| 1 | greg | 1.3 | /* Copyright (c) 1991 Regents of the University of California */ | 
| 2 | greg | 1.1 |  | 
| 3 |  |  | #ifndef lint | 
| 4 |  |  | static char SCCSid[] = "$SunId$ LBL"; | 
| 5 |  |  | #endif | 
| 6 |  |  |  | 
| 7 |  |  | /* | 
| 8 |  |  | *  cone.c - routines for making cones | 
| 9 |  |  | * | 
| 10 |  |  | *     2/12/86 | 
| 11 |  |  | */ | 
| 12 |  |  |  | 
| 13 |  |  | #include  "standard.h" | 
| 14 |  |  |  | 
| 15 |  |  | #include  "object.h" | 
| 16 |  |  |  | 
| 17 |  |  | #include  "otypes.h" | 
| 18 |  |  |  | 
| 19 |  |  | #include  "cone.h" | 
| 20 |  |  |  | 
| 21 |  |  | /* | 
| 22 |  |  | *     In general, a cone may be any one of a cone, a cylinder, a ring, | 
| 23 |  |  | *  a cup (inverted cone), or a tube (inverted cylinder). | 
| 24 |  |  | *     Most cones are specified with a starting point and radius and | 
| 25 |  |  | *  an ending point and radius.  In the cases of a cylinder or tube, | 
| 26 |  |  | *  only one radius is needed.  In the case of a ring, a normal direction | 
| 27 |  |  | *  is specified instead of a second endpoint. | 
| 28 |  |  | * | 
| 29 |  |  | *      mtype (cone|cup) name | 
| 30 |  |  | *      0 | 
| 31 |  |  | *      0 | 
| 32 |  |  | *      8 P0x P0y P0z P1x P1y P1z R0 R1 | 
| 33 |  |  | * | 
| 34 |  |  | *      mtype (cylinder|tube) name | 
| 35 |  |  | *      0 | 
| 36 |  |  | *      0 | 
| 37 |  |  | *      7 P0x P0y P0z P1x P1y P1z R | 
| 38 |  |  | * | 
| 39 |  |  | *      mtype ring name | 
| 40 |  |  | *      0 | 
| 41 |  |  | *      0 | 
| 42 |  |  | *      8 Px Py Pz Nx Ny Nz R0 R1 | 
| 43 |  |  | */ | 
| 44 |  |  |  | 
| 45 |  |  |  | 
| 46 |  |  | CONE * | 
| 47 |  |  | getcone(o, getxf)                       /* get cone structure */ | 
| 48 |  |  | register OBJREC  *o; | 
| 49 |  |  | int  getxf; | 
| 50 |  |  | { | 
| 51 |  |  | double  fabs(), sqrt(); | 
| 52 |  |  | register CONE  *co; | 
| 53 |  |  |  | 
| 54 |  |  | if ((co = (CONE *)o->os) == NULL) { | 
| 55 |  |  |  | 
| 56 |  |  | co = (CONE *)malloc(sizeof(CONE)); | 
| 57 |  |  | if (co == NULL) | 
| 58 |  |  | error(SYSTEM, "out of memory in makecone"); | 
| 59 |  |  |  | 
| 60 |  |  | co->ca = o->oargs.farg; | 
| 61 |  |  | /* get radii */ | 
| 62 |  |  | if (o->otype == OBJ_CYLINDER || o->otype == OBJ_TUBE) { | 
| 63 |  |  | if (o->oargs.nfargs != 7) | 
| 64 |  |  | goto argcerr; | 
| 65 |  |  | if (co->ca[6] <= FTINY) | 
| 66 |  |  | goto raderr; | 
| 67 |  |  | co->r0 = co->r1 = 6; | 
| 68 |  |  | } else { | 
| 69 |  |  | if (o->oargs.nfargs != 8) | 
| 70 |  |  | goto argcerr; | 
| 71 | greg | 1.3 | if (co->ca[6] < -FTINY || co->ca[7] < -FTINY) | 
| 72 | greg | 1.1 | goto raderr; | 
| 73 | greg | 1.3 | if (co->ca[6] < 0.0) co->ca[6] = 0.0; | 
| 74 |  |  | if (co->ca[7] < 0.0) co->ca[7] = 0.0; | 
| 75 | greg | 1.1 | if (fabs(co->ca[7] - co->ca[6]) <= FTINY) | 
| 76 |  |  | goto raderr; | 
| 77 |  |  | co->r0 = 6; | 
| 78 |  |  | co->r1 = 7; | 
| 79 |  |  | } | 
| 80 |  |  | /* get axis orientation */ | 
| 81 |  |  | co->p0 = 0; | 
| 82 |  |  | if (o->otype == OBJ_RING) { | 
| 83 |  |  | if (co->ca[6] > co->ca[7]) {    /* make r0 smaller */ | 
| 84 |  |  | co->r0 = 7; | 
| 85 |  |  | co->r1 = 6; | 
| 86 |  |  | } | 
| 87 |  |  | co->p1 = 0; | 
| 88 |  |  | VCOPY(co->ad, o->oargs.farg+3); | 
| 89 |  |  | } else { | 
| 90 |  |  | co->p1 = 3; | 
| 91 |  |  | co->ad[0] = co->ca[3] - co->ca[0]; | 
| 92 |  |  | co->ad[1] = co->ca[4] - co->ca[1]; | 
| 93 |  |  | co->ad[2] = co->ca[5] - co->ca[2]; | 
| 94 |  |  | } | 
| 95 |  |  | co->al = normalize(co->ad); | 
| 96 |  |  | if (co->al == 0.0) | 
| 97 |  |  | objerror(o, USER, "zero orientation"); | 
| 98 |  |  | /* compute axis and side lengths */ | 
| 99 |  |  | if (o->otype == OBJ_RING) { | 
| 100 |  |  | co->al = 0.0; | 
| 101 |  |  | co->sl = co->ca[co->r1] - co->ca[co->r0]; | 
| 102 |  |  | } else if (o->otype == OBJ_CONE || o->otype == OBJ_CUP) { | 
| 103 |  |  | co->sl = co->ca[7] - co->ca[6]; | 
| 104 |  |  | co->sl = sqrt(co->sl*co->sl + co->al*co->al); | 
| 105 |  |  | } else { /* OBJ_CYLINDER || OBJ_TUBE */ | 
| 106 |  |  | co->sl = co->al; | 
| 107 |  |  | } | 
| 108 |  |  | co->tm = NULL; | 
| 109 | greg | 1.2 | o->os = (char *)co; | 
| 110 | greg | 1.1 | } | 
| 111 |  |  | if (getxf && co->tm == NULL) | 
| 112 |  |  | conexform(co); | 
| 113 |  |  | return(co); | 
| 114 |  |  |  | 
| 115 |  |  | argcerr: | 
| 116 |  |  | objerror(o, USER, "bad # arguments"); | 
| 117 |  |  | raderr: | 
| 118 |  |  | objerror(o, USER, "illegal radii"); | 
| 119 |  |  | } | 
| 120 |  |  |  | 
| 121 |  |  |  | 
| 122 |  |  | freecone(o)                     /* free memory associated with cone */ | 
| 123 |  |  | OBJREC  *o; | 
| 124 |  |  | { | 
| 125 |  |  | register CONE  *co = (CONE *)o->os; | 
| 126 |  |  |  | 
| 127 |  |  | if (co->tm != NULL) | 
| 128 |  |  | free((char *)co->tm); | 
| 129 |  |  | free(o->os); | 
| 130 |  |  | o->os = NULL; | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 |  |  |  | 
| 134 |  |  | conexform(co)                   /* get cone transformation matrix */ | 
| 135 |  |  | register CONE  *co; | 
| 136 |  |  | { | 
| 137 |  |  | double  sqrt(), fabs(); | 
| 138 |  |  | double  m4[4][4]; | 
| 139 |  |  | register double  d; | 
| 140 |  |  | register int  i; | 
| 141 |  |  |  | 
| 142 |  |  | co->tm = (double (*)[4])malloc(sizeof(m4)); | 
| 143 |  |  | if (co->tm == NULL) | 
| 144 |  |  | error(SYSTEM, "out of memory in conexform"); | 
| 145 |  |  |  | 
| 146 |  |  | /* translate to origin */ | 
| 147 |  |  | setident4(co->tm); | 
| 148 |  |  | if (co->r0 == co->r1) | 
| 149 |  |  | d = 0.0; | 
| 150 |  |  | else | 
| 151 |  |  | d = co->ca[co->r0] / (co->ca[co->r1] - co->ca[co->r0]); | 
| 152 |  |  | for (i = 0; i < 3; i++) | 
| 153 |  |  | co->tm[3][i] = d*(co->ca[co->p1+i] - co->ca[co->p0+i]) | 
| 154 |  |  | - co->ca[co->p0+i]; | 
| 155 |  |  |  | 
| 156 |  |  | /* rotate to positive z-axis */ | 
| 157 |  |  | setident4(m4); | 
| 158 |  |  | d = co->ad[1]*co->ad[1] + co->ad[2]*co->ad[2]; | 
| 159 |  |  | if (d <= FTINY*FTINY) { | 
| 160 |  |  | m4[0][0] = 0.0; | 
| 161 |  |  | m4[0][2] = co->ad[0]; | 
| 162 |  |  | m4[2][0] = -co->ad[0]; | 
| 163 |  |  | m4[2][2] = 0.0; | 
| 164 |  |  | } else { | 
| 165 |  |  | d = sqrt(d); | 
| 166 |  |  | m4[0][0] = d; | 
| 167 |  |  | m4[1][0] = -co->ad[0]*co->ad[1]/d; | 
| 168 |  |  | m4[2][0] = -co->ad[0]*co->ad[2]/d; | 
| 169 |  |  | m4[1][1] = co->ad[2]/d; | 
| 170 |  |  | m4[2][1] = -co->ad[1]/d; | 
| 171 |  |  | m4[0][2] = co->ad[0]; | 
| 172 |  |  | m4[1][2] = co->ad[1]; | 
| 173 |  |  | m4[2][2] = co->ad[2]; | 
| 174 |  |  | } | 
| 175 |  |  | multmat4(co->tm, co->tm, m4); | 
| 176 |  |  |  | 
| 177 |  |  | /* scale z-axis */ | 
| 178 |  |  | setident4(m4); | 
| 179 |  |  | if (co->p0 != co->p1 && co->r0 != co->r1) { | 
| 180 |  |  | d = fabs(co->ca[co->r1] - co->ca[co->r0]); | 
| 181 |  |  | m4[2][2] = d/co->al; | 
| 182 |  |  | } | 
| 183 |  |  | multmat4(co->tm, co->tm, m4); | 
| 184 |  |  | } |