| 1 |
greg |
2.1 |
#ifndef lint |
| 2 |
greg |
2.3 |
static const char RCSid[] = "$Id: triangulate.c,v 2.2 2014/01/24 01:26:44 greg Exp $"; |
| 3 |
greg |
2.1 |
#endif |
| 4 |
|
|
/* |
| 5 |
|
|
* triangulate.c |
| 6 |
|
|
* |
| 7 |
|
|
* Adapted by Greg Ward on 1/23/14. |
| 8 |
|
|
* Copyright 2014 Anyhere Software. All rights reserved. |
| 9 |
|
|
* |
| 10 |
|
|
*/ |
| 11 |
|
|
|
| 12 |
|
|
/* COTD Entry submitted by John W. Ratcliff [[email protected]] |
| 13 |
|
|
|
| 14 |
|
|
// ** THIS IS A CODE SNIPPET WHICH WILL EFFICIEINTLY TRIANGULATE ANY |
| 15 |
|
|
// ** POLYGON/CONTOUR (without holes) AS A STATIC CLASS. THIS SNIPPET |
| 16 |
|
|
// ** IS COMPRISED OF 3 FILES, TRIANGULATE.H, THE HEADER FILE FOR THE |
| 17 |
|
|
// ** TRIANGULATE BASE CLASS, TRIANGULATE.CPP, THE IMPLEMENTATION OF |
| 18 |
|
|
// ** THE TRIANGULATE BASE CLASS, AND TEST.CPP, A SMALL TEST PROGRAM |
| 19 |
|
|
// ** DEMONSTRATING THE USAGE OF THE TRIANGULATOR. THE TRIANGULATE |
| 20 |
|
|
// ** BASE CLASS ALSO PROVIDES TWO USEFUL HELPER METHODS, ONE WHICH |
| 21 |
|
|
// ** COMPUTES THE AREA OF A POLYGON, AND ANOTHER WHICH DOES AN EFFICENT |
| 22 |
|
|
// ** POINT IN A TRIANGLE TEST. |
| 23 |
|
|
// ** SUBMITTED BY JOHN W. RATCLIFF ([email protected]) July 22, 2000 |
| 24 |
|
|
*/ |
| 25 |
|
|
|
| 26 |
|
|
#include <stdio.h> |
| 27 |
|
|
#include <stdlib.h> |
| 28 |
|
|
#include "triangulate.h" |
| 29 |
|
|
|
| 30 |
|
|
#ifndef true |
| 31 |
|
|
#define true 1 |
| 32 |
|
|
#define false 0 |
| 33 |
|
|
#endif |
| 34 |
|
|
|
| 35 |
|
|
static const double EPSILON = 0.0000000001; |
| 36 |
|
|
|
| 37 |
|
|
static int |
| 38 |
|
|
polySnip(const Vert2_list *contour, int u, int v, int w, int n, int *V) |
| 39 |
|
|
{ |
| 40 |
|
|
int p; |
| 41 |
|
|
double Ax, Ay, Bx, By, Cx, Cy, Px, Py; |
| 42 |
|
|
|
| 43 |
|
|
Ax = contour->v[V[u]].mX; |
| 44 |
|
|
Ay = contour->v[V[u]].mY; |
| 45 |
|
|
|
| 46 |
|
|
Bx = contour->v[V[v]].mX; |
| 47 |
|
|
By = contour->v[V[v]].mY; |
| 48 |
|
|
|
| 49 |
|
|
Cx = contour->v[V[w]].mX; |
| 50 |
|
|
Cy = contour->v[V[w]].mY; |
| 51 |
|
|
|
| 52 |
|
|
if ( EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false; |
| 53 |
|
|
|
| 54 |
|
|
for (p=0;p<n;p++) |
| 55 |
|
|
{ |
| 56 |
greg |
2.3 |
if( (p == u) | (p == v) | (p == w) ) continue; |
| 57 |
greg |
2.1 |
Px = contour->v[V[p]].mX; |
| 58 |
|
|
Py = contour->v[V[p]].mY; |
| 59 |
|
|
if (insideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false; |
| 60 |
|
|
} |
| 61 |
|
|
|
| 62 |
|
|
return true; |
| 63 |
|
|
} |
| 64 |
|
|
|
| 65 |
|
|
Vert2_list * |
| 66 |
|
|
polyAlloc(int nv) |
| 67 |
|
|
{ |
| 68 |
|
|
Vert2_list *pnew; |
| 69 |
|
|
|
| 70 |
|
|
if (nv < 3) return NULL; |
| 71 |
|
|
|
| 72 |
|
|
pnew = (Vert2_list *)malloc(sizeof(Vert2_list) + sizeof(Vert2)*(nv-3)); |
| 73 |
|
|
if (pnew == NULL) return NULL; |
| 74 |
|
|
pnew->nv = nv; |
| 75 |
|
|
pnew->p = NULL; |
| 76 |
|
|
|
| 77 |
|
|
return pnew; |
| 78 |
|
|
} |
| 79 |
|
|
|
| 80 |
|
|
double |
| 81 |
|
|
polyArea(const Vert2_list *contour) |
| 82 |
|
|
{ |
| 83 |
|
|
double A=0.0; |
| 84 |
|
|
int p, q; |
| 85 |
|
|
|
| 86 |
|
|
for(p = contour->nv-1, q = 0; q < contour->nv; p=q++) |
| 87 |
|
|
{ |
| 88 |
|
|
A += contour->v[p].mX*contour->v[q].mY - contour->v[q].mX*contour->v[p].mY; |
| 89 |
|
|
} |
| 90 |
|
|
return A*0.5; |
| 91 |
|
|
} |
| 92 |
|
|
|
| 93 |
|
|
/* |
| 94 |
|
|
InsideTriangle decides if a point P is Inside of the triangle |
| 95 |
|
|
defined by A, B, C. |
| 96 |
|
|
*/ |
| 97 |
|
|
int |
| 98 |
|
|
insideTriangle(double Ax, double Ay, |
| 99 |
|
|
double Bx, double By, |
| 100 |
|
|
double Cx, double Cy, |
| 101 |
|
|
double Px, double Py) |
| 102 |
|
|
|
| 103 |
|
|
{ |
| 104 |
|
|
double ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; |
| 105 |
|
|
double cCROSSap, bCROSScp, aCROSSbp; |
| 106 |
|
|
|
| 107 |
|
|
ax = Cx - Bx; ay = Cy - By; |
| 108 |
|
|
bx = Ax - Cx; by = Ay - Cy; |
| 109 |
|
|
cx = Bx - Ax; cy = By - Ay; |
| 110 |
|
|
apx= Px - Ax; apy= Py - Ay; |
| 111 |
|
|
bpx= Px - Bx; bpy= Py - By; |
| 112 |
|
|
cpx= Px - Cx; cpy= Py - Cy; |
| 113 |
|
|
|
| 114 |
|
|
aCROSSbp = ax*bpy - ay*bpx; |
| 115 |
|
|
cCROSSap = cx*apy - cy*apx; |
| 116 |
|
|
bCROSScp = bx*cpy - by*cpx; |
| 117 |
|
|
|
| 118 |
|
|
return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0)); |
| 119 |
|
|
}; |
| 120 |
|
|
|
| 121 |
|
|
int |
| 122 |
|
|
polyTriangulate(const Vert2_list *contour, tri_out_t *cb) |
| 123 |
|
|
{ |
| 124 |
|
|
/* allocate and initialize list of Vertices in polygon */ |
| 125 |
|
|
|
| 126 |
|
|
int nv, m, u, v, w, count; |
| 127 |
|
|
int *V; |
| 128 |
|
|
|
| 129 |
|
|
if ( contour->nv < 3 ) return false; |
| 130 |
|
|
|
| 131 |
|
|
V = (int *)malloc(sizeof(int)*contour->nv); |
| 132 |
|
|
if (V == NULL) return false; |
| 133 |
|
|
|
| 134 |
|
|
/* we want a counter-clockwise polygon in V */ |
| 135 |
|
|
|
| 136 |
greg |
2.2 |
if ( 0.0 < polyArea(contour) ) |
| 137 |
greg |
2.1 |
for (v=0; v<contour->nv; v++) V[v] = v; |
| 138 |
|
|
else |
| 139 |
|
|
for(v=0; v<contour->nv; v++) V[v] = (contour->nv-1)-v; |
| 140 |
|
|
|
| 141 |
|
|
nv = contour->nv; |
| 142 |
|
|
|
| 143 |
|
|
/* remove nv-2 Vertices, creating 1 triangle every time */ |
| 144 |
|
|
count = 2*nv; /* error detection */ |
| 145 |
|
|
|
| 146 |
|
|
for(m=0, v=nv-1; nv>2; ) |
| 147 |
|
|
{ |
| 148 |
|
|
/* if we loop, it is probably a non-simple polygon */ |
| 149 |
greg |
2.3 |
if (0 >= count--) |
| 150 |
greg |
2.1 |
{ |
| 151 |
greg |
2.3 |
/* Triangulate: ERROR - probable bad polygon */ |
| 152 |
greg |
2.1 |
return false; |
| 153 |
|
|
} |
| 154 |
|
|
|
| 155 |
|
|
/* three consecutive vertices in current polygon, <u,v,w> */ |
| 156 |
|
|
u = v ; if (nv <= u) u = 0; /* previous */ |
| 157 |
|
|
v = u+1; if (nv <= v) v = 0; /* new v */ |
| 158 |
|
|
w = v+1; if (nv <= w) w = 0; /* next */ |
| 159 |
|
|
|
| 160 |
|
|
if ( polySnip(contour,u,v,w,nv,V) ) |
| 161 |
|
|
{ |
| 162 |
|
|
int a,b,c,s,t; |
| 163 |
|
|
|
| 164 |
|
|
/* true names of the vertices */ |
| 165 |
|
|
a = V[u]; b = V[v]; c = V[w]; |
| 166 |
|
|
|
| 167 |
|
|
/* output Triangle */ |
| 168 |
greg |
2.2 |
if (!(*cb)(contour, a, b, c)) return false; |
| 169 |
greg |
2.1 |
|
| 170 |
|
|
m++; |
| 171 |
|
|
|
| 172 |
|
|
/* remove v from remaining polygon */ |
| 173 |
|
|
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t]; nv--; |
| 174 |
|
|
|
| 175 |
greg |
2.3 |
/* reset error detection counter */ |
| 176 |
greg |
2.1 |
count = 2*nv; |
| 177 |
|
|
} |
| 178 |
|
|
} |
| 179 |
|
|
|
| 180 |
|
|
free(V); |
| 181 |
|
|
|
| 182 |
|
|
return true; |
| 183 |
|
|
} |