| 1 | greg | 2.1 | #ifndef lint | 
| 2 | greg | 2.7 | static const char RCSid[] = "$Id: triangulate.c,v 2.6 2021/04/19 19:40:03 greg Exp $"; | 
| 3 | greg | 2.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | *  triangulate.c | 
| 6 |  |  | * | 
| 7 |  |  | *  Adapted by Greg Ward on 1/23/14. | 
| 8 | greg | 2.5 | *  Fixes for polygons with seams/holes and co-linear vertices added | 
| 9 |  |  | *  by Nathaniel Jones on 12/21/16. | 
| 10 |  |  | *  Copyright 2016 Anyhere Software. All rights reserved. | 
| 11 | greg | 2.1 | * | 
| 12 |  |  | */ | 
| 13 |  |  |  | 
| 14 |  |  | /* COTD Entry submitted by John W. Ratcliff [[email protected]] | 
| 15 |  |  |  | 
| 16 |  |  | // ** THIS IS A CODE SNIPPET WHICH WILL EFFICIEINTLY TRIANGULATE ANY | 
| 17 |  |  | // ** POLYGON/CONTOUR (without holes) AS A STATIC CLASS.  THIS SNIPPET | 
| 18 |  |  | // ** IS COMPRISED OF 3 FILES, TRIANGULATE.H, THE HEADER FILE FOR THE | 
| 19 |  |  | // ** TRIANGULATE BASE CLASS, TRIANGULATE.CPP, THE IMPLEMENTATION OF | 
| 20 |  |  | // ** THE TRIANGULATE BASE CLASS, AND TEST.CPP, A SMALL TEST PROGRAM | 
| 21 |  |  | // ** DEMONSTRATING THE USAGE OF THE TRIANGULATOR.  THE TRIANGULATE | 
| 22 |  |  | // ** BASE CLASS ALSO PROVIDES TWO USEFUL HELPER METHODS, ONE WHICH | 
| 23 |  |  | // ** COMPUTES THE AREA OF A POLYGON, AND ANOTHER WHICH DOES AN EFFICENT | 
| 24 |  |  | // ** POINT IN A TRIANGLE TEST. | 
| 25 |  |  | // ** SUBMITTED BY JOHN W. RATCLIFF ([email protected]) July 22, 2000 | 
| 26 |  |  | */ | 
| 27 |  |  |  | 
| 28 |  |  | #include <stdio.h> | 
| 29 |  |  | #include <stdlib.h> | 
| 30 |  |  | #include "triangulate.h" | 
| 31 |  |  |  | 
| 32 |  |  | #ifndef true | 
| 33 |  |  | #define true    1 | 
| 34 |  |  | #define false   0 | 
| 35 |  |  | #endif | 
| 36 |  |  |  | 
| 37 | greg | 2.6 | #define EPSILON         0.0000000001 | 
| 38 | greg | 2.1 |  | 
| 39 |  |  | static int | 
| 40 |  |  | polySnip(const Vert2_list *contour, int u, int v, int w, int n, int *V) | 
| 41 |  |  | { | 
| 42 |  |  | int p; | 
| 43 | greg | 2.4 | double Ax, Ay, Bx, By, Cx, Cy, Px, Py, cross; | 
| 44 | greg | 2.1 |  | 
| 45 |  |  | Ax = contour->v[V[u]].mX; | 
| 46 |  |  | Ay = contour->v[V[u]].mY; | 
| 47 |  |  |  | 
| 48 |  |  | Bx = contour->v[V[v]].mX; | 
| 49 |  |  | By = contour->v[V[v]].mY; | 
| 50 |  |  |  | 
| 51 |  |  | Cx = contour->v[V[w]].mX; | 
| 52 |  |  | Cy = contour->v[V[w]].mY; | 
| 53 |  |  |  | 
| 54 | greg | 2.4 | cross = ((Bx - Ax)*(Cy - Ay)) - ((By - Ay)*(Cx - Ax)); | 
| 55 | greg | 2.6 | if (cross < EPSILON) | 
| 56 | greg | 2.7 | return cross > -EPSILON ? -1 : false; /* Negative if colinear points */ | 
| 57 | greg | 2.1 |  | 
| 58 |  |  | for (p=0;p<n;p++) | 
| 59 |  |  | { | 
| 60 | greg | 2.3 | if( (p == u) | (p == v) | (p == w) ) continue; | 
| 61 | greg | 2.1 | Px = contour->v[V[p]].mX; | 
| 62 |  |  | Py = contour->v[V[p]].mY; | 
| 63 | greg | 2.6 | if ((Px == Ax) & (Py == Ay) || (Px == Bx) & (Py == By) || | 
| 64 |  |  | (Px == Cx) & (Py == Cy)) continue; /* Handle donuts */ | 
| 65 | greg | 2.1 | if (insideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false; | 
| 66 |  |  | } | 
| 67 |  |  |  | 
| 68 |  |  | return true; | 
| 69 |  |  | } | 
| 70 |  |  |  | 
| 71 |  |  | Vert2_list * | 
| 72 |  |  | polyAlloc(int nv) | 
| 73 |  |  | { | 
| 74 |  |  | Vert2_list      *pnew; | 
| 75 |  |  |  | 
| 76 |  |  | if (nv < 3) return NULL; | 
| 77 |  |  |  | 
| 78 |  |  | pnew = (Vert2_list *)malloc(sizeof(Vert2_list) + sizeof(Vert2)*(nv-3)); | 
| 79 |  |  | if (pnew == NULL) return NULL; | 
| 80 |  |  | pnew->nv = nv; | 
| 81 |  |  | pnew->p = NULL; | 
| 82 |  |  |  | 
| 83 |  |  | return pnew; | 
| 84 |  |  | } | 
| 85 |  |  |  | 
| 86 | greg | 2.6 | /* | 
| 87 |  |  | Area is positive if vertices listed counter-clockwise, negative if clockwise | 
| 88 |  |  | */ | 
| 89 | greg | 2.1 | double | 
| 90 |  |  | polyArea(const Vert2_list *contour) | 
| 91 |  |  | { | 
| 92 |  |  | double A=0.0; | 
| 93 |  |  | int   p, q; | 
| 94 |  |  |  | 
| 95 |  |  | for(p = contour->nv-1, q = 0; q < contour->nv; p=q++) | 
| 96 |  |  | { | 
| 97 |  |  | A += contour->v[p].mX*contour->v[q].mY - contour->v[q].mX*contour->v[p].mY; | 
| 98 |  |  | } | 
| 99 |  |  | return A*0.5; | 
| 100 |  |  | } | 
| 101 |  |  |  | 
| 102 |  |  | /* | 
| 103 |  |  | InsideTriangle decides if a point P is Inside of the triangle | 
| 104 |  |  | defined by A, B, C. | 
| 105 |  |  | */ | 
| 106 |  |  | int | 
| 107 |  |  | insideTriangle(double Ax, double Ay, | 
| 108 |  |  | double Bx, double By, | 
| 109 |  |  | double Cx, double Cy, | 
| 110 |  |  | double Px, double Py) | 
| 111 |  |  | { | 
| 112 |  |  | double ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; | 
| 113 |  |  | double cCROSSap, bCROSScp, aCROSSbp; | 
| 114 |  |  |  | 
| 115 |  |  | ax = Cx - Bx;  ay = Cy - By; | 
| 116 |  |  | bx = Ax - Cx;  by = Ay - Cy; | 
| 117 |  |  | cx = Bx - Ax;  cy = By - Ay; | 
| 118 |  |  | apx= Px - Ax;  apy= Py - Ay; | 
| 119 |  |  | bpx= Px - Bx;  bpy= Py - By; | 
| 120 |  |  | cpx= Px - Cx;  cpy= Py - Cy; | 
| 121 |  |  |  | 
| 122 |  |  | aCROSSbp = ax*bpy - ay*bpx; | 
| 123 |  |  | cCROSSap = cx*apy - cy*apx; | 
| 124 |  |  | bCROSScp = bx*cpy - by*cpx; | 
| 125 |  |  |  | 
| 126 | greg | 2.6 | return ((aCROSSbp >= 0.0) & (bCROSScp >= 0.0) & (cCROSSap >= 0.0)); | 
| 127 | greg | 2.1 | }; | 
| 128 |  |  |  | 
| 129 |  |  | int | 
| 130 |  |  | polyTriangulate(const Vert2_list *contour, tri_out_t *cb) | 
| 131 |  |  | { | 
| 132 |  |  | /* allocate and initialize list of Vertices in polygon */ | 
| 133 |  |  |  | 
| 134 | greg | 2.6 | int nv, u, v, w, count, result; | 
| 135 | greg | 2.1 | int *V; | 
| 136 |  |  |  | 
| 137 |  |  | if ( contour->nv < 3 ) return false; | 
| 138 |  |  |  | 
| 139 |  |  | V = (int *)malloc(sizeof(int)*contour->nv); | 
| 140 |  |  | if (V == NULL) return false; | 
| 141 |  |  |  | 
| 142 |  |  | /* we want a counter-clockwise polygon in V */ | 
| 143 |  |  |  | 
| 144 | greg | 2.6 | if ( polyArea(contour) > 0.0 ) | 
| 145 | greg | 2.1 | for (v=0; v<contour->nv; v++) V[v] = v; | 
| 146 |  |  | else | 
| 147 | greg | 2.6 | for (v=0; v<contour->nv; v++) V[v] = (contour->nv-1)-v; | 
| 148 | greg | 2.1 |  | 
| 149 |  |  | nv = contour->nv; | 
| 150 |  |  |  | 
| 151 |  |  | /*  remove nv-2 Vertices, creating 1 triangle every time */ | 
| 152 |  |  | count = 2*nv;   /* error detection */ | 
| 153 |  |  |  | 
| 154 | greg | 2.6 | v = nv-1; | 
| 155 |  |  | while (nv > 2) | 
| 156 | greg | 2.1 | { | 
| 157 |  |  | /* if we loop, it is probably a non-simple polygon */ | 
| 158 | greg | 2.6 | if (count-- <= 0) | 
| 159 | greg | 2.1 | { | 
| 160 | greg | 2.3 | /* Triangulate: ERROR - probable bad polygon */ | 
| 161 | greg | 2.6 | free(V); | 
| 162 | greg | 2.1 | return false; | 
| 163 |  |  | } | 
| 164 |  |  |  | 
| 165 |  |  | /* three consecutive vertices in current polygon, <u,v,w> */ | 
| 166 | greg | 2.6 | u = v  ; u *= (nv > u);     /* previous */ | 
| 167 |  |  | v = u+1; v *= (nv > v);     /* new v    */ | 
| 168 |  |  | w = v+1; w *= (nv > w);     /* next     */ | 
| 169 | greg | 2.1 |  | 
| 170 | greg | 2.4 | result = polySnip(contour, u, v, w, nv, V); | 
| 171 |  |  | if (result > 0) /* successfully found a triangle */ | 
| 172 | greg | 2.1 | { | 
| 173 |  |  | /* output Triangle */ | 
| 174 | greg | 2.6 | if (!(*cb)(contour, V[u], V[v], V[w])) { | 
| 175 |  |  | free(V); | 
| 176 |  |  | return false; | 
| 177 |  |  | } | 
| 178 | greg | 2.4 | } | 
| 179 |  |  | if (result) /* successfully found a triangle or three consecutive colinear points */ | 
| 180 |  |  | { | 
| 181 |  |  | int s,t; | 
| 182 | greg | 2.1 |  | 
| 183 |  |  | /* remove v from remaining polygon */ | 
| 184 |  |  | for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t]; nv--; | 
| 185 |  |  |  | 
| 186 | greg | 2.3 | /* reset error detection counter */ | 
| 187 | greg | 2.1 | count = 2*nv; | 
| 188 |  |  | } | 
| 189 |  |  | } | 
| 190 |  |  |  | 
| 191 |  |  | free(V); | 
| 192 |  |  |  | 
| 193 |  |  | return true; | 
| 194 |  |  | } |