| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: fvect.c,v 2.14 2011/04/19 21:31:22 greg Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* fvect.c - routines for floating-point vector calculations |
| 6 |
*/ |
| 7 |
|
| 8 |
#include "copyright.h" |
| 9 |
|
| 10 |
#include <math.h> |
| 11 |
#include "fvect.h" |
| 12 |
|
| 13 |
|
| 14 |
double |
| 15 |
fdot( /* return the dot product of two vectors */ |
| 16 |
const FVECT v1, |
| 17 |
const FVECT v2 |
| 18 |
) |
| 19 |
{ |
| 20 |
return(DOT(v1,v2)); |
| 21 |
} |
| 22 |
|
| 23 |
|
| 24 |
double |
| 25 |
dist2( /* return square of distance between points */ |
| 26 |
const FVECT p1, |
| 27 |
const FVECT p2 |
| 28 |
) |
| 29 |
{ |
| 30 |
FVECT delta; |
| 31 |
|
| 32 |
delta[0] = p2[0] - p1[0]; |
| 33 |
delta[1] = p2[1] - p1[1]; |
| 34 |
delta[2] = p2[2] - p1[2]; |
| 35 |
|
| 36 |
return(DOT(delta, delta)); |
| 37 |
} |
| 38 |
|
| 39 |
|
| 40 |
double |
| 41 |
dist2line( /* return square of distance to line */ |
| 42 |
const FVECT p, /* the point */ |
| 43 |
const FVECT ep1, |
| 44 |
const FVECT ep2 /* points on the line */ |
| 45 |
) |
| 46 |
{ |
| 47 |
double d, d1, d2; |
| 48 |
|
| 49 |
d = dist2(ep1, ep2); |
| 50 |
d1 = dist2(ep1, p); |
| 51 |
d2 = d + d1 - dist2(ep2, p); |
| 52 |
|
| 53 |
return(d1 - 0.25*d2*d2/d); |
| 54 |
} |
| 55 |
|
| 56 |
|
| 57 |
double |
| 58 |
dist2lseg( /* return square of distance to line segment */ |
| 59 |
const FVECT p, /* the point */ |
| 60 |
const FVECT ep1, |
| 61 |
const FVECT ep2 /* the end points */ |
| 62 |
) |
| 63 |
{ |
| 64 |
double d, d1, d2; |
| 65 |
|
| 66 |
d = dist2(ep1, ep2); |
| 67 |
d1 = dist2(ep1, p); |
| 68 |
d2 = dist2(ep2, p); |
| 69 |
|
| 70 |
if (d2 > d1) { /* check if past endpoints */ |
| 71 |
if (d2 - d1 > d) |
| 72 |
return(d1); |
| 73 |
} else { |
| 74 |
if (d1 - d2 > d) |
| 75 |
return(d2); |
| 76 |
} |
| 77 |
d2 = d + d1 - d2; |
| 78 |
|
| 79 |
return(d1 - 0.25*d2*d2/d); /* distance to line */ |
| 80 |
} |
| 81 |
|
| 82 |
|
| 83 |
void |
| 84 |
fcross( /* vres = v1 X v2 */ |
| 85 |
FVECT vres, |
| 86 |
const FVECT v1, |
| 87 |
const FVECT v2 |
| 88 |
) |
| 89 |
{ |
| 90 |
vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
| 91 |
vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
| 92 |
vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
| 93 |
} |
| 94 |
|
| 95 |
|
| 96 |
void |
| 97 |
fvsum( /* vres = v0 + f*v1 */ |
| 98 |
FVECT vres, |
| 99 |
const FVECT v0, |
| 100 |
const FVECT v1, |
| 101 |
double f |
| 102 |
) |
| 103 |
{ |
| 104 |
vres[0] = v0[0] + f*v1[0]; |
| 105 |
vres[1] = v0[1] + f*v1[1]; |
| 106 |
vres[2] = v0[2] + f*v1[2]; |
| 107 |
} |
| 108 |
|
| 109 |
|
| 110 |
double |
| 111 |
normalize( /* normalize a vector, return old magnitude */ |
| 112 |
FVECT v |
| 113 |
) |
| 114 |
{ |
| 115 |
double len, d; |
| 116 |
|
| 117 |
d = DOT(v, v); |
| 118 |
|
| 119 |
if (d == 0.0) |
| 120 |
return(0.0); |
| 121 |
|
| 122 |
if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { |
| 123 |
len = 0.5 + 0.5*d; /* first order approximation */ |
| 124 |
d = 2.0 - len; |
| 125 |
} else { |
| 126 |
len = sqrt(d); |
| 127 |
d = 1.0/len; |
| 128 |
} |
| 129 |
v[0] *= d; |
| 130 |
v[1] *= d; |
| 131 |
v[2] *= d; |
| 132 |
|
| 133 |
return(len); |
| 134 |
} |
| 135 |
|
| 136 |
|
| 137 |
int |
| 138 |
closestapproach( /* closest approach of two rays */ |
| 139 |
RREAL t[2], /* returned distances along each ray */ |
| 140 |
const FVECT rorg0, /* first origin */ |
| 141 |
const FVECT rdir0, /* first direction (normalized) */ |
| 142 |
const FVECT rorg1, /* second origin */ |
| 143 |
const FVECT rdir1 /* second direction (normalized) */ |
| 144 |
) |
| 145 |
{ |
| 146 |
double dotprod = DOT(rdir0, rdir1); |
| 147 |
double denom = 1. - dotprod*dotprod; |
| 148 |
double o1o2_d1; |
| 149 |
FVECT o0o1; |
| 150 |
|
| 151 |
if (denom <= FTINY) { /* check if lines are parallel */ |
| 152 |
t[0] = t[1] = 0.0; |
| 153 |
return(0); |
| 154 |
} |
| 155 |
VSUB(o0o1, rorg0, rorg1); |
| 156 |
o1o2_d1 = DOT(o0o1, rdir1); |
| 157 |
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; |
| 158 |
t[1] = o1o2_d1 + t[0]*dotprod; |
| 159 |
return(1); |
| 160 |
} |
| 161 |
|
| 162 |
|
| 163 |
void |
| 164 |
spinvector( /* rotate vector around normal */ |
| 165 |
FVECT vres, /* returned vector (same magnitude as vorig) */ |
| 166 |
const FVECT vorig, /* original vector */ |
| 167 |
const FVECT vnorm, /* normalized vector for rotation */ |
| 168 |
double theta /* right-hand radians */ |
| 169 |
) |
| 170 |
{ |
| 171 |
double sint, cost, normprod; |
| 172 |
FVECT vperp; |
| 173 |
int i; |
| 174 |
|
| 175 |
if (theta == 0.0) { |
| 176 |
if (vres != vorig) |
| 177 |
VCOPY(vres, vorig); |
| 178 |
return; |
| 179 |
} |
| 180 |
cost = cos(theta); |
| 181 |
sint = sin(theta); |
| 182 |
normprod = DOT(vorig, vnorm)*(1.-cost); |
| 183 |
fcross(vperp, vnorm, vorig); |
| 184 |
for (i = 0; i < 3; i++) |
| 185 |
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; |
| 186 |
} |
| 187 |
|
| 188 |
double |
| 189 |
geodesic( /* rotate vector on great circle towards target */ |
| 190 |
FVECT vres, /* returned vector (same magnitude as vorig) */ |
| 191 |
const FVECT vorig, /* original vector */ |
| 192 |
const FVECT vtarg, /* vector we are rotating towards */ |
| 193 |
double t, /* amount along arc directed towards vtarg */ |
| 194 |
int meas /* distance measure (radians, absolute, relative) */ |
| 195 |
) |
| 196 |
{ |
| 197 |
FVECT normtarg; |
| 198 |
double volen, dotprod, sint, cost; |
| 199 |
int i; |
| 200 |
|
| 201 |
if (vres != vorig) |
| 202 |
VCOPY(vres, vorig); |
| 203 |
if (t == 0.0) |
| 204 |
return(VLEN(vres)); /* no rotation requested */ |
| 205 |
if ((volen = normalize(vres)) == 0.0) |
| 206 |
return(0.0); |
| 207 |
VCOPY(normtarg, vtarg); |
| 208 |
if (normalize(normtarg) == 0.0) |
| 209 |
return(0.0); /* target vector is zero */ |
| 210 |
dotprod = DOT(vres, normtarg); |
| 211 |
/* check for colinear */ |
| 212 |
if (dotprod >= 1.0-FTINY*FTINY) { |
| 213 |
if (meas != GEOD_REL) |
| 214 |
return(0.0); |
| 215 |
vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; |
| 216 |
return(volen); |
| 217 |
} |
| 218 |
if (dotprod <= -1.0+FTINY*FTINY) |
| 219 |
return(0.0); |
| 220 |
if (meas == GEOD_ABS) |
| 221 |
t /= volen; |
| 222 |
else if (meas == GEOD_REL) |
| 223 |
t *= acos(dotprod); |
| 224 |
cost = cos(t); |
| 225 |
sint = sin(t); |
| 226 |
for (i = 0; i < 3; i++) |
| 227 |
vres[i] = volen*( cost*vres[i] + |
| 228 |
sint*(normtarg[i] - dotprod*vres[i]) ); |
| 229 |
|
| 230 |
return(volen); /* return vector length */ |
| 231 |
} |