| 1 |
greg |
1.1 |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint |
| 4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
|
|
#endif |
| 6 |
|
|
|
| 7 |
|
|
/* |
| 8 |
|
|
* face.c - routines dealing with polygonal faces. |
| 9 |
|
|
* |
| 10 |
|
|
* 8/30/85 |
| 11 |
|
|
*/ |
| 12 |
|
|
|
| 13 |
|
|
#include "standard.h" |
| 14 |
|
|
|
| 15 |
|
|
#include "object.h" |
| 16 |
|
|
|
| 17 |
|
|
#include "face.h" |
| 18 |
|
|
|
| 19 |
|
|
/* |
| 20 |
|
|
* A face is given as a list of 3D vertices. The normal |
| 21 |
|
|
* direction and therefore the surface orientation is determined |
| 22 |
|
|
* by the ordering of the vertices. Looking in the direction opposite |
| 23 |
|
|
* the normal (at the front of the face), the vertices will be |
| 24 |
|
|
* listed in counter-clockwise order. |
| 25 |
|
|
* There is no checking done to insure that the edges do not cross |
| 26 |
|
|
* one another. This was considered too expensive and should be unnecessary. |
| 27 |
|
|
* The last vertex is automatically connected to the first. |
| 28 |
|
|
*/ |
| 29 |
|
|
|
| 30 |
|
|
#define VERTEPS 1e-4 /* allowed vertex error */ |
| 31 |
|
|
|
| 32 |
|
|
|
| 33 |
|
|
FACE * |
| 34 |
|
|
getface(o) /* get arguments for a face */ |
| 35 |
|
|
OBJREC *o; |
| 36 |
|
|
{ |
| 37 |
|
|
double fabs(); |
| 38 |
|
|
double d1; |
| 39 |
|
|
int badvert; |
| 40 |
|
|
FVECT v1, v2, v3; |
| 41 |
|
|
register FACE *f; |
| 42 |
|
|
register int i; |
| 43 |
|
|
|
| 44 |
|
|
if ((f = (FACE *)o->os) != NULL) |
| 45 |
|
|
return(f); /* already done */ |
| 46 |
|
|
|
| 47 |
|
|
f = (FACE *)malloc(sizeof(FACE)); |
| 48 |
|
|
if (f == NULL) |
| 49 |
|
|
error(SYSTEM, "out of memory in makeface"); |
| 50 |
|
|
|
| 51 |
|
|
if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) |
| 52 |
|
|
objerror(o, USER, "bad # arguments"); |
| 53 |
|
|
|
| 54 |
|
|
f->va = o->oargs.farg; |
| 55 |
|
|
f->nv = o->oargs.nfargs / 3; |
| 56 |
|
|
/* compute area and normal */ |
| 57 |
|
|
f->norm[0] = f->norm[1] = f->norm[2] = 0.0; |
| 58 |
|
|
v1[0] = v1[1] = v1[2] = 0.0; |
| 59 |
|
|
for (i = 1; i < f->nv; i++) { |
| 60 |
|
|
v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; |
| 61 |
|
|
v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; |
| 62 |
|
|
v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; |
| 63 |
|
|
fcross(v3, v1, v2); |
| 64 |
|
|
f->norm[0] += v3[0]; |
| 65 |
|
|
f->norm[1] += v3[1]; |
| 66 |
|
|
f->norm[2] += v3[2]; |
| 67 |
|
|
VCOPY(v1, v2); |
| 68 |
|
|
} |
| 69 |
|
|
f->area = normalize(f->norm); |
| 70 |
|
|
if (f->area == 0.0) { |
| 71 |
|
|
objerror(o, WARNING, "zero area"); /* used to be fatal */ |
| 72 |
greg |
1.2 |
f->offset = 0.0; |
| 73 |
greg |
1.1 |
f->ax = 0; |
| 74 |
|
|
return(f); |
| 75 |
|
|
} |
| 76 |
|
|
f->area *= 0.5; |
| 77 |
greg |
1.2 |
/* compute offset */ |
| 78 |
greg |
1.1 |
badvert = 0; |
| 79 |
greg |
1.2 |
f->offset = DOT(f->norm, VERTEX(f,0)); |
| 80 |
greg |
1.1 |
for (i = 1; i < f->nv; i++) { |
| 81 |
|
|
d1 = DOT(f->norm, VERTEX(f,i)); |
| 82 |
greg |
1.2 |
badvert += fabs(d1 - f->offset/i) > VERTEPS; |
| 83 |
|
|
f->offset += d1; |
| 84 |
greg |
1.1 |
} |
| 85 |
greg |
1.2 |
f->offset /= f->nv; |
| 86 |
greg |
1.1 |
if (badvert) |
| 87 |
|
|
objerror(o, WARNING, "non-planar vertex"); |
| 88 |
|
|
/* find axis */ |
| 89 |
|
|
f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; |
| 90 |
|
|
if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) |
| 91 |
|
|
f->ax = 2; |
| 92 |
|
|
|
| 93 |
greg |
1.2 |
o->os = (char *)f; /* save face */ |
| 94 |
greg |
1.1 |
return(f); |
| 95 |
|
|
} |
| 96 |
|
|
|
| 97 |
|
|
|
| 98 |
|
|
freeface(o) /* free memory associated with face */ |
| 99 |
|
|
OBJREC *o; |
| 100 |
|
|
{ |
| 101 |
|
|
free(o->os); |
| 102 |
|
|
o->os = NULL; |
| 103 |
|
|
} |
| 104 |
|
|
|
| 105 |
|
|
|
| 106 |
|
|
inface(p, f) /* determine if point is in face */ |
| 107 |
|
|
FVECT p; |
| 108 |
|
|
FACE *f; |
| 109 |
|
|
{ |
| 110 |
|
|
int ncross, n; |
| 111 |
|
|
double x, y; |
| 112 |
|
|
register int xi, yi; |
| 113 |
|
|
register double *p0, *p1; |
| 114 |
|
|
|
| 115 |
|
|
xi = (f->ax+1)%3; |
| 116 |
|
|
yi = (f->ax+2)%3; |
| 117 |
|
|
x = p[xi]; |
| 118 |
|
|
y = p[yi]; |
| 119 |
|
|
n = f->nv; |
| 120 |
|
|
p0 = f->va + 3*(n-1); /* connect last to first */ |
| 121 |
|
|
p1 = f->va; |
| 122 |
|
|
ncross = 0; |
| 123 |
|
|
/* positive x axis cross test */ |
| 124 |
|
|
while (n--) { |
| 125 |
|
|
if ((p0[yi] > y) ^ (p1[yi] > y)) |
| 126 |
|
|
if (p0[xi] > x && p1[xi] > x) |
| 127 |
|
|
ncross++; |
| 128 |
|
|
else if (p0[xi] > x || p1[xi] > x) |
| 129 |
|
|
ncross += (p1[yi] > p0[yi]) ^ |
| 130 |
|
|
((p0[yi]-y)*(p1[xi]-x) > |
| 131 |
|
|
(p0[xi]-x)*(p1[yi]-y)); |
| 132 |
|
|
p0 = p1; |
| 133 |
|
|
p1 += 3; |
| 134 |
|
|
} |
| 135 |
|
|
return(ncross & 01); |
| 136 |
|
|
} |