| 1 |
< |
/* Copyright (c) 1988 Regents of the University of California */ |
| 1 |
> |
/* RCSid $Id$ */ |
| 2 |
> |
/* |
| 3 |
> |
* Declarations for floating-point vector operations. |
| 4 |
> |
*/ |
| 5 |
> |
#ifndef _RAD_FVECT_H_ |
| 6 |
> |
#define _RAD_FVECT_H_ |
| 7 |
> |
#ifdef __cplusplus |
| 8 |
> |
extern "C" { |
| 9 |
> |
#endif |
| 10 |
|
|
| 3 |
– |
/* SCCSid "$SunId$ LBL" */ |
| 4 |
– |
|
| 11 |
|
#ifdef SMLFLT |
| 12 |
< |
#define FLOAT float |
| 12 |
> |
#define RREAL float |
| 13 |
|
#define FTINY (1e-3) |
| 14 |
+ |
#define FVFORMAT "%f %f %f" |
| 15 |
|
#else |
| 16 |
< |
#define FLOAT double |
| 16 |
> |
#define RREAL double |
| 17 |
|
#define FTINY (1e-6) |
| 18 |
+ |
#define FVFORMAT "%lf %lf %lf" |
| 19 |
|
#endif |
| 20 |
|
#define FHUGE (1e10) |
| 21 |
|
|
| 22 |
< |
typedef FLOAT FVECT[3]; |
| 22 |
> |
#define FABSEQ(x1,x2) (fabs((x1)-(x2)) <= FTINY) |
| 23 |
> |
#define FRELEQ(x1,x2) (fabs((x1)-(x2)) <= FTINY*0.5*(fabs(x1)+fabs(x2))) |
| 24 |
|
|
| 25 |
+ |
#define VABSEQ(v,w) (FABSEQ((v)[0],(w)[0]) && FABSEQ((v)[1],(w)[1]) \ |
| 26 |
+ |
&& FABSEQ((v)[2],(w)[2])) |
| 27 |
+ |
#define VRELEQ(v,w) (FRELEQ((v)[0],(w)[0]) && FRELEQ((v)[1],(w)[1]) \ |
| 28 |
+ |
&& FRELEQ((v)[2],(w)[2])) |
| 29 |
+ |
|
| 30 |
+ |
typedef RREAL FVECT[3]; |
| 31 |
+ |
|
| 32 |
|
#define VCOPY(v1,v2) ((v1)[0]=(v2)[0],(v1)[1]=(v2)[1],(v1)[2]=(v2)[2]) |
| 33 |
|
#define DOT(v1,v2) ((v1)[0]*(v2)[0]+(v1)[1]*(v2)[1]+(v1)[2]*(v2)[2]) |
| 34 |
|
#define VLEN(v) sqrt(DOT(v,v)) |
| 35 |
+ |
#define VADD(vr,v1,v2) ((vr)[0]=(v1)[0]+(v2)[0], \ |
| 36 |
+ |
(vr)[1]=(v1)[1]+(v2)[1], \ |
| 37 |
+ |
(vr)[2]=(v1)[2]+(v2)[2]) |
| 38 |
+ |
#define VSUB(vr,v1,v2) ((vr)[0]=(v1)[0]-(v2)[0], \ |
| 39 |
+ |
(vr)[1]=(v1)[1]-(v2)[1], \ |
| 40 |
+ |
(vr)[2]=(v1)[2]-(v2)[2]) |
| 41 |
|
#define VSUM(vr,v1,v2,f) ((vr)[0]=(v1)[0]+(f)*(v2)[0], \ |
| 42 |
|
(vr)[1]=(v1)[1]+(f)*(v2)[1], \ |
| 43 |
|
(vr)[2]=(v1)[2]+(f)*(v2)[2]) |
| 44 |
+ |
#define VLERP(vr,v1,a,v2) ((vr)[0]=(1.-(a))*(v1)[0]+(a)*(v2)[0], \ |
| 45 |
+ |
(vr)[1]=(1.-(a))*(v1)[1]+(a)*(v2)[1], \ |
| 46 |
+ |
(vr)[2]=(1.-(a))*(v1)[2]+(a)*(v2)[2]) |
| 47 |
+ |
#define VCROSS(vr,v1,v2) \ |
| 48 |
+ |
((vr)[0]=(v1)[1]*(v2)[2]-(v1)[2]*(v2)[1], \ |
| 49 |
+ |
(vr)[1]=(v1)[2]*(v2)[0]-(v1)[0]*(v2)[2], \ |
| 50 |
+ |
(vr)[2]=(v1)[0]*(v2)[1]-(v1)[1]*(v2)[0]) |
| 51 |
|
|
| 52 |
< |
extern double fdot(), dist2(), dist2lseg(), dist2line(), normalize(); |
| 52 |
> |
#define GEOD_RAD 0 /* geodesic distance specified in radians */ |
| 53 |
> |
#define GEOD_ABS 1 /* absolute geodesic distance */ |
| 54 |
> |
#define GEOD_REL 2 /* relative geodesic distance */ |
| 55 |
> |
|
| 56 |
> |
extern double Acos(double x); |
| 57 |
> |
extern double Asin(double x); |
| 58 |
> |
extern double fdot(const FVECT v1, const FVECT v2); |
| 59 |
> |
extern double dist2(const FVECT v1, const FVECT v2); |
| 60 |
> |
extern double dist2line(const FVECT p, const FVECT ep1, const FVECT ep2); |
| 61 |
> |
extern double dist2lseg(const FVECT p, const FVECT ep1, const FVECT ep2); |
| 62 |
> |
extern void fcross(FVECT vres, const FVECT v1, const FVECT v2); |
| 63 |
> |
extern void fvsum(FVECT vres, const FVECT v0, const FVECT v1, double f); |
| 64 |
> |
extern double normalize(FVECT v); |
| 65 |
> |
extern int getperpendicular(FVECT vp, const FVECT v, int randomize); |
| 66 |
> |
extern int closestapproach(RREAL t[2], |
| 67 |
> |
const FVECT rorg0, const FVECT rdir0, |
| 68 |
> |
const FVECT rorg1, const FVECT rdir1); |
| 69 |
> |
extern void spinvector(FVECT vres, const FVECT vorig, |
| 70 |
> |
const FVECT vnorm, double theta); |
| 71 |
> |
extern double geodesic(FVECT vres, const FVECT vorig, |
| 72 |
> |
const FVECT vtarg, double t, int meas); |
| 73 |
> |
#ifdef __cplusplus |
| 74 |
> |
} |
| 75 |
> |
#endif |
| 76 |
> |
#endif /* _RAD_FVECT_H_ */ |
| 77 |
> |
|