| 1 | #ifndef lint | 
| 2 | static const char RCSid[] = "$Id: bsdf.c,v 2.58 2020/05/14 19:20:13 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | *  bsdf.c | 
| 6 | * | 
| 7 | *  Definitions for bidirectional scattering distribution functions. | 
| 8 | * | 
| 9 | *  Created by Greg Ward on 1/10/11. | 
| 10 | * | 
| 11 | */ | 
| 12 |  | 
| 13 | #define _USE_MATH_DEFINES | 
| 14 | #include <stdio.h> | 
| 15 | #include <stdlib.h> | 
| 16 | #include <string.h> | 
| 17 | #include <math.h> | 
| 18 | #include <ctype.h> | 
| 19 | #include "ezxml.h" | 
| 20 | #include "hilbert.h" | 
| 21 | #include "bsdf.h" | 
| 22 | #include "bsdf_m.h" | 
| 23 | #include "bsdf_t.h" | 
| 24 |  | 
| 25 | /* English ASCII strings corresponding to ennumerated errors */ | 
| 26 | const char              *SDerrorEnglish[] = { | 
| 27 | "No error", | 
| 28 | "Memory error", | 
| 29 | "File input/output error", | 
| 30 | "File format error", | 
| 31 | "Illegal argument", | 
| 32 | "Invalid data", | 
| 33 | "Unsupported feature", | 
| 34 | "Internal program error", | 
| 35 | "Unknown error" | 
| 36 | }; | 
| 37 |  | 
| 38 | /* Pointer to error list in preferred language */ | 
| 39 | const char              **SDerrorList = SDerrorEnglish; | 
| 40 |  | 
| 41 | /* Additional information on last error (ASCII English) */ | 
| 42 | char                    SDerrorDetail[256]; | 
| 43 |  | 
| 44 | /* Empty distribution for getCDist() calls that fail for some reason */ | 
| 45 | const SDCDst            SDemptyCD; | 
| 46 |  | 
| 47 | /* Cache of loaded BSDFs */ | 
| 48 | struct SDCache_s        *SDcacheList = NULL; | 
| 49 |  | 
| 50 | /* Retain BSDFs in cache list? */ | 
| 51 | int                     SDretainSet = SDretainNone; | 
| 52 |  | 
| 53 | /* Maximum cache size for any given BSDF? */ | 
| 54 | unsigned long           SDmaxCache = 0;         /* 0 == unlimited */ | 
| 55 |  | 
| 56 | /* Report any error to the indicated stream */ | 
| 57 | SDError | 
| 58 | SDreportError(SDError ec, FILE *fp) | 
| 59 | { | 
| 60 | if (!ec) | 
| 61 | return SDEnone; | 
| 62 | if ((ec < SDEnone) | (ec > SDEunknown)) { | 
| 63 | SDerrorDetail[0] = '\0'; | 
| 64 | ec = SDEunknown; | 
| 65 | } | 
| 66 | if (fp == NULL) | 
| 67 | return ec; | 
| 68 | fputs(SDerrorList[ec], fp); | 
| 69 | if (SDerrorDetail[0]) { | 
| 70 | fputs(": ", fp); | 
| 71 | fputs(SDerrorDetail, fp); | 
| 72 | } | 
| 73 | fputc('\n', fp); | 
| 74 | if (fp != stderr) | 
| 75 | fflush(fp); | 
| 76 | return ec; | 
| 77 | } | 
| 78 |  | 
| 79 | static double | 
| 80 | to_meters(              /* return factor to convert given unit to meters */ | 
| 81 | const char *unit | 
| 82 | ) | 
| 83 | { | 
| 84 | if (unit == NULL) return(1.);           /* safe assumption? */ | 
| 85 | if (!strcasecmp(unit, "Meter")) return(1.); | 
| 86 | if (!strcasecmp(unit, "Foot")) return(.3048); | 
| 87 | if (!strcasecmp(unit, "Inch")) return(.0254); | 
| 88 | if (!strcasecmp(unit, "Centimeter")) return(.01); | 
| 89 | if (!strcasecmp(unit, "Millimeter")) return(.001); | 
| 90 | sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit); | 
| 91 | return(-1.); | 
| 92 | } | 
| 93 |  | 
| 94 | /* Load geometric dimensions and description (if any) */ | 
| 95 | static SDError | 
| 96 | SDloadGeometry(SDData *sd, ezxml_t wtl) | 
| 97 | { | 
| 98 | ezxml_t         node, matl, geom; | 
| 99 | double          cfact; | 
| 100 | const char      *fmt = NULL, *mgfstr; | 
| 101 |  | 
| 102 | SDerrorDetail[0] = '\0'; | 
| 103 | sd->matn[0] = '\0'; sd->makr[0] = '\0'; | 
| 104 | sd->dim[0] = sd->dim[1] = sd->dim[2] = 0; | 
| 105 | matl = ezxml_child(wtl, "Material"); | 
| 106 | if (matl != NULL) {                     /* get material info. */ | 
| 107 | if ((node = ezxml_child(matl, "Name")) != NULL) { | 
| 108 | strncpy(sd->matn, ezxml_txt(node), SDnameLn); | 
| 109 | if (sd->matn[SDnameLn-1]) | 
| 110 | strcpy(sd->matn+(SDnameLn-4), "..."); | 
| 111 | } | 
| 112 | if ((node = ezxml_child(matl, "Manufacturer")) != NULL) { | 
| 113 | strncpy(sd->makr, ezxml_txt(node), SDnameLn); | 
| 114 | if (sd->makr[SDnameLn-1]) | 
| 115 | strcpy(sd->makr+(SDnameLn-4), "..."); | 
| 116 | } | 
| 117 | if ((node = ezxml_child(matl, "Width")) != NULL) | 
| 118 | sd->dim[0] = atof(ezxml_txt(node)) * | 
| 119 | to_meters(ezxml_attr(node, "unit")); | 
| 120 | if ((node = ezxml_child(matl, "Height")) != NULL) | 
| 121 | sd->dim[1] = atof(ezxml_txt(node)) * | 
| 122 | to_meters(ezxml_attr(node, "unit")); | 
| 123 | if ((node = ezxml_child(matl, "Thickness")) != NULL) | 
| 124 | sd->dim[2] = atof(ezxml_txt(node)) * | 
| 125 | to_meters(ezxml_attr(node, "unit")); | 
| 126 | if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) { | 
| 127 | if (!SDerrorDetail[0]) | 
| 128 | sprintf(SDerrorDetail, "Negative dimension in \"%s\"", | 
| 129 | sd->name); | 
| 130 | return SDEdata; | 
| 131 | } | 
| 132 | } | 
| 133 | sd->mgf = NULL; | 
| 134 | geom = ezxml_child(wtl, "Geometry"); | 
| 135 | if (geom == NULL)                       /* no actual geometry? */ | 
| 136 | return SDEnone; | 
| 137 | fmt = ezxml_attr(geom, "format"); | 
| 138 | if (fmt != NULL && strcasecmp(fmt, "MGF")) { | 
| 139 | sprintf(SDerrorDetail, | 
| 140 | "Unrecognized geometry format '%s' in \"%s\"", | 
| 141 | fmt, sd->name); | 
| 142 | return SDEsupport; | 
| 143 | } | 
| 144 | if ((node = ezxml_child(geom, "MGFblock")) == NULL || | 
| 145 | (mgfstr = ezxml_txt(node)) == NULL) | 
| 146 | return SDEnone; | 
| 147 | while (isspace(*mgfstr)) | 
| 148 | ++mgfstr; | 
| 149 | if (!*mgfstr) | 
| 150 | return SDEnone; | 
| 151 | cfact = to_meters(ezxml_attr(node, "unit")); | 
| 152 | if (cfact <= 0) | 
| 153 | return SDEformat; | 
| 154 | sd->mgf = (char *)malloc(strlen(mgfstr)+32); | 
| 155 | if (sd->mgf == NULL) { | 
| 156 | strcpy(SDerrorDetail, "Out of memory in SDloadGeometry"); | 
| 157 | return SDEmemory; | 
| 158 | } | 
| 159 | if (cfact < 0.99 || cfact > 1.01) | 
| 160 | sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr); | 
| 161 | else | 
| 162 | strcpy(sd->mgf, mgfstr); | 
| 163 | return SDEnone; | 
| 164 | } | 
| 165 |  | 
| 166 | /* Load a BSDF struct from the given file (free first and keep name) */ | 
| 167 | SDError | 
| 168 | SDloadFile(SDData *sd, const char *fname) | 
| 169 | { | 
| 170 | SDError         lastErr; | 
| 171 | ezxml_t         fl, wtl; | 
| 172 |  | 
| 173 | if ((sd == NULL) | (fname == NULL || !*fname)) | 
| 174 | return SDEargument; | 
| 175 | /* free old data, keeping name */ | 
| 176 | SDfreeBSDF(sd); | 
| 177 | /* parse XML file */ | 
| 178 | fl = ezxml_parse_file(fname); | 
| 179 | if (fl == NULL) { | 
| 180 | sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname); | 
| 181 | return SDEfile; | 
| 182 | } | 
| 183 | if (ezxml_error(fl)[0]) { | 
| 184 | sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl)); | 
| 185 | ezxml_free(fl); | 
| 186 | return SDEformat; | 
| 187 | } | 
| 188 | if (strcmp(ezxml_name(fl), "WindowElement")) { | 
| 189 | sprintf(SDerrorDetail, | 
| 190 | "BSDF \"%s\": top level node not 'WindowElement'", | 
| 191 | sd->name); | 
| 192 | ezxml_free(fl); | 
| 193 | return SDEformat; | 
| 194 | } | 
| 195 | wtl = ezxml_child(fl, "FileType"); | 
| 196 | if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) { | 
| 197 | sprintf(SDerrorDetail, | 
| 198 | "XML \"%s\": wrong FileType (must be 'BSDF')", | 
| 199 | sd->name); | 
| 200 | ezxml_free(fl); | 
| 201 | return SDEformat; | 
| 202 | } | 
| 203 | wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer"); | 
| 204 | if (wtl == NULL) { | 
| 205 | sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers", | 
| 206 | sd->name); | 
| 207 | ezxml_free(fl); | 
| 208 | return SDEformat; | 
| 209 | } | 
| 210 | /* load geometry if present */ | 
| 211 | lastErr = SDloadGeometry(sd, wtl); | 
| 212 | if (lastErr) { | 
| 213 | ezxml_free(fl); | 
| 214 | return lastErr; | 
| 215 | } | 
| 216 | /* try loading variable resolution data */ | 
| 217 | lastErr = SDloadTre(sd, wtl); | 
| 218 | /* check our result */ | 
| 219 | if (lastErr == SDEsupport)      /* try matrix BSDF if not tree data */ | 
| 220 | lastErr = SDloadMtx(sd, wtl); | 
| 221 |  | 
| 222 | /* done with XML file */ | 
| 223 | ezxml_free(fl); | 
| 224 |  | 
| 225 | if (lastErr) {          /* was there a load error? */ | 
| 226 | SDfreeBSDF(sd); | 
| 227 | return lastErr; | 
| 228 | } | 
| 229 | /* remove any insignificant components */ | 
| 230 | if (sd->rf != NULL && sd->rf->maxHemi <= .001) { | 
| 231 | SDfreeSpectralDF(sd->rf); sd->rf = NULL; | 
| 232 | } | 
| 233 | if (sd->rb != NULL && sd->rb->maxHemi <= .001) { | 
| 234 | SDfreeSpectralDF(sd->rb); sd->rb = NULL; | 
| 235 | } | 
| 236 | if (sd->tf != NULL && sd->tf->maxHemi <= .001) { | 
| 237 | SDfreeSpectralDF(sd->tf); sd->tf = NULL; | 
| 238 | } | 
| 239 | if (sd->tb != NULL && sd->tb->maxHemi <= .001) { | 
| 240 | SDfreeSpectralDF(sd->tb); sd->tb = NULL; | 
| 241 | } | 
| 242 | /* return success */ | 
| 243 | return SDEnone; | 
| 244 | } | 
| 245 |  | 
| 246 | /* Allocate new spectral distribution function */ | 
| 247 | SDSpectralDF * | 
| 248 | SDnewSpectralDF(int nc) | 
| 249 | { | 
| 250 | SDSpectralDF    *df; | 
| 251 |  | 
| 252 | if (nc <= 0) { | 
| 253 | strcpy(SDerrorDetail, "Zero component spectral DF request"); | 
| 254 | return NULL; | 
| 255 | } | 
| 256 | df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) + | 
| 257 | (nc-1)*sizeof(SDComponent)); | 
| 258 | if (df == NULL) { | 
| 259 | sprintf(SDerrorDetail, | 
| 260 | "Cannot allocate %d component spectral DF", nc); | 
| 261 | return NULL; | 
| 262 | } | 
| 263 | df->minProjSA = .0; | 
| 264 | df->maxHemi = .0; | 
| 265 | df->ncomp = nc; | 
| 266 | memset(df->comp, 0, nc*sizeof(SDComponent)); | 
| 267 | return df; | 
| 268 | } | 
| 269 |  | 
| 270 | /* Add component(s) to spectral distribution function */ | 
| 271 | SDSpectralDF * | 
| 272 | SDaddComponent(SDSpectralDF *odf, int nadd) | 
| 273 | { | 
| 274 | SDSpectralDF    *df; | 
| 275 |  | 
| 276 | if (odf == NULL) | 
| 277 | return SDnewSpectralDF(nadd); | 
| 278 | if (nadd <= 0) | 
| 279 | return odf; | 
| 280 | df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) + | 
| 281 | (odf->ncomp+nadd-1)*sizeof(SDComponent)); | 
| 282 | if (df == NULL) { | 
| 283 | sprintf(SDerrorDetail, | 
| 284 | "Cannot add %d component(s) to spectral DF", nadd); | 
| 285 | SDfreeSpectralDF(odf); | 
| 286 | return NULL; | 
| 287 | } | 
| 288 | memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent)); | 
| 289 | df->ncomp += nadd; | 
| 290 | return df; | 
| 291 | } | 
| 292 |  | 
| 293 | /* Free cached cumulative distributions for BSDF component */ | 
| 294 | void | 
| 295 | SDfreeCumulativeCache(SDSpectralDF *df) | 
| 296 | { | 
| 297 | int     n; | 
| 298 | SDCDst  *cdp; | 
| 299 |  | 
| 300 | if (df == NULL) | 
| 301 | return; | 
| 302 | for (n = df->ncomp; n-- > 0; ) | 
| 303 | while ((cdp = df->comp[n].cdList) != NULL) { | 
| 304 | df->comp[n].cdList = cdp->next; | 
| 305 | free(cdp); | 
| 306 | } | 
| 307 | } | 
| 308 |  | 
| 309 | /* Free a spectral distribution function */ | 
| 310 | void | 
| 311 | SDfreeSpectralDF(SDSpectralDF *df) | 
| 312 | { | 
| 313 | int     n; | 
| 314 |  | 
| 315 | if (df == NULL) | 
| 316 | return; | 
| 317 | SDfreeCumulativeCache(df); | 
| 318 | for (n = df->ncomp; n-- > 0; ) | 
| 319 | if (df->comp[n].dist != NULL) | 
| 320 | (*df->comp[n].func->freeSC)(df->comp[n].dist); | 
| 321 | free(df); | 
| 322 | } | 
| 323 |  | 
| 324 | /* Shorten file path to useable BSDF name, removing suffix */ | 
| 325 | void | 
| 326 | SDclipName(char *res, const char *fname) | 
| 327 | { | 
| 328 | const char      *cp, *dot = NULL; | 
| 329 |  | 
| 330 | for (cp = fname; *cp; cp++) | 
| 331 | if (*cp == '.') | 
| 332 | dot = cp; | 
| 333 | if ((dot == NULL) | (dot < fname+2)) | 
| 334 | dot = cp; | 
| 335 | if (dot - fname >= SDnameLn) | 
| 336 | fname = dot - SDnameLn + 1; | 
| 337 | while (fname < dot) | 
| 338 | *res++ = *fname++; | 
| 339 | *res = '\0'; | 
| 340 | } | 
| 341 |  | 
| 342 | /* Initialize an unused BSDF struct (simply clears to zeroes) */ | 
| 343 | void | 
| 344 | SDclearBSDF(SDData *sd, const char *fname) | 
| 345 | { | 
| 346 | if (sd == NULL) | 
| 347 | return; | 
| 348 | memset(sd, 0, sizeof(SDData)); | 
| 349 | if (fname == NULL) | 
| 350 | return; | 
| 351 | SDclipName(sd->name, fname); | 
| 352 | } | 
| 353 |  | 
| 354 | /* Free data associated with BSDF struct */ | 
| 355 | void | 
| 356 | SDfreeBSDF(SDData *sd) | 
| 357 | { | 
| 358 | if (sd == NULL) | 
| 359 | return; | 
| 360 | if (sd->mgf != NULL) { | 
| 361 | free(sd->mgf); | 
| 362 | sd->mgf = NULL; | 
| 363 | } | 
| 364 | if (sd->rf != NULL) { | 
| 365 | SDfreeSpectralDF(sd->rf); | 
| 366 | sd->rf = NULL; | 
| 367 | } | 
| 368 | if (sd->rb != NULL) { | 
| 369 | SDfreeSpectralDF(sd->rb); | 
| 370 | sd->rb = NULL; | 
| 371 | } | 
| 372 | if (sd->tf != NULL) { | 
| 373 | SDfreeSpectralDF(sd->tf); | 
| 374 | sd->tf = NULL; | 
| 375 | } | 
| 376 | if (sd->tb != NULL) { | 
| 377 | SDfreeSpectralDF(sd->tb); | 
| 378 | sd->tb = NULL; | 
| 379 | } | 
| 380 | sd->rLambFront.cieY = .0; | 
| 381 | sd->rLambFront.spec.flags = 0; | 
| 382 | sd->rLambBack.cieY = .0; | 
| 383 | sd->rLambBack.spec.flags = 0; | 
| 384 | sd->tLambFront.cieY = .0; | 
| 385 | sd->tLambFront.spec.flags = 0; | 
| 386 | sd->tLambBack.cieY = .0; | 
| 387 | sd->tLambBack.spec.flags = 0; | 
| 388 | } | 
| 389 |  | 
| 390 | /* Find writeable BSDF by name, or allocate new cache entry if absent */ | 
| 391 | SDData * | 
| 392 | SDgetCache(const char *bname) | 
| 393 | { | 
| 394 | struct SDCache_s        *sdl; | 
| 395 | char                    sdnam[SDnameLn]; | 
| 396 |  | 
| 397 | if (bname == NULL) | 
| 398 | return NULL; | 
| 399 |  | 
| 400 | SDclipName(sdnam, bname); | 
| 401 | for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next) | 
| 402 | if (!strcmp(sdl->bsdf.name, sdnam)) { | 
| 403 | sdl->refcnt++; | 
| 404 | return &sdl->bsdf; | 
| 405 | } | 
| 406 |  | 
| 407 | sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s)); | 
| 408 | if (sdl == NULL) | 
| 409 | return NULL; | 
| 410 |  | 
| 411 | strcpy(sdl->bsdf.name, sdnam); | 
| 412 | sdl->next = SDcacheList; | 
| 413 | SDcacheList = sdl; | 
| 414 |  | 
| 415 | sdl->refcnt = 1; | 
| 416 | return &sdl->bsdf; | 
| 417 | } | 
| 418 |  | 
| 419 | /* Get loaded BSDF from cache (or load and cache it on first call) */ | 
| 420 | /* Report any problem to stderr and return NULL on failure */ | 
| 421 | const SDData * | 
| 422 | SDcacheFile(const char *fname) | 
| 423 | { | 
| 424 | SDData          *sd; | 
| 425 | SDError         ec; | 
| 426 |  | 
| 427 | if (fname == NULL || !*fname) | 
| 428 | return NULL; | 
| 429 | SDerrorDetail[0] = '\0'; | 
| 430 | /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ | 
| 431 | if ((sd = SDgetCache(fname)) == NULL) { | 
| 432 | SDreportError(SDEmemory, stderr); | 
| 433 | return NULL; | 
| 434 | } | 
| 435 | if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) { | 
| 436 | SDreportError(ec, stderr); | 
| 437 | SDfreeCache(sd); | 
| 438 | sd = NULL; | 
| 439 | } | 
| 440 | /* END MUTEX LOCK */ | 
| 441 | return sd; | 
| 442 | } | 
| 443 |  | 
| 444 | /* Free a BSDF from our cache (clear all if NULL) */ | 
| 445 | void | 
| 446 | SDfreeCache(const SDData *sd) | 
| 447 | { | 
| 448 | struct SDCache_s        *sdl, *sdLast = NULL; | 
| 449 |  | 
| 450 | if (sd == NULL) {               /* free entire list */ | 
| 451 | while ((sdl = SDcacheList) != NULL) { | 
| 452 | SDcacheList = sdl->next; | 
| 453 | SDfreeBSDF(&sdl->bsdf); | 
| 454 | free(sdl); | 
| 455 | } | 
| 456 | return; | 
| 457 | } | 
| 458 | for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next) | 
| 459 | if (&sdl->bsdf == sd) | 
| 460 | break; | 
| 461 | if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0))) | 
| 462 | return;                 /* missing or still in use */ | 
| 463 | /* keep unreferenced data? */ | 
| 464 | if (SDisLoaded(sd) && SDretainSet) { | 
| 465 | if (SDretainSet == SDretainAll) | 
| 466 | return;         /* keep everything */ | 
| 467 | /* else free cumulative data */ | 
| 468 | SDfreeCumulativeCache(sd->rf); | 
| 469 | SDfreeCumulativeCache(sd->rb); | 
| 470 | SDfreeCumulativeCache(sd->tf); | 
| 471 | SDfreeCumulativeCache(sd->tb); | 
| 472 | return; | 
| 473 | } | 
| 474 | /* remove from list and free */ | 
| 475 | if (sdLast == NULL) | 
| 476 | SDcacheList = sdl->next; | 
| 477 | else | 
| 478 | sdLast->next = sdl->next; | 
| 479 | SDfreeBSDF(&sdl->bsdf); | 
| 480 | free(sdl); | 
| 481 | } | 
| 482 |  | 
| 483 | /* Sample an individual BSDF component */ | 
| 484 | SDError | 
| 485 | SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc) | 
| 486 | { | 
| 487 | float           coef[SDmaxCh]; | 
| 488 | SDError         ec; | 
| 489 | FVECT           inVec; | 
| 490 | const SDCDst    *cd; | 
| 491 | double          d; | 
| 492 | int             n; | 
| 493 | /* check arguments */ | 
| 494 | if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL)) | 
| 495 | return SDEargument; | 
| 496 | /* get cumulative distribution */ | 
| 497 | VCOPY(inVec, ioVec); | 
| 498 | sv->cieY = 0; | 
| 499 | cd = (*sdc->func->getCDist)(inVec, sdc); | 
| 500 | if (cd != NULL) | 
| 501 | sv->cieY = cd->cTotal; | 
| 502 | if (sv->cieY <= 1e-6) {         /* nothing to sample? */ | 
| 503 | sv->spec = c_dfcolor; | 
| 504 | memset(ioVec, 0, sizeof(FVECT)); | 
| 505 | return SDEnone; | 
| 506 | } | 
| 507 | /* compute sample direction */ | 
| 508 | ec = (*sdc->func->sampCDist)(ioVec, randX, cd); | 
| 509 | if (ec) | 
| 510 | return ec; | 
| 511 | /* get BSDF color */ | 
| 512 | n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); | 
| 513 | if (n <= 0) { | 
| 514 | strcpy(SDerrorDetail, "BSDF sample value error"); | 
| 515 | return SDEinternal; | 
| 516 | } | 
| 517 | sv->spec = sdc->cspec[0]; | 
| 518 | d = coef[0]; | 
| 519 | while (--n) { | 
| 520 | c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]); | 
| 521 | d += coef[n]; | 
| 522 | } | 
| 523 | c_ccvt(&sv->spec, C_CSXY);      /* make sure (x,y) is set */ | 
| 524 | return SDEnone; | 
| 525 | } | 
| 526 |  | 
| 527 | #define MS_MAXDIM       15 | 
| 528 |  | 
| 529 | /* Convert 1-dimensional random variable to N-dimensional */ | 
| 530 | void | 
| 531 | SDmultiSamp(double t[], int n, double randX) | 
| 532 | { | 
| 533 | unsigned        nBits; | 
| 534 | double          scale; | 
| 535 | bitmask_t       ndx, coord[MS_MAXDIM]; | 
| 536 |  | 
| 537 | if (n <= 0)                     /* check corner cases */ | 
| 538 | return; | 
| 539 | if (randX < 0) randX = 0; | 
| 540 | else if (randX >= 1.) randX = 0.999999999999999; | 
| 541 | if (n == 1) { | 
| 542 | t[0] = randX; | 
| 543 | return; | 
| 544 | } | 
| 545 | while (n > MS_MAXDIM)           /* punt for higher dimensions */ | 
| 546 | t[--n] = rand()*(1./(RAND_MAX+.5)); | 
| 547 | nBits = (8*sizeof(bitmask_t) - 1) / n; | 
| 548 | ndx = randX * (double)((bitmask_t)1 << (nBits*n)); | 
| 549 | /* get coordinate on Hilbert curve */ | 
| 550 | hilbert_i2c(n, nBits, ndx, coord); | 
| 551 | /* convert back to [0,1) range */ | 
| 552 | scale = 1. / (double)((bitmask_t)1 << nBits); | 
| 553 | while (n--) | 
| 554 | t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5))); | 
| 555 | } | 
| 556 |  | 
| 557 | #undef MS_MAXDIM | 
| 558 |  | 
| 559 | /* Generate diffuse hemispherical sample */ | 
| 560 | static void | 
| 561 | SDdiffuseSamp(FVECT outVec, int outFront, double randX) | 
| 562 | { | 
| 563 | /* convert to position on hemisphere */ | 
| 564 | SDmultiSamp(outVec, 2, randX); | 
| 565 | SDsquare2disk(outVec, outVec[0], outVec[1]); | 
| 566 | outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1]; | 
| 567 | outVec[2] = sqrt(outVec[2]*(outVec[2]>0)); | 
| 568 | if (!outFront)                  /* going out back? */ | 
| 569 | outVec[2] = -outVec[2]; | 
| 570 | } | 
| 571 |  | 
| 572 | /* Query projected solid angle coverage for non-diffuse BSDF direction */ | 
| 573 | SDError | 
| 574 | SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2, | 
| 575 | int qflags, const SDData *sd) | 
| 576 | { | 
| 577 | SDSpectralDF    *rdf, *tdf; | 
| 578 | SDError         ec; | 
| 579 | int             i; | 
| 580 | /* check arguments */ | 
| 581 | if ((projSA == NULL) | (v1 == NULL) | (sd == NULL)) | 
| 582 | return SDEargument; | 
| 583 | /* initialize extrema */ | 
| 584 | switch (qflags) { | 
| 585 | case SDqueryMax: | 
| 586 | projSA[0] = .0; | 
| 587 | break; | 
| 588 | case SDqueryMin+SDqueryMax: | 
| 589 | projSA[1] = .0; | 
| 590 | /* fall through */ | 
| 591 | case SDqueryMin: | 
| 592 | projSA[0] = 10.; | 
| 593 | break; | 
| 594 | case 0: | 
| 595 | return SDEargument; | 
| 596 | } | 
| 597 | if (v1[2] > 0) {                /* front surface query? */ | 
| 598 | rdf = sd->rf; | 
| 599 | tdf = (sd->tf != NULL) ? sd->tf : sd->tb; | 
| 600 | } else { | 
| 601 | rdf = sd->rb; | 
| 602 | tdf = (sd->tb != NULL) ? sd->tb : sd->tf; | 
| 603 | } | 
| 604 | if (v2 != NULL) {               /* bidirectional? */ | 
| 605 | if (v1[2] > 0 ^ v2[2] > 0) | 
| 606 | rdf = NULL; | 
| 607 | else | 
| 608 | tdf = NULL; | 
| 609 | } | 
| 610 | ec = SDEdata;                   /* run through components */ | 
| 611 | for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) { | 
| 612 | ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2, | 
| 613 | qflags, &rdf->comp[i]); | 
| 614 | if (ec) | 
| 615 | return ec; | 
| 616 | } | 
| 617 | for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) { | 
| 618 | ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2, | 
| 619 | qflags, &tdf->comp[i]); | 
| 620 | if (ec) | 
| 621 | return ec; | 
| 622 | } | 
| 623 | if (ec) {                       /* all diffuse? */ | 
| 624 | projSA[0] = M_PI; | 
| 625 | if (qflags == SDqueryMin+SDqueryMax) | 
| 626 | projSA[1] = M_PI; | 
| 627 | } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1]) | 
| 628 | projSA[0] = projSA[1]; | 
| 629 | return SDEnone; | 
| 630 | } | 
| 631 |  | 
| 632 | /* Return BSDF for the given incident and scattered ray vectors */ | 
| 633 | SDError | 
| 634 | SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd) | 
| 635 | { | 
| 636 | int             inFront, outFront; | 
| 637 | SDSpectralDF    *sdf; | 
| 638 | float           coef[SDmaxCh]; | 
| 639 | int             nch, i; | 
| 640 | /* check arguments */ | 
| 641 | if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL)) | 
| 642 | return SDEargument; | 
| 643 | /* whose side are we on? */ | 
| 644 | inFront = (inVec[2] > 0); | 
| 645 | outFront = (outVec[2] > 0); | 
| 646 | /* start with diffuse portion */ | 
| 647 | if (inFront & outFront) { | 
| 648 | *sv = sd->rLambFront; | 
| 649 | sdf = sd->rf; | 
| 650 | } else if (!(inFront | outFront)) { | 
| 651 | *sv = sd->rLambBack; | 
| 652 | sdf = sd->rb; | 
| 653 | } else if (inFront) { | 
| 654 | *sv = sd->tLambFront; | 
| 655 | sdf = (sd->tf != NULL) ? sd->tf : sd->tb; | 
| 656 | } else /* outFront & !inFront */ { | 
| 657 | *sv = sd->tLambBack; | 
| 658 | sdf = (sd->tb != NULL) ? sd->tb : sd->tf; | 
| 659 | } | 
| 660 | sv->cieY *= 1./M_PI; | 
| 661 | /* add non-diffuse components */ | 
| 662 | i = (sdf != NULL) ? sdf->ncomp : 0; | 
| 663 | while (i-- > 0) { | 
| 664 | nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec, | 
| 665 | &sdf->comp[i]); | 
| 666 | while (nch-- > 0) { | 
| 667 | c_cmix(&sv->spec, sv->cieY, &sv->spec, | 
| 668 | coef[nch], &sdf->comp[i].cspec[nch]); | 
| 669 | sv->cieY += coef[nch]; | 
| 670 | } | 
| 671 | } | 
| 672 | c_ccvt(&sv->spec, C_CSXY);      /* make sure (x,y) is set */ | 
| 673 | return SDEnone; | 
| 674 | } | 
| 675 |  | 
| 676 | /* Compute directional hemispherical scattering at this incident angle */ | 
| 677 | double | 
| 678 | SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd) | 
| 679 | { | 
| 680 | double          hsum; | 
| 681 | SDSpectralDF    *rdf, *tdf; | 
| 682 | const SDCDst    *cd; | 
| 683 | int             i; | 
| 684 | /* check arguments */ | 
| 685 | if ((inVec == NULL) | (sd == NULL)) | 
| 686 | return .0; | 
| 687 | /* gather diffuse components */ | 
| 688 | if (inVec[2] > 0) { | 
| 689 | hsum = sd->rLambFront.cieY; | 
| 690 | rdf = sd->rf; | 
| 691 | tdf = (sd->tf != NULL) ? sd->tf : sd->tb; | 
| 692 | } else /* !inFront */ { | 
| 693 | hsum = sd->rLambBack.cieY; | 
| 694 | rdf = sd->rb; | 
| 695 | tdf = (sd->tb != NULL) ? sd->tb : sd->tf; | 
| 696 | } | 
| 697 | if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) | 
| 698 | hsum = .0; | 
| 699 | if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) | 
| 700 | hsum += (inVec[2] > 0) ? | 
| 701 | sd->tLambFront.cieY : sd->tLambBack.cieY; | 
| 702 | /* gather non-diffuse components */ | 
| 703 | i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & | 
| 704 | (rdf != NULL)) ? rdf->ncomp : 0; | 
| 705 | while (i-- > 0) {               /* non-diffuse reflection */ | 
| 706 | cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); | 
| 707 | if (cd != NULL) | 
| 708 | hsum += cd->cTotal; | 
| 709 | } | 
| 710 | i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & | 
| 711 | (tdf != NULL)) ? tdf->ncomp : 0; | 
| 712 | while (i-- > 0) {               /* non-diffuse transmission */ | 
| 713 | cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]); | 
| 714 | if (cd != NULL) | 
| 715 | hsum += cd->cTotal; | 
| 716 | } | 
| 717 | return hsum; | 
| 718 | } | 
| 719 |  | 
| 720 | /* Sample BSDF direction based on the given random variable */ | 
| 721 | SDError | 
| 722 | SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd) | 
| 723 | { | 
| 724 | SDError         ec; | 
| 725 | FVECT           inVec; | 
| 726 | int             inFront; | 
| 727 | SDSpectralDF    *rdf, *tdf; | 
| 728 | double          rdiff; | 
| 729 | float           coef[SDmaxCh]; | 
| 730 | int             i, j, n, nr; | 
| 731 | SDComponent     *sdc; | 
| 732 | const SDCDst    **cdarr = NULL; | 
| 733 | /* check arguments */ | 
| 734 | if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) | | 
| 735 | (randX < 0) | (randX >= 1.)) | 
| 736 | return SDEargument; | 
| 737 | /* whose side are we on? */ | 
| 738 | VCOPY(inVec, ioVec); | 
| 739 | inFront = (inVec[2] > 0); | 
| 740 | /* remember diffuse portions */ | 
| 741 | if (inFront) { | 
| 742 | *sv = sd->rLambFront; | 
| 743 | rdf = sd->rf; | 
| 744 | tdf = (sd->tf != NULL) ? sd->tf : sd->tb; | 
| 745 | } else /* !inFront */ { | 
| 746 | *sv = sd->rLambBack; | 
| 747 | rdf = sd->rb; | 
| 748 | tdf = (sd->tb != NULL) ? sd->tb : sd->tf; | 
| 749 | } | 
| 750 | if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) | 
| 751 | sv->cieY = .0; | 
| 752 | rdiff = sv->cieY; | 
| 753 | if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) | 
| 754 | sv->cieY += inFront ? sd->tLambFront.cieY : sd->tLambBack.cieY; | 
| 755 | /* gather non-diffuse components */ | 
| 756 | i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & | 
| 757 | (rdf != NULL)) ? rdf->ncomp : 0; | 
| 758 | j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & | 
| 759 | (tdf != NULL)) ? tdf->ncomp : 0; | 
| 760 | n = i + j; | 
| 761 | if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL) | 
| 762 | return SDEmemory; | 
| 763 | while (j-- > 0) {               /* non-diffuse transmission */ | 
| 764 | cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]); | 
| 765 | if (cdarr[i+j] == NULL) | 
| 766 | cdarr[i+j] = &SDemptyCD; | 
| 767 | sv->cieY += cdarr[i+j]->cTotal; | 
| 768 | } | 
| 769 | while (i-- > 0) {               /* non-diffuse reflection */ | 
| 770 | cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); | 
| 771 | if (cdarr[i] == NULL) | 
| 772 | cdarr[i] = &SDemptyCD; | 
| 773 | sv->cieY += cdarr[i]->cTotal; | 
| 774 | } | 
| 775 | if (sv->cieY <= 1e-6) {         /* anything to sample? */ | 
| 776 | sv->cieY = .0; | 
| 777 | memset(ioVec, 0, sizeof(FVECT)); | 
| 778 | return SDEnone; | 
| 779 | } | 
| 780 | /* scale random variable */ | 
| 781 | randX *= sv->cieY; | 
| 782 | /* diffuse reflection? */ | 
| 783 | if (randX < rdiff) { | 
| 784 | SDdiffuseSamp(ioVec, inFront, randX/rdiff); | 
| 785 | goto done; | 
| 786 | } | 
| 787 | randX -= rdiff; | 
| 788 | /* diffuse transmission? */ | 
| 789 | if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) { | 
| 790 | const SDValue   *sdt = inFront ? &sd->tLambFront : &sd->tLambBack; | 
| 791 | if (randX < sdt->cieY) { | 
| 792 | sv->spec = sdt->spec; | 
| 793 | SDdiffuseSamp(ioVec, !inFront, randX/sdt->cieY); | 
| 794 | goto done; | 
| 795 | } | 
| 796 | randX -= sdt->cieY; | 
| 797 | } | 
| 798 | /* else one of cumulative dist. */ | 
| 799 | for (i = 0; i < n && randX >= cdarr[i]->cTotal; i++) | 
| 800 | randX -= cdarr[i]->cTotal; | 
| 801 | if (i >= n) | 
| 802 | return SDEinternal; | 
| 803 | /* compute sample direction */ | 
| 804 | sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr]; | 
| 805 | ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]); | 
| 806 | if (ec) | 
| 807 | return ec; | 
| 808 | /* compute color */ | 
| 809 | j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); | 
| 810 | if (j <= 0) { | 
| 811 | sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error", | 
| 812 | sd->name); | 
| 813 | return SDEinternal; | 
| 814 | } | 
| 815 | sv->spec = sdc->cspec[0]; | 
| 816 | rdiff = coef[0]; | 
| 817 | while (--j) { | 
| 818 | c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]); | 
| 819 | rdiff += coef[j]; | 
| 820 | } | 
| 821 | done: | 
| 822 | if (cdarr != NULL) | 
| 823 | free(cdarr); | 
| 824 | c_ccvt(&sv->spec, C_CSXY);      /* make sure (x,y) is set */ | 
| 825 | return SDEnone; | 
| 826 | } | 
| 827 |  | 
| 828 | /* Compute World->BSDF transform from surface normal and up (Y) vector */ | 
| 829 | SDError | 
| 830 | SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec) | 
| 831 | { | 
| 832 | if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL)) | 
| 833 | return SDEargument; | 
| 834 | VCOPY(vMtx[2], sNrm); | 
| 835 | if (normalize(vMtx[2]) == 0) | 
| 836 | return SDEargument; | 
| 837 | fcross(vMtx[0], uVec, vMtx[2]); | 
| 838 | if (normalize(vMtx[0]) == 0) | 
| 839 | return SDEargument; | 
| 840 | fcross(vMtx[1], vMtx[2], vMtx[0]); | 
| 841 | return SDEnone; | 
| 842 | } | 
| 843 |  | 
| 844 | /* Compute inverse transform */ | 
| 845 | SDError | 
| 846 | SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3]) | 
| 847 | { | 
| 848 | RREAL   mTmp[3][3]; | 
| 849 | double  d; | 
| 850 |  | 
| 851 | if ((iMtx == NULL) | (vMtx == NULL)) | 
| 852 | return SDEargument; | 
| 853 | /* compute determinant */ | 
| 854 | mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2]; | 
| 855 | mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1]; | 
| 856 | mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2]; | 
| 857 | d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2]; | 
| 858 | if (d == 0) { | 
| 859 | strcpy(SDerrorDetail, "Zero determinant in matrix inversion"); | 
| 860 | return SDEargument; | 
| 861 | } | 
| 862 | d = 1./d;                       /* invert matrix */ | 
| 863 | mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d; | 
| 864 | mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]); | 
| 865 | mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]); | 
| 866 | mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]); | 
| 867 | mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]); | 
| 868 | mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]); | 
| 869 | mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]); | 
| 870 | memcpy(iMtx, mTmp, sizeof(mTmp)); | 
| 871 | return SDEnone; | 
| 872 | } | 
| 873 |  | 
| 874 | /* Transform and normalize direction (column) vector */ | 
| 875 | SDError | 
| 876 | SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec) | 
| 877 | { | 
| 878 | FVECT   vTmp; | 
| 879 |  | 
| 880 | if ((resVec == NULL) | (inpVec == NULL)) | 
| 881 | return SDEargument; | 
| 882 | if (vMtx == NULL) {             /* assume they just want to normalize */ | 
| 883 | if (resVec != inpVec) | 
| 884 | VCOPY(resVec, inpVec); | 
| 885 | return (normalize(resVec) > 0) ? SDEnone : SDEargument; | 
| 886 | } | 
| 887 | vTmp[0] = DOT(vMtx[0], inpVec); | 
| 888 | vTmp[1] = DOT(vMtx[1], inpVec); | 
| 889 | vTmp[2] = DOT(vMtx[2], inpVec); | 
| 890 | if (normalize(vTmp) == 0) | 
| 891 | return SDEargument; | 
| 892 | VCOPY(resVec, vTmp); | 
| 893 | return SDEnone; | 
| 894 | } |