ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/test/renders/prism.cal
Revision: 1.1
Committed: Sat Nov 17 22:09:12 2018 UTC (5 years, 6 months ago) by greg
Branch: MAIN
CVS Tags: rad5R4, rad5R3, HEAD
Log Message:
Created rendering tests

File Contents

# Content
1 { RCSid $Id$ }
2 {
3 Calculation of relay directions for prismatic glazing
4
5 31 July 1991 Greg Ward
6
7 Prism is oriented with flat side in xz plane
8 and normal in -y direction. The prism is
9 extruded along the x axis.
10
11 Reflections are not computed.
12
13 Parameters:
14 A1 - index of refraction
15 A2 - thickness of prism triangle
16 A3 - height of upper side (segment 1)
17 A4 - height of lower side (segment 2)
18
19 Computes:
20 coef1 - transmission coefficient for upper side
21 dx1, dy1,
22 dz1 - transmission direction for upper side
23 coef2 - transmission coefficient for lower side
24 dx2, dy2,
25 dz2 - transmission direction for lower side
26 }
27 { required formulae }
28 tan2sin(a) = sqrt(a*a/(1+a*a));
29 stb(sta,ca,sa) = ca*sta - sa*sqrt(A1*A1-sta*sta);
30 cos_p = Sqrt(1-Dx*Dx);
31 dtrans(c1,c2) = dtransb(c1, sqrt(1+(c1*c1-1)/A1/A1),
32 c2, sqrt(1+(c2*c2-1)/A1/A1));
33 dtransb(c1o,c1i,c2o,c2i) = 8*A1*A1 *
34 ( c1o*c1i*c2o*c2i/sq((A1*c1o+c1i)*(A1*c2o+c2i)) +
35 1/c1o/c1i/c2o/c2i/sq((A1/c1o+1/c1i)*(A1/c2o+1/c2i)) );
36
37 {************************************************
38 Definitions for Segment 1
39 }
40 { slope angle (always positive) }
41 sin_a1 = tan2sin(A2/A3/cos_p);
42 cos_a1 = Sqrt(1-sin_a1*sin_a1);
43 { computed coefficeint }
44 coef1 = A3/(A3+A4) * if(Dy,
45 if(1-abs(sin_tB1o),
46 dtrans(cos_tA1i, cos_tB1o),
47 0),
48 if (Dy*cos_a1 + Dz*sin_a1,
49 0,
50 if (1-abs(sin_tA1o),
51 dtrans(cos_tB1i, cos_tA1o),
52 0)));
53 { computed direction }
54 dx1 = Dx;
55 dy1 = if(Dy,
56 (cos_a1*cos_tB1o-sin_a1*sin_tB1o)*cos_p,
57 -cos_tA1o*cos_p);
58 dz1 = if(Dy,
59 (sin_a1*cos_tB1o+cos_a1*sin_tB1o)*cos_p,
60 -sin_tA1o*cos_p);
61 { incident angle (flat side) }
62 sin_tA1i = Dz/cos_p;
63 cos_tA1i = Sqrt(1-sin_tA1i*sin_tA1i);
64 { transmitted angle (steep side) }
65 sin_tB1o = stb(sin_tA1i, cos_a1, sin_a1);
66 cos_tB1o = Sqrt(1-sin_tB1o*sin_tB1o);
67 { incident angle (steep side) }
68 sin_tB1i = -Dz/cos_p*cos_a1 -
69 Sqrt(1-sq(Dz/cos_p))*sin_a1;
70 cos_tB1i = Sqrt(1-sin_tB1i*sin_tB1i);
71 { transmitted angle (flat side) }
72 sin_tA1o = stb(sin_tB1i, cos_a1, -sin_a1);
73 cos_tA1o = Sqrt(1-sin_tA1o*sin_tA1o);
74
75 {************************************************
76 Definitions for Segment 2
77 }
78 { slope angle (always negative) }
79 sin_a2 = -tan2sin(A2/A4/cos_p);
80 cos_a2 = Sqrt(1-sin_a2*sin_a2);
81 { computed coefficeint }
82 coef2 = A4/(A3+A4) * if(Dy,
83 if(1-abs(sin_tB2o),
84 dtrans(cos_tA2i, cos_tB2o),
85 0),
86 if (Dy*cos_a2 + Dz*sin_a2,
87 0,
88 if (1-abs(sin_tA2o),
89 dtrans(cos_tB2i, cos_tA2o),
90 0)));
91 { computed direction }
92 dx2 = Dx;
93 dy2 = if(Dy,
94 (cos_a2*cos_tB2o-sin_a2*sin_tB2o)*cos_p,
95 -cos_tA2o*cos_p);
96 dz2 = if(Dy,
97 (sin_a2*cos_tB2o+cos_a2*sin_tB2o)*cos_p,
98 -sin_tA2o*cos_p);
99 { incident angle (flat side) }
100 sin_tA2i = Dz/cos_p;
101 cos_tA2i = Sqrt(1-sin_tA2i*sin_tA2i);
102 { transmitted angle (steep side) }
103 sin_tB2o = stb(sin_tA2i, cos_a2, sin_a2);
104 cos_tB2o = Sqrt(1-sin_tB2o*sin_tB2o);
105 { incident angle (steep side) }
106 sin_tB2i = -Dz/cos_p*cos_a2 -
107 Sqrt(1-sq(Dz/cos_p))*sin_a2;
108 cos_tB2i = Sqrt(1-sin_tB2i*sin_tB2i);
109 { transmitted angle (flat side) }
110 sin_tA2o = stb(sin_tB2i, cos_a2, -sin_a2);
111 cos_tA2o = Sqrt(1-sin_tA2o*sin_tA2o);