| 1 | /* Copyright (c) 1986 Regents of the University of California */ | 
| 2 |  | 
| 3 | #ifndef lint | 
| 4 | static char SCCSid[] = "$SunId$ LBL"; | 
| 5 | #endif | 
| 6 |  | 
| 7 | /* | 
| 8 | *  face.c - routines dealing with polygonal faces. | 
| 9 | * | 
| 10 | *     8/30/85 | 
| 11 | */ | 
| 12 |  | 
| 13 | #include  "standard.h" | 
| 14 |  | 
| 15 | #include  "object.h" | 
| 16 |  | 
| 17 | #include  "face.h" | 
| 18 |  | 
| 19 | /* | 
| 20 | *      A face is given as a list of 3D vertices.  The normal | 
| 21 | *  direction and therefore the surface orientation is determined | 
| 22 | *  by the ordering of the vertices.  Looking in the direction opposite | 
| 23 | *  the normal (at the front of the face), the vertices will be | 
| 24 | *  listed in counter-clockwise order. | 
| 25 | *      There is no checking done to insure that the edges do not cross | 
| 26 | *  one another.  This was considered too expensive and should be unnecessary. | 
| 27 | *  The last vertex is automatically connected to the first. | 
| 28 | */ | 
| 29 |  | 
| 30 | #define  VERTEPS        1e-4            /* allowed vertex error */ | 
| 31 |  | 
| 32 |  | 
| 33 | FACE * | 
| 34 | getface(o)                      /* get arguments for a face */ | 
| 35 | OBJREC  *o; | 
| 36 | { | 
| 37 | double  fabs(); | 
| 38 | double  d1; | 
| 39 | int  badvert; | 
| 40 | FVECT  v1, v2, v3; | 
| 41 | register FACE  *f; | 
| 42 | register int  i; | 
| 43 |  | 
| 44 | if ((f = (FACE *)o->os) != NULL) | 
| 45 | return(f);                      /* already done */ | 
| 46 |  | 
| 47 | f = (FACE *)malloc(sizeof(FACE)); | 
| 48 | if (f == NULL) | 
| 49 | error(SYSTEM, "out of memory in makeface"); | 
| 50 |  | 
| 51 | if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) | 
| 52 | objerror(o, USER, "bad # arguments"); | 
| 53 |  | 
| 54 | f->va = o->oargs.farg; | 
| 55 | f->nv = o->oargs.nfargs / 3; | 
| 56 | /* compute area and normal */ | 
| 57 | f->norm[0] = f->norm[1] = f->norm[2] = 0.0; | 
| 58 | v1[0] = v1[1] = v1[2] = 0.0; | 
| 59 | for (i = 1; i < f->nv; i++) { | 
| 60 | v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; | 
| 61 | v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; | 
| 62 | v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; | 
| 63 | fcross(v3, v1, v2); | 
| 64 | f->norm[0] += v3[0]; | 
| 65 | f->norm[1] += v3[1]; | 
| 66 | f->norm[2] += v3[2]; | 
| 67 | VCOPY(v1, v2); | 
| 68 | } | 
| 69 | f->area = normalize(f->norm); | 
| 70 | if (f->area == 0.0) { | 
| 71 | objerror(o, WARNING, "zero area");      /* used to be fatal */ | 
| 72 | f->offset = 0.0; | 
| 73 | f->ax = 0; | 
| 74 | return(f); | 
| 75 | } | 
| 76 | f->area *= 0.5; | 
| 77 | /* compute offset */ | 
| 78 | badvert = 0; | 
| 79 | f->offset = DOT(f->norm, VERTEX(f,0)); | 
| 80 | for (i = 1; i < f->nv; i++) { | 
| 81 | d1 = DOT(f->norm, VERTEX(f,i)); | 
| 82 | badvert += fabs(d1 - f->offset/i) > VERTEPS; | 
| 83 | f->offset += d1; | 
| 84 | } | 
| 85 | f->offset /= f->nv; | 
| 86 | if (badvert) | 
| 87 | objerror(o, WARNING, "non-planar vertex"); | 
| 88 | /* find axis */ | 
| 89 | f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; | 
| 90 | if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) | 
| 91 | f->ax = 2; | 
| 92 |  | 
| 93 | o->os = (char *)f;                      /* save face */ | 
| 94 | return(f); | 
| 95 | } | 
| 96 |  | 
| 97 |  | 
| 98 | freeface(o)                     /* free memory associated with face */ | 
| 99 | OBJREC  *o; | 
| 100 | { | 
| 101 | free(o->os); | 
| 102 | o->os = NULL; | 
| 103 | } | 
| 104 |  | 
| 105 |  | 
| 106 | inface(p, f)                    /* determine if point is in face */ | 
| 107 | FVECT  p; | 
| 108 | FACE  *f; | 
| 109 | { | 
| 110 | int  ncross, n; | 
| 111 | double  x, y; | 
| 112 | register int  xi, yi; | 
| 113 | register double  *p0, *p1; | 
| 114 |  | 
| 115 | xi = (f->ax+1)%3; | 
| 116 | yi = (f->ax+2)%3; | 
| 117 | x = p[xi]; | 
| 118 | y = p[yi]; | 
| 119 | n = f->nv; | 
| 120 | p0 = f->va + 3*(n-1);           /* connect last to first */ | 
| 121 | p1 = f->va; | 
| 122 | ncross = 0; | 
| 123 | /* positive x axis cross test */ | 
| 124 | while (n--) { | 
| 125 | if ((p0[yi] > y) ^ (p1[yi] > y)) | 
| 126 | if (p0[xi] > x && p1[xi] > x) | 
| 127 | ncross++; | 
| 128 | else if (p0[xi] > x || p1[xi] > x) | 
| 129 | ncross += (p1[yi] > p0[yi]) ^ | 
| 130 | ((p0[yi]-y)*(p1[xi]-x) > | 
| 131 | (p0[xi]-x)*(p1[yi]-y)); | 
| 132 | p0 = p1; | 
| 133 | p1 += 3; | 
| 134 | } | 
| 135 | return(ncross & 01); | 
| 136 | } |