| 1 |
greg |
1.1 |
#ifndef lint |
| 2 |
greg |
2.24 |
static const char RCSid[] = "$Id: fvect.c,v 2.23 2015/05/21 07:02:23 greg Exp $"; |
| 3 |
greg |
1.1 |
#endif |
| 4 |
greg |
2.6 |
/* |
| 5 |
|
|
* fvect.c - routines for floating-point vector calculations |
| 6 |
|
|
*/ |
| 7 |
greg |
1.1 |
|
| 8 |
greg |
2.7 |
#include "copyright.h" |
| 9 |
greg |
1.1 |
|
| 10 |
greg |
2.19 |
#define _USE_MATH_DEFINES |
| 11 |
greg |
2.2 |
#include <math.h> |
| 12 |
greg |
1.1 |
#include "fvect.h" |
| 13 |
greg |
2.20 |
#include "random.h" |
| 14 |
greg |
1.1 |
|
| 15 |
greg |
2.19 |
double |
| 16 |
|
|
Acos(double x) /* insurance for touchy math library */ |
| 17 |
|
|
{ |
| 18 |
|
|
if (x <= -1.+FTINY*FTINY) |
| 19 |
|
|
return(M_PI); |
| 20 |
|
|
if (x >= 1.-FTINY*FTINY) |
| 21 |
|
|
return(.0); |
| 22 |
|
|
return(acos(x)); |
| 23 |
|
|
} |
| 24 |
|
|
|
| 25 |
|
|
double |
| 26 |
|
|
Asin(double x) /* insurance for touchy math library */ |
| 27 |
|
|
{ |
| 28 |
|
|
if (x <= -1.+FTINY*FTINY) |
| 29 |
|
|
return(-M_PI/2.); |
| 30 |
|
|
if (x >= 1.-FTINY*FTINY) |
| 31 |
|
|
return(M_PI/2); |
| 32 |
|
|
return(asin(x)); |
| 33 |
|
|
} |
| 34 |
greg |
1.1 |
|
| 35 |
|
|
double |
| 36 |
greg |
2.8 |
fdot( /* return the dot product of two vectors */ |
| 37 |
greg |
2.13 |
const FVECT v1, |
| 38 |
|
|
const FVECT v2 |
| 39 |
greg |
2.8 |
) |
| 40 |
greg |
1.1 |
{ |
| 41 |
|
|
return(DOT(v1,v2)); |
| 42 |
|
|
} |
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
double |
| 46 |
greg |
2.8 |
dist2( /* return square of distance between points */ |
| 47 |
greg |
2.13 |
const FVECT p1, |
| 48 |
|
|
const FVECT p2 |
| 49 |
greg |
2.8 |
) |
| 50 |
greg |
1.1 |
{ |
| 51 |
gwlarson |
2.4 |
FVECT delta; |
| 52 |
greg |
1.1 |
|
| 53 |
greg |
2.18 |
VSUB(delta, p2, p1); |
| 54 |
gwlarson |
2.5 |
|
| 55 |
greg |
1.1 |
return(DOT(delta, delta)); |
| 56 |
|
|
} |
| 57 |
|
|
|
| 58 |
|
|
|
| 59 |
|
|
double |
| 60 |
greg |
2.8 |
dist2line( /* return square of distance to line */ |
| 61 |
greg |
2.13 |
const FVECT p, /* the point */ |
| 62 |
|
|
const FVECT ep1, |
| 63 |
|
|
const FVECT ep2 /* points on the line */ |
| 64 |
greg |
2.8 |
) |
| 65 |
greg |
1.1 |
{ |
| 66 |
greg |
2.11 |
double d, d1, d2; |
| 67 |
greg |
1.1 |
|
| 68 |
|
|
d = dist2(ep1, ep2); |
| 69 |
|
|
d1 = dist2(ep1, p); |
| 70 |
gwlarson |
2.5 |
d2 = d + d1 - dist2(ep2, p); |
| 71 |
greg |
1.1 |
|
| 72 |
gwlarson |
2.5 |
return(d1 - 0.25*d2*d2/d); |
| 73 |
greg |
1.1 |
} |
| 74 |
|
|
|
| 75 |
|
|
|
| 76 |
|
|
double |
| 77 |
greg |
2.8 |
dist2lseg( /* return square of distance to line segment */ |
| 78 |
greg |
2.13 |
const FVECT p, /* the point */ |
| 79 |
|
|
const FVECT ep1, |
| 80 |
|
|
const FVECT ep2 /* the end points */ |
| 81 |
greg |
2.8 |
) |
| 82 |
greg |
1.1 |
{ |
| 83 |
greg |
2.11 |
double d, d1, d2; |
| 84 |
greg |
1.1 |
|
| 85 |
|
|
d = dist2(ep1, ep2); |
| 86 |
|
|
d1 = dist2(ep1, p); |
| 87 |
|
|
d2 = dist2(ep2, p); |
| 88 |
|
|
|
| 89 |
|
|
if (d2 > d1) { /* check if past endpoints */ |
| 90 |
|
|
if (d2 - d1 > d) |
| 91 |
|
|
return(d1); |
| 92 |
|
|
} else { |
| 93 |
|
|
if (d1 - d2 > d) |
| 94 |
|
|
return(d2); |
| 95 |
|
|
} |
| 96 |
gwlarson |
2.5 |
d2 = d + d1 - d2; |
| 97 |
greg |
1.1 |
|
| 98 |
gwlarson |
2.5 |
return(d1 - 0.25*d2*d2/d); /* distance to line */ |
| 99 |
greg |
1.1 |
} |
| 100 |
|
|
|
| 101 |
|
|
|
| 102 |
greg |
2.6 |
void |
| 103 |
greg |
2.8 |
fcross( /* vres = v1 X v2 */ |
| 104 |
greg |
2.11 |
FVECT vres, |
| 105 |
greg |
2.13 |
const FVECT v1, |
| 106 |
|
|
const FVECT v2 |
| 107 |
greg |
2.8 |
) |
| 108 |
greg |
1.1 |
{ |
| 109 |
greg |
2.21 |
if ((vres == v1) | (vres == v2)) { |
| 110 |
|
|
FVECT vtmp; |
| 111 |
|
|
VCROSS(vtmp, v1, v2); |
| 112 |
|
|
VCOPY(vres, vtmp); |
| 113 |
|
|
return; |
| 114 |
|
|
} |
| 115 |
greg |
2.18 |
VCROSS(vres, v1, v2); |
| 116 |
greg |
1.1 |
} |
| 117 |
|
|
|
| 118 |
|
|
|
| 119 |
greg |
2.6 |
void |
| 120 |
greg |
2.8 |
fvsum( /* vres = v0 + f*v1 */ |
| 121 |
greg |
2.11 |
FVECT vres, |
| 122 |
greg |
2.13 |
const FVECT v0, |
| 123 |
|
|
const FVECT v1, |
| 124 |
greg |
2.11 |
double f |
| 125 |
greg |
2.8 |
) |
| 126 |
greg |
1.4 |
{ |
| 127 |
greg |
2.18 |
VSUM(vres, v0, v1, f); |
| 128 |
greg |
1.4 |
} |
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
greg |
1.1 |
double |
| 132 |
greg |
2.8 |
normalize( /* normalize a vector, return old magnitude */ |
| 133 |
greg |
2.11 |
FVECT v |
| 134 |
greg |
2.8 |
) |
| 135 |
greg |
1.1 |
{ |
| 136 |
greg |
2.11 |
double len, d; |
| 137 |
greg |
1.1 |
|
| 138 |
gwlarson |
2.5 |
d = DOT(v, v); |
| 139 |
greg |
1.1 |
|
| 140 |
greg |
2.10 |
if (d == 0.0) |
| 141 |
greg |
1.1 |
return(0.0); |
| 142 |
|
|
|
| 143 |
greg |
2.15 |
if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { |
| 144 |
gwlarson |
2.5 |
len = 0.5 + 0.5*d; /* first order approximation */ |
| 145 |
greg |
2.12 |
d = 2.0 - len; |
| 146 |
|
|
} else { |
| 147 |
gwlarson |
2.5 |
len = sqrt(d); |
| 148 |
greg |
2.12 |
d = 1.0/len; |
| 149 |
|
|
} |
| 150 |
|
|
v[0] *= d; |
| 151 |
gwlarson |
2.5 |
v[1] *= d; |
| 152 |
|
|
v[2] *= d; |
| 153 |
greg |
2.3 |
|
| 154 |
greg |
1.1 |
return(len); |
| 155 |
|
|
} |
| 156 |
greg |
1.5 |
|
| 157 |
|
|
|
| 158 |
greg |
2.8 |
int |
| 159 |
greg |
2.22 |
getperpendicular( /* choose perpedicular direction */ |
| 160 |
greg |
2.21 |
FVECT vp, /* returns normalized */ |
| 161 |
greg |
2.22 |
const FVECT v, /* input vector must be normalized */ |
| 162 |
|
|
int randomize /* randomize orientation */ |
| 163 |
greg |
2.20 |
) |
| 164 |
|
|
{ |
| 165 |
greg |
2.22 |
int ord[3]; |
| 166 |
greg |
2.20 |
FVECT v1; |
| 167 |
|
|
int i; |
| 168 |
greg |
2.22 |
|
| 169 |
|
|
if (randomize) { /* randomize coordinates? */ |
| 170 |
|
|
v1[0] = 0.5 - frandom(); |
| 171 |
|
|
v1[1] = 0.5 - frandom(); |
| 172 |
|
|
v1[2] = 0.5 - frandom(); |
| 173 |
greg |
2.24 |
switch ((int)(frandom()*6.)) { |
| 174 |
greg |
2.23 |
case 0: ord[0] = 0; ord[1] = 1; ord[2] = 2; break; |
| 175 |
|
|
case 1: ord[0] = 0; ord[1] = 2; ord[2] = 1; break; |
| 176 |
|
|
case 2: ord[0] = 1; ord[1] = 0; ord[2] = 2; break; |
| 177 |
|
|
case 3: ord[0] = 1; ord[1] = 2; ord[2] = 0; break; |
| 178 |
|
|
case 4: ord[0] = 2; ord[1] = 0; ord[2] = 1; break; |
| 179 |
greg |
2.24 |
default: ord[0] = 2; ord[1] = 1; ord[2] = 0; break; |
| 180 |
greg |
2.22 |
} |
| 181 |
|
|
} else { |
| 182 |
greg |
2.23 |
v1[0] = v1[1] = v1[2] = 0.0; |
| 183 |
greg |
2.22 |
ord[0] = 0; ord[1] = 1; ord[2] = 2; |
| 184 |
|
|
} |
| 185 |
|
|
|
| 186 |
greg |
2.20 |
for (i = 3; i--; ) |
| 187 |
greg |
2.22 |
if ((-0.6 < v[ord[i]]) & (v[ord[i]] < 0.6)) |
| 188 |
greg |
2.20 |
break; |
| 189 |
|
|
if (i < 0) |
| 190 |
|
|
return(0); |
| 191 |
greg |
2.22 |
|
| 192 |
|
|
v1[ord[i]] = 1.0; |
| 193 |
greg |
2.21 |
fcross(vp, v1, v); |
| 194 |
greg |
2.22 |
|
| 195 |
greg |
2.20 |
return(normalize(vp) > 0.0); |
| 196 |
|
|
} |
| 197 |
|
|
|
| 198 |
greg |
2.21 |
|
| 199 |
greg |
2.20 |
int |
| 200 |
greg |
2.8 |
closestapproach( /* closest approach of two rays */ |
| 201 |
|
|
RREAL t[2], /* returned distances along each ray */ |
| 202 |
greg |
2.13 |
const FVECT rorg0, /* first origin */ |
| 203 |
|
|
const FVECT rdir0, /* first direction (normalized) */ |
| 204 |
|
|
const FVECT rorg1, /* second origin */ |
| 205 |
|
|
const FVECT rdir1 /* second direction (normalized) */ |
| 206 |
greg |
2.8 |
) |
| 207 |
|
|
{ |
| 208 |
|
|
double dotprod = DOT(rdir0, rdir1); |
| 209 |
|
|
double denom = 1. - dotprod*dotprod; |
| 210 |
|
|
double o1o2_d1; |
| 211 |
|
|
FVECT o0o1; |
| 212 |
|
|
|
| 213 |
|
|
if (denom <= FTINY) { /* check if lines are parallel */ |
| 214 |
|
|
t[0] = t[1] = 0.0; |
| 215 |
|
|
return(0); |
| 216 |
|
|
} |
| 217 |
|
|
VSUB(o0o1, rorg0, rorg1); |
| 218 |
|
|
o1o2_d1 = DOT(o0o1, rdir1); |
| 219 |
|
|
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; |
| 220 |
|
|
t[1] = o1o2_d1 + t[0]*dotprod; |
| 221 |
|
|
return(1); |
| 222 |
|
|
} |
| 223 |
|
|
|
| 224 |
|
|
|
| 225 |
greg |
2.6 |
void |
| 226 |
greg |
2.8 |
spinvector( /* rotate vector around normal */ |
| 227 |
greg |
2.15 |
FVECT vres, /* returned vector (same magnitude as vorig) */ |
| 228 |
greg |
2.13 |
const FVECT vorig, /* original vector */ |
| 229 |
|
|
const FVECT vnorm, /* normalized vector for rotation */ |
| 230 |
greg |
2.14 |
double theta /* right-hand radians */ |
| 231 |
greg |
2.8 |
) |
| 232 |
greg |
1.5 |
{ |
| 233 |
greg |
1.6 |
double sint, cost, normprod; |
| 234 |
greg |
1.5 |
FVECT vperp; |
| 235 |
greg |
2.11 |
int i; |
| 236 |
greg |
1.5 |
|
| 237 |
|
|
if (theta == 0.0) { |
| 238 |
greg |
1.6 |
if (vres != vorig) |
| 239 |
|
|
VCOPY(vres, vorig); |
| 240 |
greg |
1.5 |
return; |
| 241 |
|
|
} |
| 242 |
greg |
1.6 |
cost = cos(theta); |
| 243 |
greg |
1.5 |
sint = sin(theta); |
| 244 |
greg |
1.6 |
normprod = DOT(vorig, vnorm)*(1.-cost); |
| 245 |
greg |
2.18 |
VCROSS(vperp, vnorm, vorig); |
| 246 |
greg |
1.5 |
for (i = 0; i < 3; i++) |
| 247 |
greg |
1.6 |
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; |
| 248 |
greg |
1.5 |
} |
| 249 |
greg |
2.15 |
|
| 250 |
|
|
double |
| 251 |
|
|
geodesic( /* rotate vector on great circle towards target */ |
| 252 |
|
|
FVECT vres, /* returned vector (same magnitude as vorig) */ |
| 253 |
|
|
const FVECT vorig, /* original vector */ |
| 254 |
|
|
const FVECT vtarg, /* vector we are rotating towards */ |
| 255 |
|
|
double t, /* amount along arc directed towards vtarg */ |
| 256 |
|
|
int meas /* distance measure (radians, absolute, relative) */ |
| 257 |
|
|
) |
| 258 |
|
|
{ |
| 259 |
|
|
FVECT normtarg; |
| 260 |
greg |
2.17 |
double volen, dotprod, sintr, cost; |
| 261 |
greg |
2.15 |
int i; |
| 262 |
|
|
|
| 263 |
greg |
2.16 |
VCOPY(normtarg, vtarg); /* in case vtarg==vres */ |
| 264 |
greg |
2.15 |
if (vres != vorig) |
| 265 |
|
|
VCOPY(vres, vorig); |
| 266 |
|
|
if (t == 0.0) |
| 267 |
|
|
return(VLEN(vres)); /* no rotation requested */ |
| 268 |
|
|
if ((volen = normalize(vres)) == 0.0) |
| 269 |
|
|
return(0.0); |
| 270 |
|
|
if (normalize(normtarg) == 0.0) |
| 271 |
|
|
return(0.0); /* target vector is zero */ |
| 272 |
|
|
dotprod = DOT(vres, normtarg); |
| 273 |
|
|
/* check for colinear */ |
| 274 |
|
|
if (dotprod >= 1.0-FTINY*FTINY) { |
| 275 |
|
|
if (meas != GEOD_REL) |
| 276 |
|
|
return(0.0); |
| 277 |
|
|
vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; |
| 278 |
|
|
return(volen); |
| 279 |
|
|
} |
| 280 |
|
|
if (dotprod <= -1.0+FTINY*FTINY) |
| 281 |
|
|
return(0.0); |
| 282 |
|
|
if (meas == GEOD_ABS) |
| 283 |
|
|
t /= volen; |
| 284 |
|
|
else if (meas == GEOD_REL) |
| 285 |
|
|
t *= acos(dotprod); |
| 286 |
|
|
cost = cos(t); |
| 287 |
greg |
2.17 |
sintr = sin(t) / sqrt(1. - dotprod*dotprod); |
| 288 |
greg |
2.15 |
for (i = 0; i < 3; i++) |
| 289 |
|
|
vres[i] = volen*( cost*vres[i] + |
| 290 |
greg |
2.17 |
sintr*(normtarg[i] - dotprod*vres[i]) ); |
| 291 |
greg |
2.15 |
|
| 292 |
|
|
return(volen); /* return vector length */ |
| 293 |
|
|
} |