| 1 | greg | 1.1 | #ifndef lint | 
| 2 | greg | 2.19 | static const char       RCSid[] = "$Id: fvect.c,v 2.18 2013/04/03 00:22:12 greg Exp $"; | 
| 3 | greg | 1.1 | #endif | 
| 4 | greg | 2.6 | /* | 
| 5 |  |  | *  fvect.c - routines for floating-point vector calculations | 
| 6 |  |  | */ | 
| 7 | greg | 1.1 |  | 
| 8 | greg | 2.7 | #include "copyright.h" | 
| 9 | greg | 1.1 |  | 
| 10 | greg | 2.19 | #define _USE_MATH_DEFINES | 
| 11 | greg | 2.2 | #include  <math.h> | 
| 12 | greg | 1.1 | #include  "fvect.h" | 
| 13 |  |  |  | 
| 14 | greg | 2.19 | double | 
| 15 |  |  | Acos(double x)                  /* insurance for touchy math library */ | 
| 16 |  |  | { | 
| 17 |  |  | if (x <= -1.+FTINY*FTINY) | 
| 18 |  |  | return(M_PI); | 
| 19 |  |  | if (x >= 1.-FTINY*FTINY) | 
| 20 |  |  | return(.0); | 
| 21 |  |  | return(acos(x)); | 
| 22 |  |  | } | 
| 23 |  |  |  | 
| 24 |  |  | double | 
| 25 |  |  | Asin(double x)                  /* insurance for touchy math library */ | 
| 26 |  |  | { | 
| 27 |  |  | if (x <= -1.+FTINY*FTINY) | 
| 28 |  |  | return(-M_PI/2.); | 
| 29 |  |  | if (x >= 1.-FTINY*FTINY) | 
| 30 |  |  | return(M_PI/2); | 
| 31 |  |  | return(asin(x)); | 
| 32 |  |  | } | 
| 33 | greg | 1.1 |  | 
| 34 |  |  | double | 
| 35 | greg | 2.8 | fdot(                           /* return the dot product of two vectors */ | 
| 36 | greg | 2.13 | const FVECT v1, | 
| 37 |  |  | const FVECT v2 | 
| 38 | greg | 2.8 | ) | 
| 39 | greg | 1.1 | { | 
| 40 |  |  | return(DOT(v1,v2)); | 
| 41 |  |  | } | 
| 42 |  |  |  | 
| 43 |  |  |  | 
| 44 |  |  | double | 
| 45 | greg | 2.8 | dist2(                          /* return square of distance between points */ | 
| 46 | greg | 2.13 | const FVECT p1, | 
| 47 |  |  | const FVECT p2 | 
| 48 | greg | 2.8 | ) | 
| 49 | greg | 1.1 | { | 
| 50 | gwlarson | 2.4 | FVECT  delta; | 
| 51 | greg | 1.1 |  | 
| 52 | greg | 2.18 | VSUB(delta, p2, p1); | 
| 53 | gwlarson | 2.5 |  | 
| 54 | greg | 1.1 | return(DOT(delta, delta)); | 
| 55 |  |  | } | 
| 56 |  |  |  | 
| 57 |  |  |  | 
| 58 |  |  | double | 
| 59 | greg | 2.8 | dist2line(                      /* return square of distance to line */ | 
| 60 | greg | 2.13 | const FVECT p,          /* the point */ | 
| 61 |  |  | const FVECT ep1, | 
| 62 |  |  | const FVECT ep2         /* points on the line */ | 
| 63 | greg | 2.8 | ) | 
| 64 | greg | 1.1 | { | 
| 65 | greg | 2.11 | double  d, d1, d2; | 
| 66 | greg | 1.1 |  | 
| 67 |  |  | d = dist2(ep1, ep2); | 
| 68 |  |  | d1 = dist2(ep1, p); | 
| 69 | gwlarson | 2.5 | d2 = d + d1 - dist2(ep2, p); | 
| 70 | greg | 1.1 |  | 
| 71 | gwlarson | 2.5 | return(d1 - 0.25*d2*d2/d); | 
| 72 | greg | 1.1 | } | 
| 73 |  |  |  | 
| 74 |  |  |  | 
| 75 |  |  | double | 
| 76 | greg | 2.8 | dist2lseg(                      /* return square of distance to line segment */ | 
| 77 | greg | 2.13 | const FVECT p,          /* the point */ | 
| 78 |  |  | const FVECT ep1, | 
| 79 |  |  | const FVECT ep2         /* the end points */ | 
| 80 | greg | 2.8 | ) | 
| 81 | greg | 1.1 | { | 
| 82 | greg | 2.11 | double  d, d1, d2; | 
| 83 | greg | 1.1 |  | 
| 84 |  |  | d = dist2(ep1, ep2); | 
| 85 |  |  | d1 = dist2(ep1, p); | 
| 86 |  |  | d2 = dist2(ep2, p); | 
| 87 |  |  |  | 
| 88 |  |  | if (d2 > d1) {                  /* check if past endpoints */ | 
| 89 |  |  | if (d2 - d1 > d) | 
| 90 |  |  | return(d1); | 
| 91 |  |  | } else { | 
| 92 |  |  | if (d1 - d2 > d) | 
| 93 |  |  | return(d2); | 
| 94 |  |  | } | 
| 95 | gwlarson | 2.5 | d2 = d + d1 - d2; | 
| 96 | greg | 1.1 |  | 
| 97 | gwlarson | 2.5 | return(d1 - 0.25*d2*d2/d);      /* distance to line */ | 
| 98 | greg | 1.1 | } | 
| 99 |  |  |  | 
| 100 |  |  |  | 
| 101 | greg | 2.6 | void | 
| 102 | greg | 2.8 | fcross(                         /* vres = v1 X v2 */ | 
| 103 | greg | 2.11 | FVECT vres, | 
| 104 | greg | 2.13 | const FVECT v1, | 
| 105 |  |  | const FVECT v2 | 
| 106 | greg | 2.8 | ) | 
| 107 | greg | 1.1 | { | 
| 108 | greg | 2.18 | VCROSS(vres, v1, v2); | 
| 109 | greg | 1.1 | } | 
| 110 |  |  |  | 
| 111 |  |  |  | 
| 112 | greg | 2.6 | void | 
| 113 | greg | 2.8 | fvsum(                          /* vres = v0 + f*v1 */ | 
| 114 | greg | 2.11 | FVECT vres, | 
| 115 | greg | 2.13 | const FVECT v0, | 
| 116 |  |  | const FVECT v1, | 
| 117 | greg | 2.11 | double f | 
| 118 | greg | 2.8 | ) | 
| 119 | greg | 1.4 | { | 
| 120 | greg | 2.18 | VSUM(vres, v0, v1, f); | 
| 121 | greg | 1.4 | } | 
| 122 |  |  |  | 
| 123 |  |  |  | 
| 124 | greg | 1.1 | double | 
| 125 | greg | 2.8 | normalize(                      /* normalize a vector, return old magnitude */ | 
| 126 | greg | 2.11 | FVECT  v | 
| 127 | greg | 2.8 | ) | 
| 128 | greg | 1.1 | { | 
| 129 | greg | 2.11 | double  len, d; | 
| 130 | greg | 1.1 |  | 
| 131 | gwlarson | 2.5 | d = DOT(v, v); | 
| 132 | greg | 1.1 |  | 
| 133 | greg | 2.10 | if (d == 0.0) | 
| 134 | greg | 1.1 | return(0.0); | 
| 135 |  |  |  | 
| 136 | greg | 2.15 | if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { | 
| 137 | gwlarson | 2.5 | len = 0.5 + 0.5*d;      /* first order approximation */ | 
| 138 | greg | 2.12 | d = 2.0 - len; | 
| 139 |  |  | } else { | 
| 140 | gwlarson | 2.5 | len = sqrt(d); | 
| 141 | greg | 2.12 | d = 1.0/len; | 
| 142 |  |  | } | 
| 143 |  |  | v[0] *= d; | 
| 144 | gwlarson | 2.5 | v[1] *= d; | 
| 145 |  |  | v[2] *= d; | 
| 146 | greg | 2.3 |  | 
| 147 | greg | 1.1 | return(len); | 
| 148 |  |  | } | 
| 149 | greg | 1.5 |  | 
| 150 |  |  |  | 
| 151 | greg | 2.8 | int | 
| 152 |  |  | closestapproach(                        /* closest approach of two rays */ | 
| 153 |  |  | RREAL t[2],             /* returned distances along each ray */ | 
| 154 | greg | 2.13 | const FVECT rorg0,              /* first origin */ | 
| 155 |  |  | const FVECT rdir0,              /* first direction (normalized) */ | 
| 156 |  |  | const FVECT rorg1,              /* second origin */ | 
| 157 |  |  | const FVECT rdir1               /* second direction (normalized) */ | 
| 158 | greg | 2.8 | ) | 
| 159 |  |  | { | 
| 160 |  |  | double  dotprod = DOT(rdir0, rdir1); | 
| 161 |  |  | double  denom = 1. - dotprod*dotprod; | 
| 162 |  |  | double  o1o2_d1; | 
| 163 |  |  | FVECT   o0o1; | 
| 164 |  |  |  | 
| 165 |  |  | if (denom <= FTINY) {           /* check if lines are parallel */ | 
| 166 |  |  | t[0] = t[1] = 0.0; | 
| 167 |  |  | return(0); | 
| 168 |  |  | } | 
| 169 |  |  | VSUB(o0o1, rorg0, rorg1); | 
| 170 |  |  | o1o2_d1 = DOT(o0o1, rdir1); | 
| 171 |  |  | t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; | 
| 172 |  |  | t[1] = o1o2_d1 + t[0]*dotprod; | 
| 173 |  |  | return(1); | 
| 174 |  |  | } | 
| 175 |  |  |  | 
| 176 |  |  |  | 
| 177 | greg | 2.6 | void | 
| 178 | greg | 2.8 | spinvector(                             /* rotate vector around normal */ | 
| 179 | greg | 2.15 | FVECT vres,             /* returned vector (same magnitude as vorig) */ | 
| 180 | greg | 2.13 | const FVECT vorig,              /* original vector */ | 
| 181 |  |  | const FVECT vnorm,              /* normalized vector for rotation */ | 
| 182 | greg | 2.14 | double theta            /* right-hand radians */ | 
| 183 | greg | 2.8 | ) | 
| 184 | greg | 1.5 | { | 
| 185 | greg | 1.6 | double  sint, cost, normprod; | 
| 186 | greg | 1.5 | FVECT  vperp; | 
| 187 | greg | 2.11 | int  i; | 
| 188 | greg | 1.5 |  | 
| 189 |  |  | if (theta == 0.0) { | 
| 190 | greg | 1.6 | if (vres != vorig) | 
| 191 |  |  | VCOPY(vres, vorig); | 
| 192 | greg | 1.5 | return; | 
| 193 |  |  | } | 
| 194 | greg | 1.6 | cost = cos(theta); | 
| 195 | greg | 1.5 | sint = sin(theta); | 
| 196 | greg | 1.6 | normprod = DOT(vorig, vnorm)*(1.-cost); | 
| 197 | greg | 2.18 | VCROSS(vperp, vnorm, vorig); | 
| 198 | greg | 1.5 | for (i = 0; i < 3; i++) | 
| 199 | greg | 1.6 | vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; | 
| 200 | greg | 1.5 | } | 
| 201 | greg | 2.15 |  | 
| 202 |  |  | double | 
| 203 |  |  | geodesic(               /* rotate vector on great circle towards target */ | 
| 204 |  |  | FVECT vres,             /* returned vector (same magnitude as vorig) */ | 
| 205 |  |  | const FVECT vorig,      /* original vector */ | 
| 206 |  |  | const FVECT vtarg,      /* vector we are rotating towards */ | 
| 207 |  |  | double t,               /* amount along arc directed towards vtarg */ | 
| 208 |  |  | int meas                /* distance measure (radians, absolute, relative) */ | 
| 209 |  |  | ) | 
| 210 |  |  | { | 
| 211 |  |  | FVECT   normtarg; | 
| 212 | greg | 2.17 | double  volen, dotprod, sintr, cost; | 
| 213 | greg | 2.15 | int     i; | 
| 214 |  |  |  | 
| 215 | greg | 2.16 | VCOPY(normtarg, vtarg);         /* in case vtarg==vres */ | 
| 216 | greg | 2.15 | if (vres != vorig) | 
| 217 |  |  | VCOPY(vres, vorig); | 
| 218 |  |  | if (t == 0.0) | 
| 219 |  |  | return(VLEN(vres));     /* no rotation requested */ | 
| 220 |  |  | if ((volen = normalize(vres)) == 0.0) | 
| 221 |  |  | return(0.0); | 
| 222 |  |  | if (normalize(normtarg) == 0.0) | 
| 223 |  |  | return(0.0);            /* target vector is zero */ | 
| 224 |  |  | dotprod = DOT(vres, normtarg); | 
| 225 |  |  | /* check for colinear */ | 
| 226 |  |  | if (dotprod >= 1.0-FTINY*FTINY) { | 
| 227 |  |  | if (meas != GEOD_REL) | 
| 228 |  |  | return(0.0); | 
| 229 |  |  | vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; | 
| 230 |  |  | return(volen); | 
| 231 |  |  | } | 
| 232 |  |  | if (dotprod <= -1.0+FTINY*FTINY) | 
| 233 |  |  | return(0.0); | 
| 234 |  |  | if (meas == GEOD_ABS) | 
| 235 |  |  | t /= volen; | 
| 236 |  |  | else if (meas == GEOD_REL) | 
| 237 |  |  | t *= acos(dotprod); | 
| 238 |  |  | cost = cos(t); | 
| 239 | greg | 2.17 | sintr = sin(t) / sqrt(1. - dotprod*dotprod); | 
| 240 | greg | 2.15 | for (i = 0; i < 3; i++) | 
| 241 |  |  | vres[i] = volen*( cost*vres[i] + | 
| 242 | greg | 2.17 | sintr*(normtarg[i] - dotprod*vres[i]) ); | 
| 243 | greg | 2.15 |  | 
| 244 |  |  | return(volen);                  /* return vector length */ | 
| 245 |  |  | } |