86 |
|
|
return(0); |
| 87 |
|
|
} |