| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id: bsdf_m.c,v 3.37 2018/01/05 21:00:24 greg Exp $"; |
| 3 |
#endif |
| 4 |
/* |
| 5 |
* bsdf_m.c |
| 6 |
* |
| 7 |
* Definitions supporting BSDF matrices |
| 8 |
* |
| 9 |
* Created by Greg Ward on 2/2/11. |
| 10 |
* Copyright 2011 Anyhere Software. All rights reserved. |
| 11 |
* |
| 12 |
*/ |
| 13 |
|
| 14 |
#define _USE_MATH_DEFINES |
| 15 |
#include "rtio.h" |
| 16 |
#include <math.h> |
| 17 |
#include <ctype.h> |
| 18 |
#include "ezxml.h" |
| 19 |
#include "bsdf.h" |
| 20 |
#include "bsdf_m.h" |
| 21 |
|
| 22 |
/* Function return codes */ |
| 23 |
#define RC_GOOD 1 |
| 24 |
#define RC_FAIL 0 |
| 25 |
#define RC_FORMERR (-1) |
| 26 |
#define RC_DATERR (-2) |
| 27 |
#define RC_UNSUPP (-3) |
| 28 |
#define RC_INTERR (-4) |
| 29 |
#define RC_MEMERR (-5) |
| 30 |
|
| 31 |
ANGLE_BASIS abase_list[MAXABASES] = { |
| 32 |
{ |
| 33 |
"LBNL/Klems Full", 145, |
| 34 |
{ {0., 1}, |
| 35 |
{5., 8}, |
| 36 |
{15., 16}, |
| 37 |
{25., 20}, |
| 38 |
{35., 24}, |
| 39 |
{45., 24}, |
| 40 |
{55., 24}, |
| 41 |
{65., 16}, |
| 42 |
{75., 12}, |
| 43 |
{90., 0} } |
| 44 |
}, { |
| 45 |
"LBNL/Klems Half", 73, |
| 46 |
{ {0., 1}, |
| 47 |
{6.5, 8}, |
| 48 |
{19.5, 12}, |
| 49 |
{32.5, 16}, |
| 50 |
{46.5, 20}, |
| 51 |
{61.5, 12}, |
| 52 |
{76.5, 4}, |
| 53 |
{90., 0} } |
| 54 |
}, { |
| 55 |
"LBNL/Klems Quarter", 41, |
| 56 |
{ {0., 1}, |
| 57 |
{9., 8}, |
| 58 |
{27., 12}, |
| 59 |
{46., 12}, |
| 60 |
{66., 8}, |
| 61 |
{90., 0} } |
| 62 |
} |
| 63 |
}; |
| 64 |
|
| 65 |
int nabases = 3; /* current number of defined bases */ |
| 66 |
|
| 67 |
C_COLOR mtx_RGB_prim[3]; /* our RGB primaries */ |
| 68 |
float mtx_RGB_coef[3]; /* corresponding Y coefficients */ |
| 69 |
|
| 70 |
enum {mtx_Y, mtx_X, mtx_Z}; /* matrix components (mtx_Y==0) */ |
| 71 |
|
| 72 |
/* check if two real values are near enough to equal */ |
| 73 |
static int |
| 74 |
fequal(double a, double b) |
| 75 |
{ |
| 76 |
if (b != 0) |
| 77 |
a = a/b - 1.; |
| 78 |
return (a <= 1e-6) & (a >= -1e-6); |
| 79 |
} |
| 80 |
|
| 81 |
/* convert error to standard BSDF code */ |
| 82 |
static SDError |
| 83 |
convert_errcode(int ec) |
| 84 |
{ |
| 85 |
switch (ec) { |
| 86 |
case RC_GOOD: |
| 87 |
return SDEnone; |
| 88 |
case RC_FORMERR: |
| 89 |
return SDEformat; |
| 90 |
case RC_DATERR: |
| 91 |
return SDEdata; |
| 92 |
case RC_UNSUPP: |
| 93 |
return SDEsupport; |
| 94 |
case RC_INTERR: |
| 95 |
return SDEinternal; |
| 96 |
case RC_MEMERR: |
| 97 |
return SDEmemory; |
| 98 |
} |
| 99 |
return SDEunknown; |
| 100 |
} |
| 101 |
|
| 102 |
/* allocate a BSDF matrix of the given size */ |
| 103 |
static SDMat * |
| 104 |
SDnewMatrix(int ni, int no) |
| 105 |
{ |
| 106 |
SDMat *sm; |
| 107 |
|
| 108 |
if ((ni <= 0) | (no <= 0)) { |
| 109 |
strcpy(SDerrorDetail, "Empty BSDF matrix request"); |
| 110 |
return NULL; |
| 111 |
} |
| 112 |
sm = (SDMat *)malloc(sizeof(SDMat) + (ni*no - 1)*sizeof(float)); |
| 113 |
if (sm == NULL) { |
| 114 |
sprintf(SDerrorDetail, "Cannot allocate %dx%d BSDF matrix", |
| 115 |
ni, no); |
| 116 |
return NULL; |
| 117 |
} |
| 118 |
memset(sm, 0, sizeof(SDMat)-sizeof(float)); |
| 119 |
sm->ninc = ni; |
| 120 |
sm->nout = no; |
| 121 |
|
| 122 |
return sm; |
| 123 |
} |
| 124 |
|
| 125 |
/* Free a BSDF matrix */ |
| 126 |
void |
| 127 |
SDfreeMatrix(void *ptr) |
| 128 |
{ |
| 129 |
SDMat *mp = (SDMat *)ptr; |
| 130 |
|
| 131 |
if (mp->chroma != NULL) free(mp->chroma); |
| 132 |
free(ptr); |
| 133 |
} |
| 134 |
|
| 135 |
/* compute square of real value */ |
| 136 |
static double sq(double x) { return x*x; } |
| 137 |
|
| 138 |
/* Get vector for this angle basis index (front exiting) */ |
| 139 |
int |
| 140 |
fo_getvec(FVECT v, double ndxr, void *p) |
| 141 |
{ |
| 142 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p; |
| 143 |
int ndx = (int)ndxr; |
| 144 |
double randX = ndxr - ndx; |
| 145 |
double rx[2]; |
| 146 |
int li; |
| 147 |
double azi, d; |
| 148 |
|
| 149 |
if ((ndxr < 0) | (ndx >= ab->nangles)) |
| 150 |
return RC_FAIL; |
| 151 |
for (li = 0; ndx >= ab->lat[li].nphis; li++) |
| 152 |
ndx -= ab->lat[li].nphis; |
| 153 |
SDmultiSamp(rx, 2, randX); |
| 154 |
d = (1. - rx[0])*sq(cos(M_PI/180.*ab->lat[li].tmin)) + |
| 155 |
rx[0]*sq(cos(M_PI/180.*ab->lat[li+1].tmin)); |
| 156 |
v[2] = d = sqrt(d); /* cos(pol) */ |
| 157 |
azi = 2.*M_PI*(ndx + rx[1] - .5)/ab->lat[li].nphis; |
| 158 |
d = sqrt(1. - d*d); /* sin(pol) */ |
| 159 |
v[0] = cos(azi)*d; |
| 160 |
v[1] = sin(azi)*d; |
| 161 |
return RC_GOOD; |
| 162 |
} |
| 163 |
|
| 164 |
/* Get index corresponding to the given vector (front exiting) */ |
| 165 |
int |
| 166 |
fo_getndx(const FVECT v, void *p) |
| 167 |
{ |
| 168 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p; |
| 169 |
int li, ndx; |
| 170 |
double pol, azi; |
| 171 |
|
| 172 |
if (v == NULL) |
| 173 |
return -1; |
| 174 |
if ((v[2] < 0) | (v[2] > 1.)) |
| 175 |
return -1; |
| 176 |
pol = 180.0/M_PI*Acos(v[2]); |
| 177 |
azi = 180.0/M_PI*atan2(v[1], v[0]); |
| 178 |
if (azi < 0.0) azi += 360.0; |
| 179 |
for (li = 1; ab->lat[li].tmin <= pol; li++) |
| 180 |
if (!ab->lat[li].nphis) |
| 181 |
return -1; |
| 182 |
--li; |
| 183 |
ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5); |
| 184 |
if (ndx >= ab->lat[li].nphis) ndx = 0; |
| 185 |
while (li--) |
| 186 |
ndx += ab->lat[li].nphis; |
| 187 |
return ndx; |
| 188 |
} |
| 189 |
|
| 190 |
/* Get projected solid angle for this angle basis index (universal) */ |
| 191 |
double |
| 192 |
io_getohm(int ndx, void *p) |
| 193 |
{ |
| 194 |
static void *last_p = NULL; |
| 195 |
static int last_li = -1; |
| 196 |
static double last_ohm; |
| 197 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p; |
| 198 |
int li; |
| 199 |
double theta, theta1; |
| 200 |
|
| 201 |
if ((ndx < 0) | (ndx >= ab->nangles)) |
| 202 |
return -1.; |
| 203 |
for (li = 0; ndx >= ab->lat[li].nphis; li++) |
| 204 |
ndx -= ab->lat[li].nphis; |
| 205 |
if ((p == last_p) & (li == last_li)) /* cached latitude? */ |
| 206 |
return last_ohm; |
| 207 |
last_p = p; |
| 208 |
last_li = li; |
| 209 |
theta = M_PI/180. * ab->lat[li].tmin; |
| 210 |
theta1 = M_PI/180. * ab->lat[li+1].tmin; |
| 211 |
return last_ohm = M_PI*(sq(cos(theta)) - sq(cos(theta1))) / |
| 212 |
(double)ab->lat[li].nphis; |
| 213 |
} |
| 214 |
|
| 215 |
/* Get vector for this angle basis index (back incident) */ |
| 216 |
int |
| 217 |
bi_getvec(FVECT v, double ndxr, void *p) |
| 218 |
{ |
| 219 |
if (!fo_getvec(v, ndxr, p)) |
| 220 |
return RC_FAIL; |
| 221 |
|
| 222 |
v[0] = -v[0]; |
| 223 |
v[1] = -v[1]; |
| 224 |
v[2] = -v[2]; |
| 225 |
|
| 226 |
return RC_GOOD; |
| 227 |
} |
| 228 |
|
| 229 |
/* Get index corresponding to the vector (back incident) */ |
| 230 |
int |
| 231 |
bi_getndx(const FVECT v, void *p) |
| 232 |
{ |
| 233 |
FVECT v2; |
| 234 |
|
| 235 |
v2[0] = -v[0]; |
| 236 |
v2[1] = -v[1]; |
| 237 |
v2[2] = -v[2]; |
| 238 |
|
| 239 |
return fo_getndx(v2, p); |
| 240 |
} |
| 241 |
|
| 242 |
/* Get vector for this angle basis index (back exiting) */ |
| 243 |
int |
| 244 |
bo_getvec(FVECT v, double ndxr, void *p) |
| 245 |
{ |
| 246 |
if (!fo_getvec(v, ndxr, p)) |
| 247 |
return RC_FAIL; |
| 248 |
|
| 249 |
v[2] = -v[2]; |
| 250 |
|
| 251 |
return RC_GOOD; |
| 252 |
} |
| 253 |
|
| 254 |
/* Get index corresponding to the vector (back exiting) */ |
| 255 |
int |
| 256 |
bo_getndx(const FVECT v, void *p) |
| 257 |
{ |
| 258 |
FVECT v2; |
| 259 |
|
| 260 |
v2[0] = v[0]; |
| 261 |
v2[1] = v[1]; |
| 262 |
v2[2] = -v[2]; |
| 263 |
|
| 264 |
return fo_getndx(v2, p); |
| 265 |
} |
| 266 |
|
| 267 |
/* Get vector for this angle basis index (front incident) */ |
| 268 |
int |
| 269 |
fi_getvec(FVECT v, double ndxr, void *p) |
| 270 |
{ |
| 271 |
if (!fo_getvec(v, ndxr, p)) |
| 272 |
return RC_FAIL; |
| 273 |
|
| 274 |
v[0] = -v[0]; |
| 275 |
v[1] = -v[1]; |
| 276 |
|
| 277 |
return RC_GOOD; |
| 278 |
} |
| 279 |
|
| 280 |
/* Get index corresponding to the vector (front incident) */ |
| 281 |
int |
| 282 |
fi_getndx(const FVECT v, void *p) |
| 283 |
{ |
| 284 |
FVECT v2; |
| 285 |
|
| 286 |
v2[0] = -v[0]; |
| 287 |
v2[1] = -v[1]; |
| 288 |
v2[2] = v[2]; |
| 289 |
|
| 290 |
return fo_getndx(v2, p); |
| 291 |
} |
| 292 |
|
| 293 |
/* Get color or grayscale value for BSDF for the given direction pair */ |
| 294 |
int |
| 295 |
mBSDF_color(float coef[], const SDMat *dp, int i, int o) |
| 296 |
{ |
| 297 |
C_COLOR cxy; |
| 298 |
|
| 299 |
coef[0] = mBSDF_value(dp, i, o); |
| 300 |
if (dp->chroma == NULL) |
| 301 |
return 1; /* grayscale */ |
| 302 |
|
| 303 |
c_decodeChroma(&cxy, mBSDF_chroma(dp,i,o)); |
| 304 |
c_toSharpRGB(&cxy, coef[0], coef); |
| 305 |
coef[0] *= mtx_RGB_coef[0]; |
| 306 |
coef[1] *= mtx_RGB_coef[1]; |
| 307 |
coef[2] *= mtx_RGB_coef[2]; |
| 308 |
return 3; /* RGB color */ |
| 309 |
} |
| 310 |
|
| 311 |
/* load custom BSDF angle basis */ |
| 312 |
static int |
| 313 |
load_angle_basis(ezxml_t wab) |
| 314 |
{ |
| 315 |
char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName")); |
| 316 |
ezxml_t wbb; |
| 317 |
int i; |
| 318 |
|
| 319 |
if (!abname || !*abname) |
| 320 |
return RC_FAIL; |
| 321 |
for (i = nabases; i--; ) |
| 322 |
if (!strcasecmp(abname, abase_list[i].name)) |
| 323 |
return RC_GOOD; /* assume it's the same */ |
| 324 |
if (nabases >= MAXABASES) { |
| 325 |
sprintf(SDerrorDetail, "Out of angle bases reading '%s'", |
| 326 |
abname); |
| 327 |
return RC_INTERR; |
| 328 |
} |
| 329 |
strcpy(abase_list[nabases].name, abname); |
| 330 |
abase_list[nabases].nangles = 0; |
| 331 |
for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock"); |
| 332 |
wbb != NULL; i++, wbb = wbb->next) { |
| 333 |
if (i >= MAXLATS) { |
| 334 |
sprintf(SDerrorDetail, "Too many latitudes for '%s'", |
| 335 |
abname); |
| 336 |
return RC_INTERR; |
| 337 |
} |
| 338 |
abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt( |
| 339 |
ezxml_child(ezxml_child(wbb, |
| 340 |
"ThetaBounds"), "UpperTheta"))); |
| 341 |
if (!i) |
| 342 |
abase_list[nabases].lat[0].tmin = 0; |
| 343 |
else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb, |
| 344 |
"ThetaBounds"), "LowerTheta"))), |
| 345 |
abase_list[nabases].lat[i].tmin)) { |
| 346 |
sprintf(SDerrorDetail, "Theta values disagree in '%s'", |
| 347 |
abname); |
| 348 |
return RC_DATERR; |
| 349 |
} |
| 350 |
abase_list[nabases].nangles += |
| 351 |
abase_list[nabases].lat[i].nphis = |
| 352 |
atoi(ezxml_txt(ezxml_child(wbb, "nPhis"))); |
| 353 |
if (abase_list[nabases].lat[i].nphis <= 0 || |
| 354 |
(abase_list[nabases].lat[i].nphis == 1 && |
| 355 |
abase_list[nabases].lat[i].tmin > FTINY)) { |
| 356 |
sprintf(SDerrorDetail, "Illegal phi count in '%s'", |
| 357 |
abname); |
| 358 |
return RC_DATERR; |
| 359 |
} |
| 360 |
} |
| 361 |
abase_list[nabases++].lat[i].nphis = 0; |
| 362 |
return RC_GOOD; |
| 363 |
} |
| 364 |
|
| 365 |
/* compute min. proj. solid angle and max. direct hemispherical scattering */ |
| 366 |
static int |
| 367 |
get_extrema(SDSpectralDF *df) |
| 368 |
{ |
| 369 |
SDMat *dp = (SDMat *)df->comp[0].dist; |
| 370 |
double *ohma; |
| 371 |
int i, o; |
| 372 |
/* initialize extrema */ |
| 373 |
df->minProjSA = M_PI; |
| 374 |
df->maxHemi = .0; |
| 375 |
ohma = (double *)malloc(dp->nout*sizeof(double)); |
| 376 |
if (ohma == NULL) |
| 377 |
return RC_MEMERR; |
| 378 |
/* get outgoing solid angles */ |
| 379 |
for (o = dp->nout; o--; ) |
| 380 |
if ((ohma[o] = mBSDF_outohm(dp,o)) < df->minProjSA) |
| 381 |
df->minProjSA = ohma[o]; |
| 382 |
/* compute hemispherical sums */ |
| 383 |
for (i = dp->ninc; i--; ) { |
| 384 |
double hemi = .0; |
| 385 |
for (o = dp->nout; o--; ) |
| 386 |
hemi += ohma[o] * mBSDF_value(dp, i, o); |
| 387 |
if (hemi > df->maxHemi) |
| 388 |
df->maxHemi = hemi; |
| 389 |
} |
| 390 |
free(ohma); |
| 391 |
/* need incoming solid angles, too? */ |
| 392 |
if ((dp->ib_ohm != dp->ob_ohm) | (dp->ib_priv != dp->ob_priv)) { |
| 393 |
double ohm; |
| 394 |
for (i = dp->ninc; i--; ) |
| 395 |
if ((ohm = mBSDF_incohm(dp,i)) < df->minProjSA) |
| 396 |
df->minProjSA = ohm; |
| 397 |
} |
| 398 |
return (df->maxHemi <= 1.01); |
| 399 |
} |
| 400 |
|
| 401 |
/* load BSDF distribution for this wavelength */ |
| 402 |
static int |
| 403 |
load_bsdf_data(SDData *sd, ezxml_t wdb, int ct, int rowinc) |
| 404 |
{ |
| 405 |
SDSpectralDF *df; |
| 406 |
SDMat *dp; |
| 407 |
char *sdata; |
| 408 |
int inbi, outbi; |
| 409 |
int i; |
| 410 |
/* allocate BSDF component */ |
| 411 |
sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); |
| 412 |
if (!sdata) |
| 413 |
return RC_FAIL; |
| 414 |
/* |
| 415 |
* Remember that front and back are reversed from WINDOW 6 orientations |
| 416 |
*/ |
| 417 |
if (!strcasecmp(sdata, "Transmission Front")) { |
| 418 |
if (sd->tb == NULL && (sd->tb = SDnewSpectralDF(3)) == NULL) |
| 419 |
return RC_MEMERR; |
| 420 |
df = sd->tb; |
| 421 |
} else if (!strcasecmp(sdata, "Transmission Back")) { |
| 422 |
if (sd->tf == NULL && (sd->tf = SDnewSpectralDF(3)) == NULL) |
| 423 |
return RC_MEMERR; |
| 424 |
df = sd->tf; |
| 425 |
} else if (!strcasecmp(sdata, "Reflection Front")) { |
| 426 |
if (sd->rb == NULL && (sd->rb = SDnewSpectralDF(3)) == NULL) |
| 427 |
return RC_MEMERR; |
| 428 |
df = sd->rb; |
| 429 |
} else if (!strcasecmp(sdata, "Reflection Back")) { |
| 430 |
if (sd->rf == NULL && (sd->rf = SDnewSpectralDF(3)) == NULL) |
| 431 |
return RC_MEMERR; |
| 432 |
df = sd->rf; |
| 433 |
} else |
| 434 |
return RC_FAIL; |
| 435 |
/* free previous matrix if any */ |
| 436 |
if (df->comp[ct].dist != NULL) { |
| 437 |
SDfreeMatrix(df->comp[ct].dist); |
| 438 |
df->comp[ct].dist = NULL; |
| 439 |
} |
| 440 |
/* get angle bases */ |
| 441 |
sdata = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis")); |
| 442 |
if (!sdata || !*sdata) { |
| 443 |
sprintf(SDerrorDetail, "Missing column basis for BSDF '%s'", |
| 444 |
sd->name); |
| 445 |
return RC_FORMERR; |
| 446 |
} |
| 447 |
for (inbi = nabases; inbi--; ) |
| 448 |
if (!strcasecmp(sdata, abase_list[inbi].name)) |
| 449 |
break; |
| 450 |
if (inbi < 0) { |
| 451 |
sprintf(SDerrorDetail, "Undefined ColumnAngleBasis '%s'", sdata); |
| 452 |
return RC_FORMERR; |
| 453 |
} |
| 454 |
sdata = ezxml_txt(ezxml_child(wdb,"RowAngleBasis")); |
| 455 |
if (!sdata || !*sdata) { |
| 456 |
sprintf(SDerrorDetail, "Missing row basis for BSDF '%s'", |
| 457 |
sd->name); |
| 458 |
return RC_FORMERR; |
| 459 |
} |
| 460 |
for (outbi = nabases; outbi--; ) |
| 461 |
if (!strcasecmp(sdata, abase_list[outbi].name)) |
| 462 |
break; |
| 463 |
if (outbi < 0) { |
| 464 |
sprintf(SDerrorDetail, "Undefined RowAngleBasis '%s'", sdata); |
| 465 |
return RC_FORMERR; |
| 466 |
} |
| 467 |
/* allocate BSDF matrix */ |
| 468 |
dp = SDnewMatrix(abase_list[inbi].nangles, abase_list[outbi].nangles); |
| 469 |
if (dp == NULL) |
| 470 |
return RC_MEMERR; |
| 471 |
dp->ib_priv = &abase_list[inbi]; |
| 472 |
dp->ob_priv = &abase_list[outbi]; |
| 473 |
if (df == sd->tf) { |
| 474 |
dp->ib_vec = &fi_getvec; |
| 475 |
dp->ib_ndx = &fi_getndx; |
| 476 |
dp->ob_vec = &bo_getvec; |
| 477 |
dp->ob_ndx = &bo_getndx; |
| 478 |
} else if (df == sd->tb) { |
| 479 |
dp->ib_vec = &bi_getvec; |
| 480 |
dp->ib_ndx = &bi_getndx; |
| 481 |
dp->ob_vec = &fo_getvec; |
| 482 |
dp->ob_ndx = &fo_getndx; |
| 483 |
} else if (df == sd->rf) { |
| 484 |
dp->ib_vec = &fi_getvec; |
| 485 |
dp->ib_ndx = &fi_getndx; |
| 486 |
dp->ob_vec = &fo_getvec; |
| 487 |
dp->ob_ndx = &fo_getndx; |
| 488 |
} else /* df == sd->rb */ { |
| 489 |
dp->ib_vec = &bi_getvec; |
| 490 |
dp->ib_ndx = &bi_getndx; |
| 491 |
dp->ob_vec = &bo_getvec; |
| 492 |
dp->ob_ndx = &bo_getndx; |
| 493 |
} |
| 494 |
dp->ib_ohm = &io_getohm; |
| 495 |
dp->ob_ohm = &io_getohm; |
| 496 |
df->comp[ct].dist = dp; |
| 497 |
df->comp[ct].func = &SDhandleMtx; |
| 498 |
/* read BSDF data */ |
| 499 |
sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); |
| 500 |
if (!sdata || !*sdata) { |
| 501 |
sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'", |
| 502 |
sd->name); |
| 503 |
return RC_FORMERR; |
| 504 |
} |
| 505 |
for (i = 0; i < dp->ninc*dp->nout; i++) { |
| 506 |
char *sdnext = fskip(sdata); |
| 507 |
double val; |
| 508 |
if (sdnext == NULL) { |
| 509 |
sprintf(SDerrorDetail, |
| 510 |
"Bad/missing BSDF ScatteringData in '%s'", |
| 511 |
sd->name); |
| 512 |
return RC_FORMERR; |
| 513 |
} |
| 514 |
while (isspace(*sdnext)) |
| 515 |
sdnext++; |
| 516 |
if (*sdnext == ',') sdnext++; |
| 517 |
if ((val = atof(sdata)) < 0) |
| 518 |
val = 0; /* don't allow negative values */ |
| 519 |
if (rowinc) { |
| 520 |
int r = i/dp->nout; |
| 521 |
int c = i - r*dp->nout; |
| 522 |
mBSDF_value(dp,r,c) = val; |
| 523 |
} else |
| 524 |
dp->bsdf[i] = val; |
| 525 |
sdata = sdnext; |
| 526 |
} |
| 527 |
return (ct == mtx_Y) ? get_extrema(df) : RC_GOOD; |
| 528 |
} |
| 529 |
|
| 530 |
/* copy our RGB (x,y) primary chromaticities */ |
| 531 |
static void |
| 532 |
copy_RGB_prims(C_COLOR cspec[]) |
| 533 |
{ |
| 534 |
if (mtx_RGB_coef[1] < .001) { /* need to initialize */ |
| 535 |
int i = 3; |
| 536 |
while (i--) { |
| 537 |
float rgb[3]; |
| 538 |
rgb[0] = rgb[1] = rgb[2] = .0f; |
| 539 |
rgb[i] = 1.f; |
| 540 |
mtx_RGB_coef[i] = c_fromSharpRGB(rgb, &mtx_RGB_prim[i]); |
| 541 |
} |
| 542 |
} |
| 543 |
memcpy(cspec, mtx_RGB_prim, sizeof(mtx_RGB_prim)); |
| 544 |
} |
| 545 |
|
| 546 |
/* encode chromaticity if XYZ -- reduce to one channel in any case */ |
| 547 |
static SDSpectralDF * |
| 548 |
encode_chroma(SDSpectralDF *df) |
| 549 |
{ |
| 550 |
SDMat *mpx, *mpy, *mpz; |
| 551 |
int n; |
| 552 |
|
| 553 |
if (df == NULL || df->ncomp != 3) |
| 554 |
return df; |
| 555 |
|
| 556 |
mpy = (SDMat *)df->comp[mtx_Y].dist; |
| 557 |
if (mpy == NULL) { |
| 558 |
free(df); |
| 559 |
return NULL; |
| 560 |
} |
| 561 |
mpx = (SDMat *)df->comp[mtx_X].dist; |
| 562 |
mpz = (SDMat *)df->comp[mtx_Z].dist; |
| 563 |
if (mpx == NULL || (mpx->ninc != mpy->ninc) | (mpx->nout != mpy->nout)) |
| 564 |
goto done; |
| 565 |
if (mpz == NULL || (mpz->ninc != mpy->ninc) | (mpz->nout != mpy->nout)) |
| 566 |
goto done; |
| 567 |
mpy->chroma = (C_CHROMA *)malloc(sizeof(C_CHROMA)*mpy->ninc*mpy->nout); |
| 568 |
if (mpy->chroma == NULL) |
| 569 |
goto done; /* XXX punt */ |
| 570 |
/* encode chroma values */ |
| 571 |
for (n = mpy->ninc*mpy->nout; n--; ) { |
| 572 |
const double sum = mpx->bsdf[n] + mpy->bsdf[n] + mpz->bsdf[n]; |
| 573 |
C_COLOR cxy; |
| 574 |
if (sum > .0) |
| 575 |
c_cset(&cxy, mpx->bsdf[n]/sum, mpy->bsdf[n]/sum); |
| 576 |
else |
| 577 |
c_cset(&cxy, 1./3., 1./3.); |
| 578 |
mpy->chroma[n] = c_encodeChroma(&cxy); |
| 579 |
} |
| 580 |
done: /* free X & Z channels */ |
| 581 |
if (mpx != NULL) SDfreeMatrix(mpx); |
| 582 |
if (mpz != NULL) SDfreeMatrix(mpz); |
| 583 |
if (mpy->chroma == NULL) /* grayscale after all? */ |
| 584 |
df->comp[0].cspec[0] = c_dfcolor; |
| 585 |
else /* else copy RGB primaries */ |
| 586 |
copy_RGB_prims(df->comp[0].cspec); |
| 587 |
df->ncomp = 1; /* return resized struct */ |
| 588 |
return (SDSpectralDF *)realloc(df, sizeof(SDSpectralDF)); |
| 589 |
} |
| 590 |
|
| 591 |
/* subtract minimum (diffuse) scattering amount from BSDF */ |
| 592 |
static double |
| 593 |
subtract_min(C_COLOR *cs, SDMat *sm) |
| 594 |
{ |
| 595 |
const int ncomp = 1 + 2*(sm->chroma != NULL); |
| 596 |
float min_coef[3], ymin, coef[3]; |
| 597 |
int i, o, c; |
| 598 |
|
| 599 |
min_coef[0] = min_coef[1] = min_coef[2] = FHUGE; |
| 600 |
for (i = 0; i < sm->ninc; i++) |
| 601 |
for (o = 0; o < sm->nout; o++) { |
| 602 |
c = mBSDF_color(coef, sm, i, o); |
| 603 |
while (c--) |
| 604 |
if (coef[c] < min_coef[c]) |
| 605 |
min_coef[c] = coef[c]; |
| 606 |
} |
| 607 |
ymin = 0; |
| 608 |
for (c = ncomp; c--; ) |
| 609 |
ymin += min_coef[c]; |
| 610 |
if (ymin <= .01/M_PI) /* not worth bothering about? */ |
| 611 |
return .0; |
| 612 |
if (ncomp == 1) { /* subtract grayscale minimum */ |
| 613 |
for (i = sm->ninc*sm->nout; i--; ) |
| 614 |
sm->bsdf[i] -= ymin; |
| 615 |
*cs = c_dfcolor; |
| 616 |
return M_PI*ymin; |
| 617 |
} |
| 618 |
/* else subtract colored minimum */ |
| 619 |
for (i = 0; i < sm->ninc; i++) |
| 620 |
for (o = 0; o < sm->nout; o++) { |
| 621 |
C_COLOR cxy; |
| 622 |
c = mBSDF_color(coef, sm, i, o); |
| 623 |
while (c--) |
| 624 |
coef[c] = (coef[c] - min_coef[c]) / |
| 625 |
mtx_RGB_coef[c]; |
| 626 |
if (c_fromSharpRGB(coef, &cxy) > 1e-5) |
| 627 |
mBSDF_chroma(sm,i,o) = c_encodeChroma(&cxy); |
| 628 |
mBSDF_value(sm,i,o) -= ymin; |
| 629 |
} |
| 630 |
/* return colored minimum */ |
| 631 |
for (i = 3; i--; ) |
| 632 |
coef[i] = min_coef[i]/mtx_RGB_coef[i]; |
| 633 |
c_fromSharpRGB(coef, cs); |
| 634 |
|
| 635 |
return M_PI*ymin; |
| 636 |
} |
| 637 |
|
| 638 |
/* Extract and separate diffuse portion of BSDF & convert color */ |
| 639 |
static SDSpectralDF * |
| 640 |
extract_diffuse(SDValue *dv, SDSpectralDF *df) |
| 641 |
{ |
| 642 |
|
| 643 |
df = encode_chroma(df); /* reduce XYZ to Y + chroma */ |
| 644 |
if (df == NULL || df->ncomp <= 0) { |
| 645 |
dv->spec = c_dfcolor; |
| 646 |
dv->cieY = .0; |
| 647 |
return df; |
| 648 |
} |
| 649 |
/* subtract minimum value */ |
| 650 |
dv->cieY = subtract_min(&dv->spec, (SDMat *)df->comp[0].dist); |
| 651 |
df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ |
| 652 |
|
| 653 |
c_ccvt(&dv->spec, C_CSXY); /* make sure (x,y) is set */ |
| 654 |
return df; |
| 655 |
} |
| 656 |
|
| 657 |
/* Load a BSDF matrix from an open XML file */ |
| 658 |
SDError |
| 659 |
SDloadMtx(SDData *sd, ezxml_t wtl) |
| 660 |
{ |
| 661 |
ezxml_t wld, wdb; |
| 662 |
int rowIn; |
| 663 |
char *txt; |
| 664 |
int rval; |
| 665 |
/* basic checks and data ordering */ |
| 666 |
txt = ezxml_txt(ezxml_child(ezxml_child(wtl, |
| 667 |
"DataDefinition"), "IncidentDataStructure")); |
| 668 |
if (txt == NULL || !*txt) { |
| 669 |
sprintf(SDerrorDetail, |
| 670 |
"BSDF \"%s\": missing IncidentDataStructure", |
| 671 |
sd->name); |
| 672 |
return SDEformat; |
| 673 |
} |
| 674 |
if (!strcasecmp(txt, "Rows")) |
| 675 |
rowIn = 1; |
| 676 |
else if (!strcasecmp(txt, "Columns")) |
| 677 |
rowIn = 0; |
| 678 |
else { |
| 679 |
sprintf(SDerrorDetail, |
| 680 |
"BSDF \"%s\": unsupported IncidentDataStructure", |
| 681 |
sd->name); |
| 682 |
return SDEsupport; |
| 683 |
} |
| 684 |
/* get angle bases */ |
| 685 |
for (wld = ezxml_child(ezxml_child(wtl, "DataDefinition"), "AngleBasis"); |
| 686 |
wld != NULL; wld = wld->next) { |
| 687 |
rval = load_angle_basis(wld); |
| 688 |
if (rval < 0) |
| 689 |
return convert_errcode(rval); |
| 690 |
} |
| 691 |
/* load BSDF components */ |
| 692 |
for (wld = ezxml_child(wtl, "WavelengthData"); |
| 693 |
wld != NULL; wld = wld->next) { |
| 694 |
const char *cnm = ezxml_txt(ezxml_child(wld,"Wavelength")); |
| 695 |
int ct = -1; |
| 696 |
if (!strcasecmp(cnm, "Visible")) |
| 697 |
ct = mtx_Y; |
| 698 |
else if (!strcasecmp(cnm, "CIE-X")) |
| 699 |
ct = mtx_X; |
| 700 |
else if (!strcasecmp(cnm, "CIE-Z")) |
| 701 |
ct = mtx_Z; |
| 702 |
else |
| 703 |
continue; |
| 704 |
for (wdb = ezxml_child(wld, "WavelengthDataBlock"); |
| 705 |
wdb != NULL; wdb = wdb->next) |
| 706 |
if ((rval = load_bsdf_data(sd, wdb, ct, rowIn)) < 0) |
| 707 |
return convert_errcode(rval); |
| 708 |
} |
| 709 |
/* separate diffuse components */ |
| 710 |
sd->rf = extract_diffuse(&sd->rLambFront, sd->rf); |
| 711 |
sd->rb = extract_diffuse(&sd->rLambBack, sd->rb); |
| 712 |
if (sd->tf != NULL) |
| 713 |
sd->tf = extract_diffuse(&sd->tLamb, sd->tf); |
| 714 |
if (sd->tb != NULL) |
| 715 |
sd->tb = extract_diffuse(&sd->tLamb, sd->tb); |
| 716 |
/* return success */ |
| 717 |
return SDEnone; |
| 718 |
} |
| 719 |
|
| 720 |
/* Get Matrix BSDF value */ |
| 721 |
static int |
| 722 |
SDgetMtxBSDF(float coef[SDmaxCh], const FVECT outVec, |
| 723 |
const FVECT inVec, SDComponent *sdc) |
| 724 |
{ |
| 725 |
const SDMat *dp; |
| 726 |
int i_ndx, o_ndx; |
| 727 |
/* check arguments */ |
| 728 |
if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL) |
| 729 |
|| (dp = (SDMat *)sdc->dist) == NULL) |
| 730 |
return 0; |
| 731 |
/* get angle indices */ |
| 732 |
i_ndx = mBSDF_incndx(dp, inVec); |
| 733 |
o_ndx = mBSDF_outndx(dp, outVec); |
| 734 |
/* try reciprocity if necessary */ |
| 735 |
if ((i_ndx < 0) & (o_ndx < 0)) { |
| 736 |
i_ndx = mBSDF_incndx(dp, outVec); |
| 737 |
o_ndx = mBSDF_outndx(dp, inVec); |
| 738 |
} |
| 739 |
if ((i_ndx < 0) | (o_ndx < 0)) |
| 740 |
return 0; /* nothing from this component */ |
| 741 |
|
| 742 |
return mBSDF_color(coef, dp, i_ndx, o_ndx); |
| 743 |
} |
| 744 |
|
| 745 |
/* Query solid angle for vector(s) */ |
| 746 |
static SDError |
| 747 |
SDqueryMtxProjSA(double *psa, const FVECT v1, const RREAL *v2, |
| 748 |
int qflags, SDComponent *sdc) |
| 749 |
{ |
| 750 |
const SDMat *dp; |
| 751 |
double inc_psa, out_psa; |
| 752 |
/* check arguments */ |
| 753 |
if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) || |
| 754 |
(dp = (SDMat *)sdc->dist) == NULL) |
| 755 |
return SDEargument; |
| 756 |
if (v2 == NULL) |
| 757 |
v2 = v1; |
| 758 |
/* get projected solid angles */ |
| 759 |
out_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v1)); |
| 760 |
inc_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v2)); |
| 761 |
if ((v1 != v2) & (out_psa <= 0) & (inc_psa <= 0)) { |
| 762 |
inc_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v2)); |
| 763 |
out_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v1)); |
| 764 |
} |
| 765 |
|
| 766 |
switch (qflags) { /* record based on flag settings */ |
| 767 |
case SDqueryMax: |
| 768 |
if (inc_psa > psa[0]) |
| 769 |
psa[0] = inc_psa; |
| 770 |
if (out_psa > psa[0]) |
| 771 |
psa[0] = out_psa; |
| 772 |
break; |
| 773 |
case SDqueryMin+SDqueryMax: |
| 774 |
if (inc_psa > psa[1]) |
| 775 |
psa[1] = inc_psa; |
| 776 |
if (out_psa > psa[1]) |
| 777 |
psa[1] = out_psa; |
| 778 |
/* fall through */ |
| 779 |
case SDqueryVal: |
| 780 |
if (qflags == SDqueryVal) |
| 781 |
psa[0] = M_PI; |
| 782 |
/* fall through */ |
| 783 |
case SDqueryMin: |
| 784 |
if ((inc_psa > 0) & (inc_psa < psa[0])) |
| 785 |
psa[0] = inc_psa; |
| 786 |
if ((out_psa > 0) & (out_psa < psa[0])) |
| 787 |
psa[0] = out_psa; |
| 788 |
break; |
| 789 |
} |
| 790 |
/* make sure it's legal */ |
| 791 |
return (psa[0] <= 0) ? SDEinternal : SDEnone; |
| 792 |
} |
| 793 |
|
| 794 |
/* Compute new cumulative distribution from BSDF */ |
| 795 |
static int |
| 796 |
make_cdist(SDMatCDst *cd, const FVECT inVec, SDMat *dp, int rev) |
| 797 |
{ |
| 798 |
const unsigned maxval = ~0; |
| 799 |
double *cmtab, scale; |
| 800 |
int o; |
| 801 |
|
| 802 |
cmtab = (double *)malloc((cd->calen+1)*sizeof(double)); |
| 803 |
if (cmtab == NULL) |
| 804 |
return 0; |
| 805 |
cmtab[0] = .0; |
| 806 |
for (o = 0; o < cd->calen; o++) { |
| 807 |
if (rev) |
| 808 |
cmtab[o+1] = mBSDF_value(dp, o, cd->indx) * |
| 809 |
(*dp->ib_ohm)(o, dp->ib_priv); |
| 810 |
else |
| 811 |
cmtab[o+1] = mBSDF_value(dp, cd->indx, o) * |
| 812 |
(*dp->ob_ohm)(o, dp->ob_priv); |
| 813 |
cmtab[o+1] += cmtab[o]; |
| 814 |
} |
| 815 |
cd->cTotal = cmtab[cd->calen]; |
| 816 |
scale = (double)maxval / cd->cTotal; |
| 817 |
cd->carr[0] = 0; |
| 818 |
for (o = 1; o < cd->calen; o++) |
| 819 |
cd->carr[o] = scale*cmtab[o] + .5; |
| 820 |
cd->carr[cd->calen] = maxval; |
| 821 |
free(cmtab); |
| 822 |
return 1; |
| 823 |
} |
| 824 |
|
| 825 |
/* Get cumulative distribution for matrix BSDF */ |
| 826 |
static const SDCDst * |
| 827 |
SDgetMtxCDist(const FVECT inVec, SDComponent *sdc) |
| 828 |
{ |
| 829 |
SDMat *dp; |
| 830 |
int reverse; |
| 831 |
SDMatCDst myCD; |
| 832 |
SDMatCDst *cd, *cdlast; |
| 833 |
/* check arguments */ |
| 834 |
if ((inVec == NULL) | (sdc == NULL) || |
| 835 |
(dp = (SDMat *)sdc->dist) == NULL) |
| 836 |
return NULL; |
| 837 |
memset(&myCD, 0, sizeof(myCD)); |
| 838 |
myCD.indx = mBSDF_incndx(dp, inVec); |
| 839 |
if (myCD.indx >= 0) { |
| 840 |
myCD.ob_priv = dp->ob_priv; |
| 841 |
myCD.ob_vec = dp->ob_vec; |
| 842 |
myCD.calen = dp->nout; |
| 843 |
reverse = 0; |
| 844 |
} else { /* try reciprocity */ |
| 845 |
myCD.indx = mBSDF_outndx(dp, inVec); |
| 846 |
if (myCD.indx < 0) |
| 847 |
return NULL; |
| 848 |
myCD.ob_priv = dp->ib_priv; |
| 849 |
myCD.ob_vec = dp->ib_vec; |
| 850 |
myCD.calen = dp->ninc; |
| 851 |
reverse = 1; |
| 852 |
} |
| 853 |
cdlast = NULL; /* check for it in cache list */ |
| 854 |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ |
| 855 |
for (cd = (SDMatCDst *)sdc->cdList; cd != NULL; |
| 856 |
cdlast = cd, cd = cd->next) |
| 857 |
if (cd->indx == myCD.indx && (cd->calen == myCD.calen) & |
| 858 |
(cd->ob_priv == myCD.ob_priv) & |
| 859 |
(cd->ob_vec == myCD.ob_vec)) |
| 860 |
break; |
| 861 |
if (cd == NULL) { /* need to allocate new entry */ |
| 862 |
cd = (SDMatCDst *)malloc(sizeof(SDMatCDst) + |
| 863 |
sizeof(myCD.carr[0])*myCD.calen); |
| 864 |
if (cd == NULL) |
| 865 |
return NULL; |
| 866 |
*cd = myCD; /* compute cumulative distribution */ |
| 867 |
if (!make_cdist(cd, inVec, dp, reverse)) { |
| 868 |
free(cd); |
| 869 |
return NULL; |
| 870 |
} |
| 871 |
cdlast = cd; |
| 872 |
} |
| 873 |
if (cdlast != NULL) { /* move entry to head of cache list */ |
| 874 |
cdlast->next = cd->next; |
| 875 |
cd->next = (SDMatCDst *)sdc->cdList; |
| 876 |
sdc->cdList = (SDCDst *)cd; |
| 877 |
} |
| 878 |
/* END MUTEX LOCK */ |
| 879 |
return (SDCDst *)cd; /* ready to go */ |
| 880 |
} |
| 881 |
|
| 882 |
/* Sample cumulative distribution */ |
| 883 |
static SDError |
| 884 |
SDsampMtxCDist(FVECT ioVec, double randX, const SDCDst *cdp) |
| 885 |
{ |
| 886 |
const unsigned maxval = ~0; |
| 887 |
const SDMatCDst *mcd = (const SDMatCDst *)cdp; |
| 888 |
const unsigned target = randX*maxval; |
| 889 |
int i, iupper, ilower; |
| 890 |
/* check arguments */ |
| 891 |
if ((ioVec == NULL) | (mcd == NULL)) |
| 892 |
return SDEargument; |
| 893 |
/* binary search to find index */ |
| 894 |
ilower = 0; iupper = mcd->calen; |
| 895 |
while ((i = (iupper + ilower) >> 1) != ilower) |
| 896 |
if (target >= mcd->carr[i]) |
| 897 |
ilower = i; |
| 898 |
else |
| 899 |
iupper = i; |
| 900 |
/* localize random position */ |
| 901 |
randX = (randX*maxval - mcd->carr[ilower]) / |
| 902 |
(double)(mcd->carr[iupper] - mcd->carr[ilower]); |
| 903 |
/* convert index to vector */ |
| 904 |
if ((*mcd->ob_vec)(ioVec, i+randX, mcd->ob_priv)) |
| 905 |
return SDEnone; |
| 906 |
strcpy(SDerrorDetail, "Matrix BSDF sampling fault"); |
| 907 |
return SDEinternal; |
| 908 |
} |
| 909 |
|
| 910 |
/* Fixed resolution BSDF methods */ |
| 911 |
const SDFunc SDhandleMtx = { |
| 912 |
&SDgetMtxBSDF, |
| 913 |
&SDqueryMtxProjSA, |
| 914 |
&SDgetMtxCDist, |
| 915 |
&SDsampMtxCDist, |
| 916 |
&SDfreeMatrix, |
| 917 |
}; |