| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id$"; |
| 3 |
#endif |
| 4 |
#include <stdlib.h> |
| 5 |
#include <stdio.h> |
| 6 |
#include <string.h> |
| 7 |
|
| 8 |
#include "g3sphere.h" |
| 9 |
|
| 10 |
static g3Float get_equator_rad(g3Vec cc,int c1,int c2) |
| 11 |
{ |
| 12 |
g3Float res; |
| 13 |
|
| 14 |
if (gb_epseq(cc[c2],0.0)) { |
| 15 |
if (gb_epseq(cc[c1],0.0)) { |
| 16 |
res = 0; |
| 17 |
} else { |
| 18 |
res = (cc[c1] > 0.0) ? M_PI/2.0 : -M_PI/2.0; |
| 19 |
} |
| 20 |
} else { |
| 21 |
res = (cc[c2] < 0.0) ? M_PI - fabs(atan(cc[c1]/cc[c2])) : |
| 22 |
fabs(atan(cc[c1]/cc[c2])); |
| 23 |
if (cc[c1] < 0.0) |
| 24 |
res *= -1.0; |
| 25 |
} |
| 26 |
return res; |
| 27 |
} |
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
g3Vec g3s_cctomtr(g3Vec res,g3Vec cc) |
| 32 |
{ |
| 33 |
int copy = 0; |
| 34 |
if (res == cc) { |
| 35 |
res = g3v_create(); |
| 36 |
copy = 1; |
| 37 |
} |
| 38 |
res[G3S_RAD] = g3v_length(cc); |
| 39 |
res[G3S_MY] = res[G3S_RAD]*get_equator_rad(cc,1,0); |
| 40 |
if (cc[2] >= res[G3S_RAD]) |
| 41 |
res[G3S_MZ] = atanh((1.0 - GB_EPSILON)/res[G3S_RAD]); |
| 42 |
else |
| 43 |
res[G3S_MZ] = res[G3S_RAD]*atanh(cc[2]/res[G3S_RAD]); |
| 44 |
if (copy) { |
| 45 |
g3v_copy(cc,res); |
| 46 |
g3v_free(res); |
| 47 |
res = cc; |
| 48 |
} |
| 49 |
return res; |
| 50 |
} |
| 51 |
|
| 52 |
g3Vec g3s_mtrtocc(g3Vec res,g3Vec mtr) |
| 53 |
{ |
| 54 |
g3Float r = mtr[G3S_RAD]; |
| 55 |
|
| 56 |
res[0] = r*cos(mtr[G3S_MY]/r)/cosh(mtr[G3S_MZ]/r); |
| 57 |
res[1] = r*sin(mtr[G3S_MY]/r)/cosh(mtr[G3S_MZ]/r); |
| 58 |
res[2] = r*tanh(mtr[G3S_MZ]/r); |
| 59 |
return res; |
| 60 |
} |
| 61 |
|
| 62 |
g3Vec g3s_cctotr(g3Vec res,g3Vec cc) |
| 63 |
{ |
| 64 |
g3Float len; |
| 65 |
G3S_RESCOPY(res,cc); |
| 66 |
if (gb_epseq((res[G3S_RAD] = g3v_length(cc)),0)) { |
| 67 |
fprintf(stderr,"g3s_cctotr: zero vector\n"); |
| 68 |
G3S_RESFREE(res,cc); |
| 69 |
return NULL; |
| 70 |
} |
| 71 |
g3v_copy(res,cc); |
| 72 |
res[1] = 0; |
| 73 |
len = g3v_length(res); |
| 74 |
if (gb_epseq(len,0.0)) { |
| 75 |
res[G3S_THETA] = M_PI/2.0; |
| 76 |
res[G3S_PHI] = gb_signum(cc[1])*M_PI/2.0; |
| 77 |
} else { |
| 78 |
res[G3S_THETA] = acos(cc[2]/len); |
| 79 |
res[G3S_PHI] = atan(cc[1]/len); |
| 80 |
if (cc[0] < 0.0) |
| 81 |
res[G3S_THETA] *= -1.0; |
| 82 |
} |
| 83 |
res[G3S_RAD] = g3v_length(cc); |
| 84 |
g3s_trwrap(res); |
| 85 |
G3S_RESFREE(res,cc); |
| 86 |
return res; |
| 87 |
} |
| 88 |
|
| 89 |
g3Vec g3s_trtocc(g3Vec res,g3Vec tr) |
| 90 |
{ |
| 91 |
g3Vec v; |
| 92 |
G3S_RESCOPY(res,tr); |
| 93 |
v = g3v_create(); |
| 94 |
g3v_set(v,0,-1,0); |
| 95 |
g3v_set(res,0,0,1); |
| 96 |
g3v_rotate(res,res,v,tr[G3S_THETA]); |
| 97 |
g3v_cross(v,res,v); |
| 98 |
g3v_rotate(res,res,v,tr[G3S_PHI]); |
| 99 |
g3v_free(v); |
| 100 |
g3v_scale(res,res,tr[G3S_RAD]); |
| 101 |
G3S_RESFREE(res,tr); |
| 102 |
return res; |
| 103 |
} |
| 104 |
|
| 105 |
g3Vec g3s_sphtotr(g3Vec res,g3Vec sph) |
| 106 |
{ |
| 107 |
g3s_sphtocc(res,sph); |
| 108 |
return g3s_cctotr(res,res); |
| 109 |
} |
| 110 |
|
| 111 |
g3Vec g3s_trtosph(g3Vec res,g3Vec tr) |
| 112 |
{ |
| 113 |
g3s_trtocc(res,tr); |
| 114 |
return g3s_cctosph(res,res); |
| 115 |
} |
| 116 |
|
| 117 |
g3Vec g3s_sphtocc(g3Vec res,g3Vec sph) |
| 118 |
{ |
| 119 |
g3Float r,s2,t; |
| 120 |
r = sph[G3S_RAD]; |
| 121 |
s2 = sin(sph[G3S_THETA]); |
| 122 |
t = sph[G3S_THETA]; |
| 123 |
res[0] = r*cos(sph[G3S_PHI])*s2; |
| 124 |
res[1] = r*sin(sph[G3S_PHI])*s2; |
| 125 |
res[2] = r*cos(t); |
| 126 |
return res; |
| 127 |
} |
| 128 |
|
| 129 |
g3Vec g3s_cctosph(g3Vec res,g3Vec cc) |
| 130 |
{ |
| 131 |
int copy = 0; |
| 132 |
if (res == cc) { |
| 133 |
res = g3v_create(); |
| 134 |
copy = 1; |
| 135 |
} |
| 136 |
res[G3S_RAD] = g3v_length(cc); |
| 137 |
res[G3S_THETA] = acos(cc[2]/res[G3S_RAD]); |
| 138 |
res[G3S_PHI] = get_equator_rad(cc,1,0); |
| 139 |
if (copy) { |
| 140 |
g3v_copy(cc,res); |
| 141 |
g3v_free(res); |
| 142 |
res = cc; |
| 143 |
} |
| 144 |
return res; |
| 145 |
} |
| 146 |
|
| 147 |
g3Vec g3s_sphwrap(g3Vec sph) |
| 148 |
{ |
| 149 |
sph[G3S_THETA] = fmod((fmod(sph[G3S_THETA],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); |
| 150 |
sph[G3S_PHI] = fmod((fmod(sph[G3S_PHI],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); |
| 151 |
return sph; |
| 152 |
} |
| 153 |
|
| 154 |
g3Vec g3s_trwrap(g3Vec tr) |
| 155 |
{ |
| 156 |
tr[G3S_THETA] = fmod((fmod(tr[G3S_THETA],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); |
| 157 |
tr[G3S_PHI] += M_PI; |
| 158 |
tr[G3S_PHI] = fmod((fmod(tr[G3S_PHI],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); |
| 159 |
tr[G3S_PHI] -= M_PI; |
| 160 |
return tr; |
| 161 |
} |
| 162 |
|
| 163 |
g3Float g3s_dist(const g3Vec cc1,const g3Vec cc2) |
| 164 |
{ |
| 165 |
return acos(g3v_dot(cc1,cc2)); |
| 166 |
} |
| 167 |
|
| 168 |
g3Float g3s_dist_norm(const g3Vec cc1,const g3Vec cc2) |
| 169 |
{ |
| 170 |
return acos(g3v_dot(g3v_normalize(cc1),g3v_normalize(cc2))); |
| 171 |
} |
| 172 |
|
| 173 |
|
| 174 |
|
| 175 |
|
| 176 |
#ifdef G3SPHERE_TEST |
| 177 |
|
| 178 |
int main(int argc,char** argv) |
| 179 |
{ |
| 180 |
g3Vec a,b,e,z,ang; |
| 181 |
int i; |
| 182 |
g3Float vo,v,vr; |
| 183 |
|
| 184 |
if (argc < 4) { |
| 185 |
fprintf(stderr,"usage: %s <s | e> <x1> <y1> <z1>\n",argv[0]); |
| 186 |
return EXIT_FAILURE; |
| 187 |
} |
| 188 |
|
| 189 |
a = g3v_create(); |
| 190 |
e = g3v_create(); |
| 191 |
if (!strcmp(argv[1],"s")) { |
| 192 |
g3v_set(a,1.0,DEG2RAD(atof(argv[2])),DEG2RAD(atof(argv[3]))); |
| 193 |
g3v_print(g3s_sphtocc(a,a),stdout);; |
| 194 |
//g3s_trtosph(a,a); |
| 195 |
//g3v_print(a,stdout); |
| 196 |
//printf("%f %f",RAD2DEG(a[1]),RAD2DEG(a[2])); |
| 197 |
printf("\n"); |
| 198 |
} else { |
| 199 |
g3v_set(a,atof(argv[2]),atof(argv[3]),atof(argv[4])); |
| 200 |
g3s_cctosph(a,a); |
| 201 |
printf("%f %f",RAD2DEG(a[1]),RAD2DEG(a[2])); |
| 202 |
printf("\n"); |
| 203 |
} |
| 204 |
exit(1); |
| 205 |
for(i=0;i<10000;i++) { |
| 206 |
a[0] = 1.0; |
| 207 |
a[1] = M_PI/2.0*rand()/RAND_MAX; |
| 208 |
a[2] = 2.0*M_PI*rand()/RAND_MAX; |
| 209 |
g3s_sphtocc(a,a); |
| 210 |
g3s_cctotr(e,a); |
| 211 |
g3s_trtocc(e,e); |
| 212 |
if (!g3v_epseq(e,a)) { |
| 213 |
fprintf(stderr,"aaaa \n"); |
| 214 |
g3v_print(a,stderr); |
| 215 |
g3v_print(e,stderr); |
| 216 |
} |
| 217 |
} |
| 218 |
fprintf(stderr,"ok\n"); |
| 219 |
exit(1); |
| 220 |
g3v_set(a,atof(argv[1]),DEG2RAD(atof(argv[2])),DEG2RAD(atof(argv[3]))); |
| 221 |
b = g3v_create(); |
| 222 |
z = g3v_create(); |
| 223 |
ang = g3v_create(); |
| 224 |
g3v_set(z,0,0,1); |
| 225 |
g3v_normalize(a); |
| 226 |
for(i=0;i<5000;i++) { |
| 227 |
b[0] = 1.0; |
| 228 |
b[1] = M_PI/2.0*rand()/RAND_MAX; |
| 229 |
b[2] = 2.0*M_PI*rand()/RAND_MAX; |
| 230 |
g3v_copy(ang,b); |
| 231 |
g3s_sphtocc(b,b); |
| 232 |
v = g3s_dist(a,b); |
| 233 |
if (!gb_epseq(sqrt(2.0 - 2.0*cos(v)),g3v_length(g3v_sub(ang,b,a)))) |
| 234 |
fprintf(stderr,"oops %f %f\n",sqrt(2.0 - 2.0*cos(v)),g3v_length(g3v_sub(ang,b,a))); |
| 235 |
vo = (v > 0.2) ? 0.1 : (0.4 - v); |
| 236 |
vr = sqrt(2.0 - 2.0*cos(0.2)); |
| 237 |
if (fabs(a[0] - b[0]) > vr || fabs(a[1] - b[1]) > vr || fabs(a[2] - b[2]) > vr) { |
| 238 |
vo -= 0.1; |
| 239 |
if (v < 0.2) { |
| 240 |
vo = 3; |
| 241 |
fprintf(stderr,"autsch %f %f\n",v,vr); |
| 242 |
} |
| 243 |
} |
| 244 |
g3s_cctosph(b,b); |
| 245 |
printf("%f %f %f\n",b[G3S_THETA],b[G3S_PHI],vo); |
| 246 |
} |
| 247 |
//printf("%f\n",g3s_dist_norm(a,b)); |
| 248 |
//g3v_print(g3s_cctomtr(b,a),stdout); |
| 249 |
//g3v_print(g3s_cctosph(b,a),stdout); |
| 250 |
//printf("\n"); |
| 251 |
return EXIT_SUCCESS; |
| 252 |
} |
| 253 |
|
| 254 |
#endif |