| 1 | greg | 1.1 | #ifndef lint | 
| 2 | greg | 2.8 | static const char RCSid[] = "$Id$"; | 
| 3 | greg | 1.1 | #endif | 
| 4 |  |  | /* | 
| 5 |  |  | *  face.c - routines dealing with polygonal faces. | 
| 6 | greg | 2.6 | */ | 
| 7 |  |  |  | 
| 8 | greg | 2.7 | #include "copyright.h" | 
| 9 | greg | 1.1 |  | 
| 10 |  |  | #include  "standard.h" | 
| 11 |  |  |  | 
| 12 |  |  | #include  "object.h" | 
| 13 |  |  |  | 
| 14 |  |  | #include  "face.h" | 
| 15 |  |  |  | 
| 16 |  |  | /* | 
| 17 |  |  | *      A face is given as a list of 3D vertices.  The normal | 
| 18 |  |  | *  direction and therefore the surface orientation is determined | 
| 19 |  |  | *  by the ordering of the vertices.  Looking in the direction opposite | 
| 20 |  |  | *  the normal (at the front of the face), the vertices will be | 
| 21 |  |  | *  listed in counter-clockwise order. | 
| 22 |  |  | *      There is no checking done to insure that the edges do not cross | 
| 23 |  |  | *  one another.  This was considered too expensive and should be unnecessary. | 
| 24 |  |  | *  The last vertex is automatically connected to the first. | 
| 25 |  |  | */ | 
| 26 |  |  |  | 
| 27 | greg | 2.3 | #ifdef  SMLFLT | 
| 28 |  |  | #define  VERTEPS        1e-2            /* allowed vertex error */ | 
| 29 |  |  | #else | 
| 30 | greg | 1.1 | #define  VERTEPS        1e-4            /* allowed vertex error */ | 
| 31 | greg | 2.3 | #endif | 
| 32 | greg | 1.1 |  | 
| 33 |  |  |  | 
| 34 |  |  | FACE * | 
| 35 |  |  | getface(o)                      /* get arguments for a face */ | 
| 36 |  |  | OBJREC  *o; | 
| 37 |  |  | { | 
| 38 |  |  | double  d1; | 
| 39 |  |  | int  badvert; | 
| 40 |  |  | FVECT  v1, v2, v3; | 
| 41 |  |  | register FACE  *f; | 
| 42 |  |  | register int  i; | 
| 43 |  |  |  | 
| 44 |  |  | if ((f = (FACE *)o->os) != NULL) | 
| 45 |  |  | return(f);                      /* already done */ | 
| 46 |  |  |  | 
| 47 |  |  | f = (FACE *)malloc(sizeof(FACE)); | 
| 48 |  |  | if (f == NULL) | 
| 49 |  |  | error(SYSTEM, "out of memory in makeface"); | 
| 50 |  |  |  | 
| 51 |  |  | if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) | 
| 52 |  |  | objerror(o, USER, "bad # arguments"); | 
| 53 |  |  |  | 
| 54 | greg | 1.3 | o->os = (char *)f;                      /* save face */ | 
| 55 |  |  |  | 
| 56 | greg | 1.1 | f->va = o->oargs.farg; | 
| 57 |  |  | f->nv = o->oargs.nfargs / 3; | 
| 58 | greg | 2.4 | /* check for last==first */ | 
| 59 |  |  | if (dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) | 
| 60 |  |  | f->nv--; | 
| 61 | greg | 1.1 | /* compute area and normal */ | 
| 62 |  |  | f->norm[0] = f->norm[1] = f->norm[2] = 0.0; | 
| 63 | greg | 2.5 | v1[0] = VERTEX(f,1)[0] - VERTEX(f,0)[0]; | 
| 64 |  |  | v1[1] = VERTEX(f,1)[1] - VERTEX(f,0)[1]; | 
| 65 |  |  | v1[2] = VERTEX(f,1)[2] - VERTEX(f,0)[2]; | 
| 66 |  |  | for (i = 2; i < f->nv; i++) { | 
| 67 | greg | 1.1 | v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; | 
| 68 |  |  | v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; | 
| 69 |  |  | v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; | 
| 70 |  |  | fcross(v3, v1, v2); | 
| 71 |  |  | f->norm[0] += v3[0]; | 
| 72 |  |  | f->norm[1] += v3[1]; | 
| 73 |  |  | f->norm[2] += v3[2]; | 
| 74 |  |  | VCOPY(v1, v2); | 
| 75 |  |  | } | 
| 76 |  |  | f->area = normalize(f->norm); | 
| 77 |  |  | if (f->area == 0.0) { | 
| 78 |  |  | objerror(o, WARNING, "zero area");      /* used to be fatal */ | 
| 79 | greg | 1.2 | f->offset = 0.0; | 
| 80 | greg | 1.1 | f->ax = 0; | 
| 81 |  |  | return(f); | 
| 82 |  |  | } | 
| 83 |  |  | f->area *= 0.5; | 
| 84 | greg | 1.2 | /* compute offset */ | 
| 85 | greg | 1.1 | badvert = 0; | 
| 86 | greg | 1.2 | f->offset = DOT(f->norm, VERTEX(f,0)); | 
| 87 | greg | 1.1 | for (i = 1; i < f->nv; i++) { | 
| 88 |  |  | d1 = DOT(f->norm, VERTEX(f,i)); | 
| 89 | greg | 1.2 | badvert += fabs(d1 - f->offset/i) > VERTEPS; | 
| 90 |  |  | f->offset += d1; | 
| 91 | greg | 1.1 | } | 
| 92 | greg | 1.5 | f->offset /= (double)f->nv; | 
| 93 | greg | 1.1 | if (badvert) | 
| 94 |  |  | objerror(o, WARNING, "non-planar vertex"); | 
| 95 |  |  | /* find axis */ | 
| 96 |  |  | f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; | 
| 97 |  |  | if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) | 
| 98 |  |  | f->ax = 2; | 
| 99 |  |  |  | 
| 100 |  |  | return(f); | 
| 101 |  |  | } | 
| 102 |  |  |  | 
| 103 |  |  |  | 
| 104 | greg | 2.6 | void | 
| 105 | greg | 1.1 | freeface(o)                     /* free memory associated with face */ | 
| 106 |  |  | OBJREC  *o; | 
| 107 |  |  | { | 
| 108 | greg | 1.4 | if (o->os == NULL) | 
| 109 |  |  | return; | 
| 110 | greg | 1.1 | free(o->os); | 
| 111 |  |  | o->os = NULL; | 
| 112 |  |  | } | 
| 113 |  |  |  | 
| 114 |  |  |  | 
| 115 | greg | 2.6 | int | 
| 116 | greg | 1.1 | inface(p, f)                    /* determine if point is in face */ | 
| 117 |  |  | FVECT  p; | 
| 118 |  |  | FACE  *f; | 
| 119 |  |  | { | 
| 120 |  |  | int  ncross, n; | 
| 121 |  |  | double  x, y; | 
| 122 | greg | 2.8 | int  tst; | 
| 123 | greg | 1.1 | register int  xi, yi; | 
| 124 | greg | 1.6 | register FLOAT  *p0, *p1; | 
| 125 | greg | 1.1 |  | 
| 126 |  |  | xi = (f->ax+1)%3; | 
| 127 |  |  | yi = (f->ax+2)%3; | 
| 128 |  |  | x = p[xi]; | 
| 129 |  |  | y = p[yi]; | 
| 130 |  |  | n = f->nv; | 
| 131 |  |  | p0 = f->va + 3*(n-1);           /* connect last to first */ | 
| 132 |  |  | p1 = f->va; | 
| 133 |  |  | ncross = 0; | 
| 134 |  |  | /* positive x axis cross test */ | 
| 135 |  |  | while (n--) { | 
| 136 | greg | 2.8 | if ((p0[yi] > y) ^ (p1[yi] > y)) { | 
| 137 |  |  | tst = (p0[xi] > x) + (p1[xi] > x); | 
| 138 |  |  | if (tst == 2) | 
| 139 | greg | 1.1 | ncross++; | 
| 140 | greg | 2.8 | else if (tst) | 
| 141 | greg | 1.1 | ncross += (p1[yi] > p0[yi]) ^ | 
| 142 |  |  | ((p0[yi]-y)*(p1[xi]-x) > | 
| 143 |  |  | (p0[xi]-x)*(p1[yi]-y)); | 
| 144 | greg | 2.8 | } | 
| 145 | greg | 1.1 | p0 = p1; | 
| 146 |  |  | p1 += 3; | 
| 147 |  |  | } | 
| 148 |  |  | return(ncross & 01); | 
| 149 |  |  | } |