| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: bsdf.c,v 2.53 2017/02/02 04:46:38 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* bsdf.c
|
| 6 |
*
|
| 7 |
* Definitions for bidirectional scattering distribution functions.
|
| 8 |
*
|
| 9 |
* Created by Greg Ward on 1/10/11.
|
| 10 |
*
|
| 11 |
*/
|
| 12 |
|
| 13 |
#define _USE_MATH_DEFINES
|
| 14 |
#include <stdio.h>
|
| 15 |
#include <stdlib.h>
|
| 16 |
#include <string.h>
|
| 17 |
#include <math.h>
|
| 18 |
#include <ctype.h>
|
| 19 |
#include "ezxml.h"
|
| 20 |
#include "hilbert.h"
|
| 21 |
#include "bsdf.h"
|
| 22 |
#include "bsdf_m.h"
|
| 23 |
#include "bsdf_t.h"
|
| 24 |
|
| 25 |
/* English ASCII strings corresponding to ennumerated errors */
|
| 26 |
const char *SDerrorEnglish[] = {
|
| 27 |
"No error",
|
| 28 |
"Memory error",
|
| 29 |
"File input/output error",
|
| 30 |
"File format error",
|
| 31 |
"Illegal argument",
|
| 32 |
"Invalid data",
|
| 33 |
"Unsupported feature",
|
| 34 |
"Internal program error",
|
| 35 |
"Unknown error"
|
| 36 |
};
|
| 37 |
|
| 38 |
/* Pointer to error list in preferred language */
|
| 39 |
const char **SDerrorList = SDerrorEnglish;
|
| 40 |
|
| 41 |
/* Additional information on last error (ASCII English) */
|
| 42 |
char SDerrorDetail[256];
|
| 43 |
|
| 44 |
/* Empty distribution for getCDist() calls that fail for some reason */
|
| 45 |
const SDCDst SDemptyCD;
|
| 46 |
|
| 47 |
/* Cache of loaded BSDFs */
|
| 48 |
struct SDCache_s *SDcacheList = NULL;
|
| 49 |
|
| 50 |
/* Retain BSDFs in cache list */
|
| 51 |
int SDretainSet = SDretainNone;
|
| 52 |
|
| 53 |
/* Report any error to the indicated stream */
|
| 54 |
SDError
|
| 55 |
SDreportError(SDError ec, FILE *fp)
|
| 56 |
{
|
| 57 |
if (!ec)
|
| 58 |
return SDEnone;
|
| 59 |
if ((ec < SDEnone) | (ec > SDEunknown)) {
|
| 60 |
SDerrorDetail[0] = '\0';
|
| 61 |
ec = SDEunknown;
|
| 62 |
}
|
| 63 |
if (fp == NULL)
|
| 64 |
return ec;
|
| 65 |
fputs(SDerrorList[ec], fp);
|
| 66 |
if (SDerrorDetail[0]) {
|
| 67 |
fputs(": ", fp);
|
| 68 |
fputs(SDerrorDetail, fp);
|
| 69 |
}
|
| 70 |
fputc('\n', fp);
|
| 71 |
if (fp != stderr)
|
| 72 |
fflush(fp);
|
| 73 |
return ec;
|
| 74 |
}
|
| 75 |
|
| 76 |
static double
|
| 77 |
to_meters( /* return factor to convert given unit to meters */
|
| 78 |
const char *unit
|
| 79 |
)
|
| 80 |
{
|
| 81 |
if (unit == NULL) return(1.); /* safe assumption? */
|
| 82 |
if (!strcasecmp(unit, "Meter")) return(1.);
|
| 83 |
if (!strcasecmp(unit, "Foot")) return(.3048);
|
| 84 |
if (!strcasecmp(unit, "Inch")) return(.0254);
|
| 85 |
if (!strcasecmp(unit, "Centimeter")) return(.01);
|
| 86 |
if (!strcasecmp(unit, "Millimeter")) return(.001);
|
| 87 |
sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
|
| 88 |
return(-1.);
|
| 89 |
}
|
| 90 |
|
| 91 |
/* Load geometric dimensions and description (if any) */
|
| 92 |
static SDError
|
| 93 |
SDloadGeometry(SDData *sd, ezxml_t wtl)
|
| 94 |
{
|
| 95 |
ezxml_t node, matl, geom;
|
| 96 |
double cfact;
|
| 97 |
const char *fmt = NULL, *mgfstr;
|
| 98 |
|
| 99 |
SDerrorDetail[0] = '\0';
|
| 100 |
sd->matn[0] = '\0'; sd->makr[0] = '\0';
|
| 101 |
sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
|
| 102 |
matl = ezxml_child(wtl, "Material");
|
| 103 |
if (matl != NULL) { /* get material info. */
|
| 104 |
if ((node = ezxml_child(matl, "Name")) != NULL) {
|
| 105 |
strncpy(sd->matn, ezxml_txt(node), SDnameLn);
|
| 106 |
if (sd->matn[SDnameLn-1])
|
| 107 |
strcpy(sd->matn+(SDnameLn-4), "...");
|
| 108 |
}
|
| 109 |
if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
|
| 110 |
strncpy(sd->makr, ezxml_txt(node), SDnameLn);
|
| 111 |
if (sd->makr[SDnameLn-1])
|
| 112 |
strcpy(sd->makr+(SDnameLn-4), "...");
|
| 113 |
}
|
| 114 |
if ((node = ezxml_child(matl, "Width")) != NULL)
|
| 115 |
sd->dim[0] = atof(ezxml_txt(node)) *
|
| 116 |
to_meters(ezxml_attr(node, "unit"));
|
| 117 |
if ((node = ezxml_child(matl, "Height")) != NULL)
|
| 118 |
sd->dim[1] = atof(ezxml_txt(node)) *
|
| 119 |
to_meters(ezxml_attr(node, "unit"));
|
| 120 |
if ((node = ezxml_child(matl, "Thickness")) != NULL)
|
| 121 |
sd->dim[2] = atof(ezxml_txt(node)) *
|
| 122 |
to_meters(ezxml_attr(node, "unit"));
|
| 123 |
if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
|
| 124 |
if (!SDerrorDetail[0])
|
| 125 |
sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
|
| 126 |
sd->name);
|
| 127 |
return SDEdata;
|
| 128 |
}
|
| 129 |
}
|
| 130 |
sd->mgf = NULL;
|
| 131 |
geom = ezxml_child(wtl, "Geometry");
|
| 132 |
if (geom == NULL) /* no actual geometry? */
|
| 133 |
return SDEnone;
|
| 134 |
fmt = ezxml_attr(geom, "format");
|
| 135 |
if (fmt != NULL && strcasecmp(fmt, "MGF")) {
|
| 136 |
sprintf(SDerrorDetail,
|
| 137 |
"Unrecognized geometry format '%s' in \"%s\"",
|
| 138 |
fmt, sd->name);
|
| 139 |
return SDEsupport;
|
| 140 |
}
|
| 141 |
if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
|
| 142 |
(mgfstr = ezxml_txt(node)) == NULL)
|
| 143 |
return SDEnone;
|
| 144 |
while (isspace(*mgfstr))
|
| 145 |
++mgfstr;
|
| 146 |
if (!*mgfstr)
|
| 147 |
return SDEnone;
|
| 148 |
cfact = to_meters(ezxml_attr(node, "unit"));
|
| 149 |
if (cfact <= 0)
|
| 150 |
return SDEformat;
|
| 151 |
sd->mgf = (char *)malloc(strlen(mgfstr)+32);
|
| 152 |
if (sd->mgf == NULL) {
|
| 153 |
strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
|
| 154 |
return SDEmemory;
|
| 155 |
}
|
| 156 |
if (cfact < 0.99 || cfact > 1.01)
|
| 157 |
sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
|
| 158 |
else
|
| 159 |
strcpy(sd->mgf, mgfstr);
|
| 160 |
return SDEnone;
|
| 161 |
}
|
| 162 |
|
| 163 |
/* Load a BSDF struct from the given file (free first and keep name) */
|
| 164 |
SDError
|
| 165 |
SDloadFile(SDData *sd, const char *fname)
|
| 166 |
{
|
| 167 |
SDError lastErr;
|
| 168 |
ezxml_t fl, wtl;
|
| 169 |
|
| 170 |
if ((sd == NULL) | (fname == NULL || !*fname))
|
| 171 |
return SDEargument;
|
| 172 |
/* free old data, keeping name */
|
| 173 |
SDfreeBSDF(sd);
|
| 174 |
/* parse XML file */
|
| 175 |
fl = ezxml_parse_file(fname);
|
| 176 |
if (fl == NULL) {
|
| 177 |
sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
|
| 178 |
return SDEfile;
|
| 179 |
}
|
| 180 |
if (ezxml_error(fl)[0]) {
|
| 181 |
sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
|
| 182 |
ezxml_free(fl);
|
| 183 |
return SDEformat;
|
| 184 |
}
|
| 185 |
if (strcmp(ezxml_name(fl), "WindowElement")) {
|
| 186 |
sprintf(SDerrorDetail,
|
| 187 |
"BSDF \"%s\": top level node not 'WindowElement'",
|
| 188 |
sd->name);
|
| 189 |
ezxml_free(fl);
|
| 190 |
return SDEformat;
|
| 191 |
}
|
| 192 |
wtl = ezxml_child(fl, "FileType");
|
| 193 |
if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
|
| 194 |
sprintf(SDerrorDetail,
|
| 195 |
"XML \"%s\": wrong FileType (must be 'BSDF')",
|
| 196 |
sd->name);
|
| 197 |
ezxml_free(fl);
|
| 198 |
return SDEformat;
|
| 199 |
}
|
| 200 |
wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
|
| 201 |
if (wtl == NULL) {
|
| 202 |
sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers",
|
| 203 |
sd->name);
|
| 204 |
ezxml_free(fl);
|
| 205 |
return SDEformat;
|
| 206 |
}
|
| 207 |
/* load geometry if present */
|
| 208 |
lastErr = SDloadGeometry(sd, wtl);
|
| 209 |
if (lastErr) {
|
| 210 |
ezxml_free(fl);
|
| 211 |
return lastErr;
|
| 212 |
}
|
| 213 |
/* try loading variable resolution data */
|
| 214 |
lastErr = SDloadTre(sd, wtl);
|
| 215 |
/* check our result */
|
| 216 |
if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
|
| 217 |
lastErr = SDloadMtx(sd, wtl);
|
| 218 |
|
| 219 |
/* done with XML file */
|
| 220 |
ezxml_free(fl);
|
| 221 |
|
| 222 |
if (lastErr) { /* was there a load error? */
|
| 223 |
SDfreeBSDF(sd);
|
| 224 |
return lastErr;
|
| 225 |
}
|
| 226 |
/* remove any insignificant components */
|
| 227 |
if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
|
| 228 |
SDfreeSpectralDF(sd->rf); sd->rf = NULL;
|
| 229 |
}
|
| 230 |
if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
|
| 231 |
SDfreeSpectralDF(sd->rb); sd->rb = NULL;
|
| 232 |
}
|
| 233 |
if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
|
| 234 |
SDfreeSpectralDF(sd->tf); sd->tf = NULL;
|
| 235 |
}
|
| 236 |
if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
|
| 237 |
SDfreeSpectralDF(sd->tb); sd->tb = NULL;
|
| 238 |
}
|
| 239 |
/* return success */
|
| 240 |
return SDEnone;
|
| 241 |
}
|
| 242 |
|
| 243 |
/* Allocate new spectral distribution function */
|
| 244 |
SDSpectralDF *
|
| 245 |
SDnewSpectralDF(int nc)
|
| 246 |
{
|
| 247 |
SDSpectralDF *df;
|
| 248 |
|
| 249 |
if (nc <= 0) {
|
| 250 |
strcpy(SDerrorDetail, "Zero component spectral DF request");
|
| 251 |
return NULL;
|
| 252 |
}
|
| 253 |
df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
|
| 254 |
(nc-1)*sizeof(SDComponent));
|
| 255 |
if (df == NULL) {
|
| 256 |
sprintf(SDerrorDetail,
|
| 257 |
"Cannot allocate %d component spectral DF", nc);
|
| 258 |
return NULL;
|
| 259 |
}
|
| 260 |
df->minProjSA = .0;
|
| 261 |
df->maxHemi = .0;
|
| 262 |
df->ncomp = nc;
|
| 263 |
memset(df->comp, 0, nc*sizeof(SDComponent));
|
| 264 |
return df;
|
| 265 |
}
|
| 266 |
|
| 267 |
/* Add component(s) to spectral distribution function */
|
| 268 |
SDSpectralDF *
|
| 269 |
SDaddComponent(SDSpectralDF *odf, int nadd)
|
| 270 |
{
|
| 271 |
SDSpectralDF *df;
|
| 272 |
|
| 273 |
if (odf == NULL)
|
| 274 |
return SDnewSpectralDF(nadd);
|
| 275 |
if (nadd <= 0)
|
| 276 |
return odf;
|
| 277 |
df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
|
| 278 |
(odf->ncomp+nadd-1)*sizeof(SDComponent));
|
| 279 |
if (df == NULL) {
|
| 280 |
sprintf(SDerrorDetail,
|
| 281 |
"Cannot add %d component(s) to spectral DF", nadd);
|
| 282 |
SDfreeSpectralDF(odf);
|
| 283 |
return NULL;
|
| 284 |
}
|
| 285 |
memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
|
| 286 |
df->ncomp += nadd;
|
| 287 |
return df;
|
| 288 |
}
|
| 289 |
|
| 290 |
/* Free cached cumulative distributions for BSDF component */
|
| 291 |
void
|
| 292 |
SDfreeCumulativeCache(SDSpectralDF *df)
|
| 293 |
{
|
| 294 |
int n;
|
| 295 |
SDCDst *cdp;
|
| 296 |
|
| 297 |
if (df == NULL)
|
| 298 |
return;
|
| 299 |
for (n = df->ncomp; n-- > 0; )
|
| 300 |
while ((cdp = df->comp[n].cdList) != NULL) {
|
| 301 |
df->comp[n].cdList = cdp->next;
|
| 302 |
free(cdp);
|
| 303 |
}
|
| 304 |
}
|
| 305 |
|
| 306 |
/* Free a spectral distribution function */
|
| 307 |
void
|
| 308 |
SDfreeSpectralDF(SDSpectralDF *df)
|
| 309 |
{
|
| 310 |
int n;
|
| 311 |
|
| 312 |
if (df == NULL)
|
| 313 |
return;
|
| 314 |
SDfreeCumulativeCache(df);
|
| 315 |
for (n = df->ncomp; n-- > 0; )
|
| 316 |
if (df->comp[n].dist != NULL)
|
| 317 |
(*df->comp[n].func->freeSC)(df->comp[n].dist);
|
| 318 |
free(df);
|
| 319 |
}
|
| 320 |
|
| 321 |
/* Shorten file path to useable BSDF name, removing suffix */
|
| 322 |
void
|
| 323 |
SDclipName(char *res, const char *fname)
|
| 324 |
{
|
| 325 |
const char *cp, *dot = NULL;
|
| 326 |
|
| 327 |
for (cp = fname; *cp; cp++)
|
| 328 |
if (*cp == '.')
|
| 329 |
dot = cp;
|
| 330 |
if ((dot == NULL) | (dot < fname+2))
|
| 331 |
dot = cp;
|
| 332 |
if (dot - fname >= SDnameLn)
|
| 333 |
fname = dot - SDnameLn + 1;
|
| 334 |
while (fname < dot)
|
| 335 |
*res++ = *fname++;
|
| 336 |
*res = '\0';
|
| 337 |
}
|
| 338 |
|
| 339 |
/* Initialize an unused BSDF struct (simply clears to zeroes) */
|
| 340 |
void
|
| 341 |
SDclearBSDF(SDData *sd, const char *fname)
|
| 342 |
{
|
| 343 |
if (sd == NULL)
|
| 344 |
return;
|
| 345 |
memset(sd, 0, sizeof(SDData));
|
| 346 |
if (fname == NULL)
|
| 347 |
return;
|
| 348 |
SDclipName(sd->name, fname);
|
| 349 |
}
|
| 350 |
|
| 351 |
/* Free data associated with BSDF struct */
|
| 352 |
void
|
| 353 |
SDfreeBSDF(SDData *sd)
|
| 354 |
{
|
| 355 |
if (sd == NULL)
|
| 356 |
return;
|
| 357 |
if (sd->mgf != NULL) {
|
| 358 |
free(sd->mgf);
|
| 359 |
sd->mgf = NULL;
|
| 360 |
}
|
| 361 |
if (sd->rf != NULL) {
|
| 362 |
SDfreeSpectralDF(sd->rf);
|
| 363 |
sd->rf = NULL;
|
| 364 |
}
|
| 365 |
if (sd->rb != NULL) {
|
| 366 |
SDfreeSpectralDF(sd->rb);
|
| 367 |
sd->rb = NULL;
|
| 368 |
}
|
| 369 |
if (sd->tf != NULL) {
|
| 370 |
SDfreeSpectralDF(sd->tf);
|
| 371 |
sd->tf = NULL;
|
| 372 |
}
|
| 373 |
if (sd->tb != NULL) {
|
| 374 |
SDfreeSpectralDF(sd->tb);
|
| 375 |
sd->tb = NULL;
|
| 376 |
}
|
| 377 |
sd->rLambFront.cieY = .0;
|
| 378 |
sd->rLambFront.spec.flags = 0;
|
| 379 |
sd->rLambBack.cieY = .0;
|
| 380 |
sd->rLambBack.spec.flags = 0;
|
| 381 |
sd->tLamb.cieY = .0;
|
| 382 |
sd->tLamb.spec.flags = 0;
|
| 383 |
}
|
| 384 |
|
| 385 |
/* Find writeable BSDF by name, or allocate new cache entry if absent */
|
| 386 |
SDData *
|
| 387 |
SDgetCache(const char *bname)
|
| 388 |
{
|
| 389 |
struct SDCache_s *sdl;
|
| 390 |
char sdnam[SDnameLn];
|
| 391 |
|
| 392 |
if (bname == NULL)
|
| 393 |
return NULL;
|
| 394 |
|
| 395 |
SDclipName(sdnam, bname);
|
| 396 |
for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
|
| 397 |
if (!strcmp(sdl->bsdf.name, sdnam)) {
|
| 398 |
sdl->refcnt++;
|
| 399 |
return &sdl->bsdf;
|
| 400 |
}
|
| 401 |
|
| 402 |
sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
|
| 403 |
if (sdl == NULL)
|
| 404 |
return NULL;
|
| 405 |
|
| 406 |
strcpy(sdl->bsdf.name, sdnam);
|
| 407 |
sdl->next = SDcacheList;
|
| 408 |
SDcacheList = sdl;
|
| 409 |
|
| 410 |
sdl->refcnt = 1;
|
| 411 |
return &sdl->bsdf;
|
| 412 |
}
|
| 413 |
|
| 414 |
/* Get loaded BSDF from cache (or load and cache it on first call) */
|
| 415 |
/* Report any problem to stderr and return NULL on failure */
|
| 416 |
const SDData *
|
| 417 |
SDcacheFile(const char *fname)
|
| 418 |
{
|
| 419 |
SDData *sd;
|
| 420 |
SDError ec;
|
| 421 |
|
| 422 |
if (fname == NULL || !*fname)
|
| 423 |
return NULL;
|
| 424 |
SDerrorDetail[0] = '\0';
|
| 425 |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
|
| 426 |
if ((sd = SDgetCache(fname)) == NULL) {
|
| 427 |
SDreportError(SDEmemory, stderr);
|
| 428 |
return NULL;
|
| 429 |
}
|
| 430 |
if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
|
| 431 |
SDreportError(ec, stderr);
|
| 432 |
SDfreeCache(sd);
|
| 433 |
sd = NULL;
|
| 434 |
}
|
| 435 |
/* END MUTEX LOCK */
|
| 436 |
return sd;
|
| 437 |
}
|
| 438 |
|
| 439 |
/* Free a BSDF from our cache (clear all if NULL) */
|
| 440 |
void
|
| 441 |
SDfreeCache(const SDData *sd)
|
| 442 |
{
|
| 443 |
struct SDCache_s *sdl, *sdLast = NULL;
|
| 444 |
|
| 445 |
if (sd == NULL) { /* free entire list */
|
| 446 |
while ((sdl = SDcacheList) != NULL) {
|
| 447 |
SDcacheList = sdl->next;
|
| 448 |
SDfreeBSDF(&sdl->bsdf);
|
| 449 |
free(sdl);
|
| 450 |
}
|
| 451 |
return;
|
| 452 |
}
|
| 453 |
for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
|
| 454 |
if (&sdl->bsdf == sd)
|
| 455 |
break;
|
| 456 |
if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
|
| 457 |
return; /* missing or still in use */
|
| 458 |
/* keep unreferenced data? */
|
| 459 |
if (SDisLoaded(sd) && SDretainSet) {
|
| 460 |
if (SDretainSet == SDretainAll)
|
| 461 |
return; /* keep everything */
|
| 462 |
/* else free cumulative data */
|
| 463 |
SDfreeCumulativeCache(sd->rf);
|
| 464 |
SDfreeCumulativeCache(sd->rb);
|
| 465 |
SDfreeCumulativeCache(sd->tf);
|
| 466 |
SDfreeCumulativeCache(sd->tb);
|
| 467 |
return;
|
| 468 |
}
|
| 469 |
/* remove from list and free */
|
| 470 |
if (sdLast == NULL)
|
| 471 |
SDcacheList = sdl->next;
|
| 472 |
else
|
| 473 |
sdLast->next = sdl->next;
|
| 474 |
SDfreeBSDF(&sdl->bsdf);
|
| 475 |
free(sdl);
|
| 476 |
}
|
| 477 |
|
| 478 |
/* Sample an individual BSDF component */
|
| 479 |
SDError
|
| 480 |
SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
|
| 481 |
{
|
| 482 |
float coef[SDmaxCh];
|
| 483 |
SDError ec;
|
| 484 |
FVECT inVec;
|
| 485 |
const SDCDst *cd;
|
| 486 |
double d;
|
| 487 |
int n;
|
| 488 |
/* check arguments */
|
| 489 |
if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
|
| 490 |
return SDEargument;
|
| 491 |
/* get cumulative distribution */
|
| 492 |
VCOPY(inVec, ioVec);
|
| 493 |
sv->cieY = 0;
|
| 494 |
cd = (*sdc->func->getCDist)(inVec, sdc);
|
| 495 |
if (cd != NULL)
|
| 496 |
sv->cieY = cd->cTotal;
|
| 497 |
if (sv->cieY <= 1e-6) { /* nothing to sample? */
|
| 498 |
sv->spec = c_dfcolor;
|
| 499 |
memset(ioVec, 0, sizeof(FVECT));
|
| 500 |
return SDEnone;
|
| 501 |
}
|
| 502 |
/* compute sample direction */
|
| 503 |
ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
|
| 504 |
if (ec)
|
| 505 |
return ec;
|
| 506 |
/* get BSDF color */
|
| 507 |
n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
|
| 508 |
if (n <= 0) {
|
| 509 |
strcpy(SDerrorDetail, "BSDF sample value error");
|
| 510 |
return SDEinternal;
|
| 511 |
}
|
| 512 |
sv->spec = sdc->cspec[0];
|
| 513 |
d = coef[0];
|
| 514 |
while (--n) {
|
| 515 |
c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
|
| 516 |
d += coef[n];
|
| 517 |
}
|
| 518 |
/* make sure everything is set */
|
| 519 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 520 |
return SDEnone;
|
| 521 |
}
|
| 522 |
|
| 523 |
#define MS_MAXDIM 15
|
| 524 |
|
| 525 |
/* Convert 1-dimensional random variable to N-dimensional */
|
| 526 |
void
|
| 527 |
SDmultiSamp(double t[], int n, double randX)
|
| 528 |
{
|
| 529 |
unsigned nBits;
|
| 530 |
double scale;
|
| 531 |
bitmask_t ndx, coord[MS_MAXDIM];
|
| 532 |
|
| 533 |
if (n <= 0) /* check corner cases */
|
| 534 |
return;
|
| 535 |
if (randX < 0) randX = 0;
|
| 536 |
else if (randX >= 1.) randX = 0.999999999999999;
|
| 537 |
if (n == 1) {
|
| 538 |
t[0] = randX;
|
| 539 |
return;
|
| 540 |
}
|
| 541 |
while (n > MS_MAXDIM) /* punt for higher dimensions */
|
| 542 |
t[--n] = rand()*(1./(RAND_MAX+.5));
|
| 543 |
nBits = (8*sizeof(bitmask_t) - 1) / n;
|
| 544 |
ndx = randX * (double)((bitmask_t)1 << (nBits*n));
|
| 545 |
/* get coordinate on Hilbert curve */
|
| 546 |
hilbert_i2c(n, nBits, ndx, coord);
|
| 547 |
/* convert back to [0,1) range */
|
| 548 |
scale = 1. / (double)((bitmask_t)1 << nBits);
|
| 549 |
while (n--)
|
| 550 |
t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
|
| 551 |
}
|
| 552 |
|
| 553 |
#undef MS_MAXDIM
|
| 554 |
|
| 555 |
/* Generate diffuse hemispherical sample */
|
| 556 |
static void
|
| 557 |
SDdiffuseSamp(FVECT outVec, int outFront, double randX)
|
| 558 |
{
|
| 559 |
/* convert to position on hemisphere */
|
| 560 |
SDmultiSamp(outVec, 2, randX);
|
| 561 |
SDsquare2disk(outVec, outVec[0], outVec[1]);
|
| 562 |
outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
|
| 563 |
outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
|
| 564 |
if (!outFront) /* going out back? */
|
| 565 |
outVec[2] = -outVec[2];
|
| 566 |
}
|
| 567 |
|
| 568 |
/* Query projected solid angle coverage for non-diffuse BSDF direction */
|
| 569 |
SDError
|
| 570 |
SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
|
| 571 |
int qflags, const SDData *sd)
|
| 572 |
{
|
| 573 |
SDSpectralDF *rdf, *tdf;
|
| 574 |
SDError ec;
|
| 575 |
int i;
|
| 576 |
/* check arguments */
|
| 577 |
if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
|
| 578 |
return SDEargument;
|
| 579 |
/* initialize extrema */
|
| 580 |
switch (qflags) {
|
| 581 |
case SDqueryMax:
|
| 582 |
projSA[0] = .0;
|
| 583 |
break;
|
| 584 |
case SDqueryMin+SDqueryMax:
|
| 585 |
projSA[1] = .0;
|
| 586 |
/* fall through */
|
| 587 |
case SDqueryMin:
|
| 588 |
projSA[0] = 10.;
|
| 589 |
break;
|
| 590 |
case 0:
|
| 591 |
return SDEargument;
|
| 592 |
}
|
| 593 |
if (v1[2] > 0) { /* front surface query? */
|
| 594 |
rdf = sd->rf;
|
| 595 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
|
| 596 |
} else {
|
| 597 |
rdf = sd->rb;
|
| 598 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
|
| 599 |
}
|
| 600 |
if (v2 != NULL) { /* bidirectional? */
|
| 601 |
if (v1[2] > 0 ^ v2[2] > 0)
|
| 602 |
rdf = NULL;
|
| 603 |
else
|
| 604 |
tdf = NULL;
|
| 605 |
}
|
| 606 |
ec = SDEdata; /* run through components */
|
| 607 |
for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
|
| 608 |
ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
|
| 609 |
qflags, &rdf->comp[i]);
|
| 610 |
if (ec)
|
| 611 |
return ec;
|
| 612 |
}
|
| 613 |
for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
|
| 614 |
ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
|
| 615 |
qflags, &tdf->comp[i]);
|
| 616 |
if (ec)
|
| 617 |
return ec;
|
| 618 |
}
|
| 619 |
if (ec) { /* all diffuse? */
|
| 620 |
projSA[0] = M_PI;
|
| 621 |
if (qflags == SDqueryMin+SDqueryMax)
|
| 622 |
projSA[1] = M_PI;
|
| 623 |
} else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
|
| 624 |
projSA[0] = projSA[1];
|
| 625 |
return SDEnone;
|
| 626 |
}
|
| 627 |
|
| 628 |
/* Return BSDF for the given incident and scattered ray vectors */
|
| 629 |
SDError
|
| 630 |
SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
|
| 631 |
{
|
| 632 |
int inFront, outFront;
|
| 633 |
SDSpectralDF *sdf;
|
| 634 |
float coef[SDmaxCh];
|
| 635 |
int nch, i;
|
| 636 |
/* check arguments */
|
| 637 |
if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
|
| 638 |
return SDEargument;
|
| 639 |
/* whose side are we on? */
|
| 640 |
inFront = (inVec[2] > 0);
|
| 641 |
outFront = (outVec[2] > 0);
|
| 642 |
/* start with diffuse portion */
|
| 643 |
if (inFront & outFront) {
|
| 644 |
*sv = sd->rLambFront;
|
| 645 |
sdf = sd->rf;
|
| 646 |
} else if (!(inFront | outFront)) {
|
| 647 |
*sv = sd->rLambBack;
|
| 648 |
sdf = sd->rb;
|
| 649 |
} else if (outFront) {
|
| 650 |
*sv = sd->tLamb;
|
| 651 |
sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
|
| 652 |
} else /* inFront & !outFront */ {
|
| 653 |
*sv = sd->tLamb;
|
| 654 |
sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
|
| 655 |
}
|
| 656 |
sv->cieY *= 1./M_PI;
|
| 657 |
/* add non-diffuse components */
|
| 658 |
i = (sdf != NULL) ? sdf->ncomp : 0;
|
| 659 |
while (i-- > 0) {
|
| 660 |
nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
|
| 661 |
&sdf->comp[i]);
|
| 662 |
while (nch-- > 0) {
|
| 663 |
c_cmix(&sv->spec, sv->cieY, &sv->spec,
|
| 664 |
coef[nch], &sdf->comp[i].cspec[nch]);
|
| 665 |
sv->cieY += coef[nch];
|
| 666 |
}
|
| 667 |
}
|
| 668 |
/* make sure everything is set */
|
| 669 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 670 |
return SDEnone;
|
| 671 |
}
|
| 672 |
|
| 673 |
/* Compute directional hemispherical scattering at this incident angle */
|
| 674 |
double
|
| 675 |
SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
|
| 676 |
{
|
| 677 |
double hsum;
|
| 678 |
SDSpectralDF *rdf, *tdf;
|
| 679 |
const SDCDst *cd;
|
| 680 |
int i;
|
| 681 |
/* check arguments */
|
| 682 |
if ((inVec == NULL) | (sd == NULL))
|
| 683 |
return .0;
|
| 684 |
/* gather diffuse components */
|
| 685 |
if (inVec[2] > 0) {
|
| 686 |
hsum = sd->rLambFront.cieY;
|
| 687 |
rdf = sd->rf;
|
| 688 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
|
| 689 |
} else /* !inFront */ {
|
| 690 |
hsum = sd->rLambBack.cieY;
|
| 691 |
rdf = sd->rb;
|
| 692 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
|
| 693 |
}
|
| 694 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
|
| 695 |
hsum = .0;
|
| 696 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
|
| 697 |
hsum += sd->tLamb.cieY;
|
| 698 |
/* gather non-diffuse components */
|
| 699 |
i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
|
| 700 |
(rdf != NULL)) ? rdf->ncomp : 0;
|
| 701 |
while (i-- > 0) { /* non-diffuse reflection */
|
| 702 |
cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
|
| 703 |
if (cd != NULL)
|
| 704 |
hsum += cd->cTotal;
|
| 705 |
}
|
| 706 |
i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
|
| 707 |
(tdf != NULL)) ? tdf->ncomp : 0;
|
| 708 |
while (i-- > 0) { /* non-diffuse transmission */
|
| 709 |
cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
|
| 710 |
if (cd != NULL)
|
| 711 |
hsum += cd->cTotal;
|
| 712 |
}
|
| 713 |
return hsum;
|
| 714 |
}
|
| 715 |
|
| 716 |
/* Sample BSDF direction based on the given random variable */
|
| 717 |
SDError
|
| 718 |
SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
|
| 719 |
{
|
| 720 |
SDError ec;
|
| 721 |
FVECT inVec;
|
| 722 |
int inFront;
|
| 723 |
SDSpectralDF *rdf, *tdf;
|
| 724 |
double rdiff;
|
| 725 |
float coef[SDmaxCh];
|
| 726 |
int i, j, n, nr;
|
| 727 |
SDComponent *sdc;
|
| 728 |
const SDCDst **cdarr = NULL;
|
| 729 |
/* check arguments */
|
| 730 |
if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
|
| 731 |
(randX < 0) | (randX >= 1.))
|
| 732 |
return SDEargument;
|
| 733 |
/* whose side are we on? */
|
| 734 |
VCOPY(inVec, ioVec);
|
| 735 |
inFront = (inVec[2] > 0);
|
| 736 |
/* remember diffuse portions */
|
| 737 |
if (inFront) {
|
| 738 |
*sv = sd->rLambFront;
|
| 739 |
rdf = sd->rf;
|
| 740 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
|
| 741 |
} else /* !inFront */ {
|
| 742 |
*sv = sd->rLambBack;
|
| 743 |
rdf = sd->rb;
|
| 744 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
|
| 745 |
}
|
| 746 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
|
| 747 |
sv->cieY = .0;
|
| 748 |
rdiff = sv->cieY;
|
| 749 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
|
| 750 |
sv->cieY += sd->tLamb.cieY;
|
| 751 |
/* gather non-diffuse components */
|
| 752 |
i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
|
| 753 |
(rdf != NULL)) ? rdf->ncomp : 0;
|
| 754 |
j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
|
| 755 |
(tdf != NULL)) ? tdf->ncomp : 0;
|
| 756 |
n = i + j;
|
| 757 |
if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
|
| 758 |
return SDEmemory;
|
| 759 |
while (j-- > 0) { /* non-diffuse transmission */
|
| 760 |
cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
|
| 761 |
if (cdarr[i+j] == NULL)
|
| 762 |
cdarr[i+j] = &SDemptyCD;
|
| 763 |
sv->cieY += cdarr[i+j]->cTotal;
|
| 764 |
}
|
| 765 |
while (i-- > 0) { /* non-diffuse reflection */
|
| 766 |
cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
|
| 767 |
if (cdarr[i] == NULL)
|
| 768 |
cdarr[i] = &SDemptyCD;
|
| 769 |
sv->cieY += cdarr[i]->cTotal;
|
| 770 |
}
|
| 771 |
if (sv->cieY <= 1e-6) { /* anything to sample? */
|
| 772 |
sv->cieY = .0;
|
| 773 |
memset(ioVec, 0, sizeof(FVECT));
|
| 774 |
return SDEnone;
|
| 775 |
}
|
| 776 |
/* scale random variable */
|
| 777 |
randX *= sv->cieY;
|
| 778 |
/* diffuse reflection? */
|
| 779 |
if (randX < rdiff) {
|
| 780 |
SDdiffuseSamp(ioVec, inFront, randX/rdiff);
|
| 781 |
goto done;
|
| 782 |
}
|
| 783 |
randX -= rdiff;
|
| 784 |
/* diffuse transmission? */
|
| 785 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
|
| 786 |
if (randX < sd->tLamb.cieY) {
|
| 787 |
sv->spec = sd->tLamb.spec;
|
| 788 |
SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
|
| 789 |
goto done;
|
| 790 |
}
|
| 791 |
randX -= sd->tLamb.cieY;
|
| 792 |
}
|
| 793 |
/* else one of cumulative dist. */
|
| 794 |
for (i = 0; i < n && randX > cdarr[i]->cTotal; i++)
|
| 795 |
randX -= cdarr[i]->cTotal;
|
| 796 |
if (i >= n)
|
| 797 |
return SDEinternal;
|
| 798 |
/* compute sample direction */
|
| 799 |
sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
|
| 800 |
ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
|
| 801 |
if (ec)
|
| 802 |
return ec;
|
| 803 |
/* compute color */
|
| 804 |
j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
|
| 805 |
if (j <= 0) {
|
| 806 |
sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
|
| 807 |
sd->name);
|
| 808 |
return SDEinternal;
|
| 809 |
}
|
| 810 |
sv->spec = sdc->cspec[0];
|
| 811 |
rdiff = coef[0];
|
| 812 |
while (--j) {
|
| 813 |
c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
|
| 814 |
rdiff += coef[j];
|
| 815 |
}
|
| 816 |
done:
|
| 817 |
if (cdarr != NULL)
|
| 818 |
free(cdarr);
|
| 819 |
/* make sure everything is set */
|
| 820 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 821 |
return SDEnone;
|
| 822 |
}
|
| 823 |
|
| 824 |
/* Compute World->BSDF transform from surface normal and up (Y) vector */
|
| 825 |
SDError
|
| 826 |
SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
|
| 827 |
{
|
| 828 |
if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
|
| 829 |
return SDEargument;
|
| 830 |
VCOPY(vMtx[2], sNrm);
|
| 831 |
if (normalize(vMtx[2]) == 0)
|
| 832 |
return SDEargument;
|
| 833 |
fcross(vMtx[0], uVec, vMtx[2]);
|
| 834 |
if (normalize(vMtx[0]) == 0)
|
| 835 |
return SDEargument;
|
| 836 |
fcross(vMtx[1], vMtx[2], vMtx[0]);
|
| 837 |
return SDEnone;
|
| 838 |
}
|
| 839 |
|
| 840 |
/* Compute inverse transform */
|
| 841 |
SDError
|
| 842 |
SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
|
| 843 |
{
|
| 844 |
RREAL mTmp[3][3];
|
| 845 |
double d;
|
| 846 |
|
| 847 |
if ((iMtx == NULL) | (vMtx == NULL))
|
| 848 |
return SDEargument;
|
| 849 |
/* compute determinant */
|
| 850 |
mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
|
| 851 |
mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
|
| 852 |
mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
|
| 853 |
d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
|
| 854 |
if (d == 0) {
|
| 855 |
strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
|
| 856 |
return SDEargument;
|
| 857 |
}
|
| 858 |
d = 1./d; /* invert matrix */
|
| 859 |
mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
|
| 860 |
mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
|
| 861 |
mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
|
| 862 |
mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
|
| 863 |
mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
|
| 864 |
mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
|
| 865 |
mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
|
| 866 |
memcpy(iMtx, mTmp, sizeof(mTmp));
|
| 867 |
return SDEnone;
|
| 868 |
}
|
| 869 |
|
| 870 |
/* Transform and normalize direction (column) vector */
|
| 871 |
SDError
|
| 872 |
SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
|
| 873 |
{
|
| 874 |
FVECT vTmp;
|
| 875 |
|
| 876 |
if ((resVec == NULL) | (inpVec == NULL))
|
| 877 |
return SDEargument;
|
| 878 |
if (vMtx == NULL) { /* assume they just want to normalize */
|
| 879 |
if (resVec != inpVec)
|
| 880 |
VCOPY(resVec, inpVec);
|
| 881 |
return (normalize(resVec) > 0) ? SDEnone : SDEargument;
|
| 882 |
}
|
| 883 |
vTmp[0] = DOT(vMtx[0], inpVec);
|
| 884 |
vTmp[1] = DOT(vMtx[1], inpVec);
|
| 885 |
vTmp[2] = DOT(vMtx[2], inpVec);
|
| 886 |
if (normalize(vTmp) == 0)
|
| 887 |
return SDEargument;
|
| 888 |
VCOPY(resVec, vTmp);
|
| 889 |
return SDEnone;
|
| 890 |
}
|