1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: rsensor.c,v 2.24 2025/04/23 02:35:27 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
/* |
6 |
* Compute sensor signal based on spatial sensitivity. |
7 |
* |
8 |
* Created Feb 2008 for Architectural Energy Corp. |
9 |
*/ |
10 |
|
11 |
#include "ray.h" |
12 |
#include "platform.h" |
13 |
#include "source.h" |
14 |
#include "func.h" |
15 |
#include "view.h" |
16 |
#include "random.h" |
17 |
|
18 |
#define DEGREE (PI/180.) |
19 |
|
20 |
#define MAXNT 181 /* maximum number of theta divisions */ |
21 |
#define MAXNP 360 /* maximum number of phi divisions */ |
22 |
|
23 |
extern int nowarn; /* don't report warnings? */ |
24 |
|
25 |
/* current sensor's perspective */ |
26 |
VIEW ourview = {VT_ANG,{0.,0.,0.},{0.,0.,1.},{1.,0.,0.}, |
27 |
1.,180.,180.,0.,0.,0.,0., |
28 |
{0.,0.,0.},{0.,0.,0.},0.,0.}; |
29 |
|
30 |
long nsamps = 10000; /* desired number of initial samples */ |
31 |
int ndsamps = 32; /* number of direct samples */ |
32 |
int nprocs = 1; /* number of rendering processes */ |
33 |
|
34 |
float *sensor = NULL; /* current sensor data */ |
35 |
int sntp[2]; /* number of sensor theta and phi angles */ |
36 |
float maxtheta; /* maximum theta value for this sensor */ |
37 |
float tvals[MAXNT+1]; /* theta prob. values (1-D table of 1-cos(t)) */ |
38 |
float *pvals = NULL; /* phi prob. values (2-D table in radians) */ |
39 |
int ntheta = 0; /* polar angle divisions */ |
40 |
int nphi = 0; /* azimuthal angle divisions */ |
41 |
double gscale = 1.; /* global scaling value */ |
42 |
|
43 |
#define s_theta(t) sensor[(t+1)*(sntp[1]+1)] |
44 |
#define s_phi(p) sensor[(p)+1] |
45 |
#define s_val(t,p) sensor[(p)+1+(t+1)*(sntp[1]+1)] |
46 |
|
47 |
static void comp_sensor(char *sfile); |
48 |
|
49 |
static void |
50 |
over_options() /* overriding options */ |
51 |
{ |
52 |
directvis = (ndsamps <= 0); |
53 |
do_irrad = 0; |
54 |
} |
55 |
|
56 |
static void |
57 |
print_defaults() /* print out default parameters */ |
58 |
{ |
59 |
over_options(); |
60 |
printf("-n %-9d\t\t\t# number of processes\n", nprocs); |
61 |
printf("-rd %-9ld\t\t\t# ray directions\n", nsamps); |
62 |
printf("-dn %-9d\t\t\t# direct number of samples\n", ndsamps); |
63 |
printf("-vp %f %f %f\t# view point\n", |
64 |
ourview.vp[0], ourview.vp[1], ourview.vp[2]); |
65 |
printf("-vd %f %f %f\t# view direction\n", |
66 |
ourview.vdir[0], ourview.vdir[1], ourview.vdir[2]); |
67 |
printf("-vu %f %f %f\t# view up\n", |
68 |
ourview.vup[0], ourview.vup[1], ourview.vup[2]); |
69 |
printf("-vo %f\t\t\t# view fore clipping distance\n", ourview.vfore); |
70 |
print_rdefaults(); |
71 |
} |
72 |
|
73 |
|
74 |
void |
75 |
quit(ec) /* make sure exit is called */ |
76 |
int ec; |
77 |
{ |
78 |
if (ray_pnprocs > 0) /* close children if any */ |
79 |
ray_pclose(0); |
80 |
else if (ray_pnprocs < 0) |
81 |
_exit(ec); /* avoid flush in child */ |
82 |
exit(ec); |
83 |
} |
84 |
|
85 |
|
86 |
int |
87 |
main( |
88 |
int argc, |
89 |
char *argv[] |
90 |
) |
91 |
{ |
92 |
int doheader = 1; |
93 |
int optwarn = 0; |
94 |
int i, rval; |
95 |
/* set global progname */ |
96 |
fixargv0(argv[0]); |
97 |
/* set up rendering defaults */ |
98 |
rand_samp = 1; |
99 |
dstrsrc = 0.65; |
100 |
srcsizerat = 0.1; |
101 |
directrelay = 3; |
102 |
ambounce = 1; |
103 |
maxdepth = -10; |
104 |
/* initialize calcomp routines */ |
105 |
initfunc(); |
106 |
/* get options from command line */ |
107 |
for (i = 1; i < argc; i++) { |
108 |
while ((rval = expandarg(&argc, &argv, i)) > 0) |
109 |
; |
110 |
if (rval < 0) { |
111 |
sprintf(errmsg, "cannot expand '%s'", argv[i]); |
112 |
error(SYSTEM, errmsg); |
113 |
} |
114 |
if (argv[i][0] != '-') { |
115 |
if (i >= argc-1) |
116 |
break; /* final octree argument */ |
117 |
if (!ray_pnprocs) { |
118 |
over_options(); |
119 |
if (doheader) { /* print header */ |
120 |
newheader("RADIANCE", stdout); |
121 |
printargs(argc, argv, stdout); |
122 |
fputformat("ascii", stdout); |
123 |
putchar('\n'); |
124 |
} |
125 |
/* start process(es) */ |
126 |
if (strcmp(argv[argc-1], ".")) |
127 |
ray_pinit(argv[argc-1], nprocs); |
128 |
} |
129 |
comp_sensor(argv[i]); /* process a sensor file */ |
130 |
continue; |
131 |
} |
132 |
if (argv[i][1] == 'r') { /* sampling options */ |
133 |
if (argv[i][2] == 'd') |
134 |
nsamps = atol(argv[++i]); |
135 |
else { |
136 |
sprintf(errmsg, "bad option at '%s'", argv[i]); |
137 |
error(USER, errmsg); |
138 |
} |
139 |
continue; |
140 |
} |
141 |
/* direct component samples */ |
142 |
if (argv[i][1] == 'd' && argv[i][2] == 'n') { |
143 |
ndsamps = atoi(argv[++i]); |
144 |
continue; |
145 |
} |
146 |
if (argv[i][1] == 'v') { /* next sensor view */ |
147 |
if (argv[i][2] == 'f') { |
148 |
rval = viewfile(argv[++i], &ourview, NULL); |
149 |
if (rval < 0) { |
150 |
sprintf(errmsg, |
151 |
"cannot open view file \"%s\"", |
152 |
argv[i]); |
153 |
error(SYSTEM, errmsg); |
154 |
} else if (rval == 0) { |
155 |
sprintf(errmsg, |
156 |
"bad view file \"%s\"", |
157 |
argv[i]); |
158 |
error(USER, errmsg); |
159 |
} |
160 |
continue; |
161 |
} |
162 |
rval = getviewopt(&ourview, argc-i, argv+i); |
163 |
if (rval >= 0) { |
164 |
i += rval; |
165 |
continue; |
166 |
} |
167 |
sprintf(errmsg, "bad view option at '%s'", argv[i]); |
168 |
error(USER, errmsg); |
169 |
} |
170 |
if (!strcmp(argv[i], "-w")) { /* toggle warnings */ |
171 |
nowarn = !nowarn; |
172 |
continue; |
173 |
} |
174 |
if (ray_pnprocs) { |
175 |
if (!optwarn++) |
176 |
error(WARNING, |
177 |
"rendering options should appear before first sensor"); |
178 |
} else if (!strcmp(argv[i], "-defaults")) { |
179 |
print_defaults(); |
180 |
return(0); |
181 |
} |
182 |
if (argv[i][1] == 'h') { /* header toggle */ |
183 |
doheader = !doheader; |
184 |
continue; |
185 |
} |
186 |
if (!strcmp(argv[i], "-n")) { /* number of processes */ |
187 |
nprocs = atoi(argv[++i]); |
188 |
if (nprocs <= 0) |
189 |
error(USER, "illegal number of processes"); |
190 |
continue; |
191 |
} |
192 |
rval = getrenderopt(argc-i, argv+i); |
193 |
if (rval < 0) { |
194 |
sprintf(errmsg, "bad render option at '%s'", argv[i]); |
195 |
error(USER, errmsg); |
196 |
} |
197 |
i += rval; |
198 |
} |
199 |
if (sensor == NULL) |
200 |
error(USER, i<argc ? "missing sensor file" : "missing octree"); |
201 |
quit(0); |
202 |
} |
203 |
|
204 |
/* Load sensor sensitivities (first row and column are angles) */ |
205 |
static float * |
206 |
load_sensor( |
207 |
int ntp[2], |
208 |
char *sfile |
209 |
) |
210 |
{ |
211 |
int warnedneg; |
212 |
char linebuf[8192]; |
213 |
int last_pos_val = 0; |
214 |
int nelem = 1000; |
215 |
float *sarr = (float *)malloc(sizeof(float)*nelem); |
216 |
FILE *fp; |
217 |
char *cp; |
218 |
int i; |
219 |
|
220 |
fp = frlibopen(sfile); |
221 |
if (fp == NULL) { |
222 |
sprintf(errmsg, "cannot open sensor file '%s'", sfile); |
223 |
error(SYSTEM, errmsg); |
224 |
} |
225 |
fgets(linebuf, sizeof(linebuf), fp); |
226 |
if (!strncmp(linebuf, "Elevation ", 10)) |
227 |
fgets(linebuf, sizeof(linebuf), fp); |
228 |
/* get phi values */ |
229 |
sarr[0] = .0f; |
230 |
if (strncmp(linebuf, "degrees", 7)) { |
231 |
sprintf(errmsg, "Missing 'degrees' in sensor file '%s'", sfile); |
232 |
error(USER, errmsg); |
233 |
} |
234 |
cp = sskip(linebuf); |
235 |
ntp[1] = 0; |
236 |
for ( ; ; ) { |
237 |
sarr[ntp[1]+1] = atof(cp); |
238 |
cp = fskip(cp); |
239 |
if (cp == NULL) |
240 |
break; |
241 |
if (ntp[1] > 1 && sarr[ntp[1]+1] <= sarr[ntp[1]]+FTINY) { |
242 |
sprintf(errmsg, |
243 |
"Phi values not monotinically increasing in sensor file '%s'", |
244 |
sfile); |
245 |
error(USER, errmsg); |
246 |
} |
247 |
++ntp[1]; |
248 |
} |
249 |
warnedneg = 0; |
250 |
ntp[0] = 0; /* get thetas + data */ |
251 |
while (fgets(linebuf, sizeof(linebuf), fp) != NULL) { |
252 |
++ntp[0]; |
253 |
if ((ntp[0]+1)*(ntp[1]+1) > nelem) { |
254 |
nelem += (nelem>>2) + ntp[1]; |
255 |
sarr = (float *)realloc((void *)sarr, |
256 |
sizeof(float)*nelem); |
257 |
if (sarr == NULL) |
258 |
error(SYSTEM, "out of memory in load_sensor()"); |
259 |
} |
260 |
cp = linebuf; |
261 |
i = ntp[0]*(ntp[1]+1); |
262 |
for ( ; ; ) { |
263 |
sarr[i] = atof(cp); |
264 |
cp = fskip(cp); |
265 |
if (cp == NULL) |
266 |
break; |
267 |
if (sarr[i] < .0) { |
268 |
if (!warnedneg++) { |
269 |
sprintf(errmsg, |
270 |
"Negative value(s) in sensor file '%s' (ignored)\n", sfile); |
271 |
error(WARNING, errmsg); |
272 |
} |
273 |
sarr[i] = .0; |
274 |
} else if (sarr[i] > FTINY && i > ntp[0]*(ntp[1]+1)) |
275 |
last_pos_val = i; |
276 |
++i; |
277 |
} |
278 |
if (i == ntp[0]*(ntp[1]+1)) /* empty line? */ |
279 |
break; |
280 |
if (ntp[0] > 1 && sarr[ntp[0]*(ntp[1]+1)] <= |
281 |
sarr[(ntp[0]-1)*(ntp[1]+1)]) { |
282 |
sprintf(errmsg, |
283 |
"Theta values not monotinically increasing in sensor file '%s'", |
284 |
sfile); |
285 |
error(USER, errmsg); |
286 |
} |
287 |
if (i != (ntp[0]+1)*(ntp[1]+1)) { |
288 |
sprintf(errmsg, |
289 |
"bad column count near line %d in sensor file '%s'", |
290 |
ntp[0]+1, sfile); |
291 |
error(USER, errmsg); |
292 |
} |
293 |
} |
294 |
/* truncate zero region */ |
295 |
ntp[0] = (last_pos_val + ntp[1])/(ntp[1]+1) - 1; |
296 |
nelem = (ntp[0]+1)*(ntp[1]+1); |
297 |
fclose(fp); |
298 |
errmsg[0] = '\0'; /* sanity checks */ |
299 |
if (!last_pos_val) |
300 |
sprintf(errmsg, "no positive sensor values in file '%s'", sfile); |
301 |
else if (fabs(sarr[ntp[1]+1]) > FTINY) |
302 |
sprintf(errmsg, "minimum theta must be 0 in sensor file '%s'", |
303 |
sfile); |
304 |
else if (fabs(sarr[1]) > FTINY) |
305 |
sprintf(errmsg, "minimum phi must be 0 in sensor file '%s'", |
306 |
sfile); |
307 |
else if (sarr[ntp[1]] < 270.-FTINY) |
308 |
sprintf(errmsg, |
309 |
"maximum phi must be 270 or greater in sensor file '%s'", |
310 |
sfile); |
311 |
else if (sarr[ntp[1]] >= 360.-FTINY) |
312 |
sprintf(errmsg, |
313 |
"maximum phi must be less than 360 in sensor file '%s'", |
314 |
sfile); |
315 |
if (errmsg[0]) |
316 |
error(USER, errmsg); |
317 |
return((float *)realloc((void *)sarr, sizeof(float)*nelem)); |
318 |
} |
319 |
|
320 |
/* Initialize probability table */ |
321 |
static void |
322 |
init_ptable( |
323 |
char *sfile |
324 |
) |
325 |
{ |
326 |
long samptot = nsamps; |
327 |
float *rowp, *rowp1; |
328 |
double rowsum[MAXNT], rowomega[MAXNT]; |
329 |
double thdiv[MAXNT+1], phdiv[MAXNP+1]; |
330 |
double tsize, psize; |
331 |
double prob, frac, frac1; |
332 |
int i, j, t, p; |
333 |
/* free old table */ |
334 |
if (sensor != NULL) |
335 |
free((void *)sensor); |
336 |
if (pvals != NULL) |
337 |
free((void *)pvals); |
338 |
if (sfile == NULL || !*sfile) { |
339 |
sensor = NULL; |
340 |
sntp[0] = sntp[1] = 0; |
341 |
pvals = NULL; |
342 |
ntheta = nphi = 0; |
343 |
return; |
344 |
} |
345 |
/* load sensor table */ |
346 |
sensor = load_sensor(sntp, sfile); |
347 |
if (sntp[0] > MAXNT) { |
348 |
sprintf(errmsg, "Too many theta rows in sensor file '%s'", |
349 |
sfile); |
350 |
error(INTERNAL, errmsg); |
351 |
} |
352 |
if (sntp[1] > MAXNP) { |
353 |
sprintf(errmsg, "Too many phi columns in sensor file '%s'", |
354 |
sfile); |
355 |
error(INTERNAL, errmsg); |
356 |
} |
357 |
/* compute boundary angles */ |
358 |
maxtheta = DEGREE*(1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2)); |
359 |
if (maxtheta > PI) |
360 |
maxtheta = PI; |
361 |
thdiv[0] = .0; |
362 |
for (t = 1; t < sntp[0]; t++) |
363 |
thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t)); |
364 |
thdiv[sntp[0]] = maxtheta; |
365 |
phdiv[0] = DEGREE*(1.5f*s_phi(0) - 0.5f*s_phi(1)); |
366 |
for (p = 1; p < sntp[1]; p++) |
367 |
phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p)); |
368 |
phdiv[sntp[1]] = DEGREE*(1.5f*s_phi(sntp[1]-1) - 0.5f*s_phi(sntp[1]-2)); |
369 |
/* size our table */ |
370 |
tsize = 1. - cos(maxtheta); |
371 |
psize = PI*tsize/maxtheta; |
372 |
if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */ |
373 |
samptot = sntp[0]*sntp[1]; |
374 |
ntheta = (int)(sqrt((double)samptot*tsize/psize)*sntp[0]/sntp[1]) + 1; |
375 |
if (ntheta > MAXNT) |
376 |
ntheta = MAXNT; |
377 |
nphi = samptot/ntheta; |
378 |
pvals = (float *)malloc(sizeof(float)*(ntheta+1)*(nphi+1)); |
379 |
if (pvals == NULL) |
380 |
error(SYSTEM, "out of memory in init_ptable()"); |
381 |
gscale = .0; /* compute our inverse table */ |
382 |
for (i = 0; i < sntp[0]; i++) { |
383 |
rowp = &s_val(i,0); |
384 |
rowsum[i] = 1e-20; |
385 |
for (j = 0; j < sntp[1]; j++) |
386 |
rowsum[i] += *rowp++; |
387 |
rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]); |
388 |
rowomega[i] *= 2.*PI / (double)sntp[1]; |
389 |
gscale += rowsum[i] * rowomega[i]; |
390 |
} |
391 |
if (gscale <= FTINY) { |
392 |
sprintf(errmsg, "Sensor values sum to zero in file '%s'", sfile); |
393 |
error(USER, errmsg); |
394 |
} |
395 |
for (i = 0; i < ntheta; i++) { |
396 |
prob = (double)i / (double)ntheta; |
397 |
for (t = 0; t < sntp[0]; t++) |
398 |
if ((prob -= rowsum[t]*rowomega[t]/gscale) <= .0) |
399 |
break; |
400 |
if (t >= sntp[0]) |
401 |
error(INTERNAL, "code error 1 in init_ptable()"); |
402 |
frac = 1. + prob/(rowsum[t]*rowomega[t]/gscale); |
403 |
tvals[i] = 1. - ( (1.-frac)*cos(thdiv[t]) + |
404 |
frac*cos(thdiv[t+1]) ); |
405 |
/* offset b/c sensor values are centered */ |
406 |
if ((t < sntp[0]-1) & (!t | (frac >= 0.5))) { |
407 |
frac -= 0.5; |
408 |
} else { |
409 |
frac += 0.5; |
410 |
--t; |
411 |
} |
412 |
pvals[i*(nphi+1)] = phdiv[0]; |
413 |
for (j = 1; j < nphi; j++) { |
414 |
prob = (double)j / (double)nphi; |
415 |
rowp = &s_val(t,0); |
416 |
rowp1 = &s_val(t+1,0); |
417 |
for (p = 0; p < sntp[1]; p++) |
418 |
if ((prob -= (1.-frac)*rowp[p]/rowsum[t] + |
419 |
frac*rowp1[p]/rowsum[t+1]) <= .0) |
420 |
break; |
421 |
if (p >= sntp[1]) { /* should never happen? */ |
422 |
p = sntp[1] - 1; |
423 |
prob = .5; |
424 |
} |
425 |
frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t] |
426 |
+ frac*rowp1[p]/rowsum[t+1]); |
427 |
pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] + |
428 |
frac1*phdiv[p+1]; |
429 |
} |
430 |
pvals[i*(nphi+1) + nphi] = phdiv[sntp[1]]; |
431 |
} |
432 |
/* duplicate final row */ |
433 |
memcpy(pvals+ntheta*(nphi+1), pvals+(ntheta-1)*(nphi+1), |
434 |
sizeof(*pvals)*(nphi+1)); |
435 |
tvals[0] = .0f; |
436 |
tvals[ntheta] = (float)tsize; |
437 |
} |
438 |
|
439 |
/* Get normalized direction from random variables in [0,1) range */ |
440 |
static void |
441 |
get_direc( |
442 |
FVECT dvec, |
443 |
double x, |
444 |
double y |
445 |
) |
446 |
{ |
447 |
double xfrac = x*ntheta; |
448 |
int tndx = (int)xfrac; |
449 |
double yfrac = y*nphi; |
450 |
int pndx = (int)yfrac; |
451 |
double rad, phi; |
452 |
FVECT dv; |
453 |
int i; |
454 |
|
455 |
xfrac -= (double)tndx; |
456 |
yfrac -= (double)pndx; |
457 |
pndx += tndx*(nphi+1); |
458 |
|
459 |
dv[2] = 1. - ((1.-xfrac)*tvals[tndx] + xfrac*tvals[tndx+1]); |
460 |
rad = sqrt(1. - dv[2]*dv[2]); |
461 |
phi = (1.-yfrac)*pvals[pndx] + yfrac*pvals[pndx+1]; |
462 |
dv[0] = -rad*sin(phi); |
463 |
dv[1] = rad*cos(phi); |
464 |
for (i = 3; i--; ) |
465 |
dvec[i] = dv[0]*ourview.hvec[i] + |
466 |
dv[1]*ourview.vvec[i] + |
467 |
dv[2]*ourview.vdir[i] ; |
468 |
} |
469 |
|
470 |
/* Get sensor value in the specified direction (normalized) */ |
471 |
static float |
472 |
sens_val( |
473 |
FVECT dvec |
474 |
) |
475 |
{ |
476 |
FVECT dv; |
477 |
float theta, phi; |
478 |
int t, p; |
479 |
|
480 |
dv[2] = DOT(dvec, ourview.vdir); |
481 |
theta = acos(dv[2]); |
482 |
if (theta >= maxtheta) |
483 |
return(.0f); |
484 |
dv[0] = DOT(dvec, ourview.hvec); |
485 |
dv[1] = DOT(dvec, ourview.vvec); |
486 |
phi = atan2(-dv[0], dv[1]); |
487 |
while (phi < .0f) phi += (float)(2.*PI); |
488 |
t = (int)(theta/maxtheta * sntp[0]); |
489 |
p = (int)(phi*(1./(2.*PI)) * sntp[1]); |
490 |
/* hack for non-uniform sensor grid */ |
491 |
theta *= (float)(1./DEGREE); |
492 |
phi *= (float)(1./DEGREE); |
493 |
while (t+1 < sntp[0] && theta >= s_theta(t+1)) |
494 |
++t; |
495 |
while (t-1 >= 0 && theta <= s_theta(t-1)) |
496 |
--t; |
497 |
while (p+1 < sntp[1] && phi >= s_phi(p+1)) |
498 |
++p; |
499 |
while (p-1 >= 0 && phi <= s_phi(p-1)) |
500 |
--p; |
501 |
return(s_val(t,p)); |
502 |
} |
503 |
|
504 |
/* Print origin and direction */ |
505 |
static void |
506 |
print_ray( |
507 |
FVECT rorg, |
508 |
FVECT rdir |
509 |
) |
510 |
{ |
511 |
printf("%.6g %.6g %.6g %.8f %.8f %.8f\n", |
512 |
rorg[0], rorg[1], rorg[2], |
513 |
rdir[0], rdir[1], rdir[2]); |
514 |
} |
515 |
|
516 |
/* Compute sensor output */ |
517 |
static void |
518 |
comp_sensor( |
519 |
char *sfile |
520 |
) |
521 |
{ |
522 |
int ndirs = dstrsrc > FTINY ? ndsamps : |
523 |
ndsamps > 0 ? 1 : 0; |
524 |
char *err; |
525 |
int nt, np; |
526 |
SCOLOR vsum; |
527 |
RAY rr; |
528 |
double sf; |
529 |
int i, j; |
530 |
/* set view */ |
531 |
ourview.type = VT_ANG; |
532 |
ourview.horiz = ourview.vert = 180.; |
533 |
ourview.hoff = ourview.voff = .0; |
534 |
err = setview(&ourview); |
535 |
if (err != NULL) |
536 |
error(USER, err); |
537 |
/* assign probability table */ |
538 |
init_ptable(sfile); |
539 |
/* stratified MC sampling */ |
540 |
scolorblack(vsum); |
541 |
nt = (int)(sqrt((double)nsamps*ntheta/nphi) + .5); |
542 |
np = nsamps/nt; |
543 |
sf = gscale/nsamps; |
544 |
for (i = 0; i < nt; i++) |
545 |
for (j = 0; j < np; j++) { |
546 |
VCOPY(rr.rorg, ourview.vp); |
547 |
get_direc(rr.rdir, (i+frandom())/nt, (j+frandom())/np); |
548 |
if (ourview.vfore > FTINY) |
549 |
VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore); |
550 |
if (!ray_pnprocs) { |
551 |
print_ray(rr.rorg, rr.rdir); |
552 |
continue; |
553 |
} |
554 |
rr.rmax = .0; |
555 |
rayorigin(&rr, PRIMARY|SPECULAR, NULL, NULL); |
556 |
scalescolor(rr.rcoef, sf); |
557 |
if (ray_pqueue(&rr) == 1) |
558 |
saddscolor(vsum, rr.rcol); |
559 |
} |
560 |
/* remaining rays pure MC */ |
561 |
for (i = nsamps - nt*np; i-- > 0; ) { |
562 |
VCOPY(rr.rorg, ourview.vp); |
563 |
get_direc(rr.rdir, frandom(), frandom()); |
564 |
if (ourview.vfore > FTINY) |
565 |
VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore); |
566 |
if (!ray_pnprocs) { |
567 |
print_ray(rr.rorg, rr.rdir); |
568 |
continue; |
569 |
} |
570 |
rr.rmax = .0; |
571 |
rayorigin(&rr, PRIMARY|SPECULAR, NULL, NULL); |
572 |
scalescolor(rr.rcoef, sf); |
573 |
if (ray_pqueue(&rr) == 1) |
574 |
saddscolor(vsum, rr.rcol); |
575 |
} |
576 |
if (!ray_pnprocs) /* just printing rays */ |
577 |
return; |
578 |
/* scale partial result */ |
579 |
scalescolor(vsum, sf); |
580 |
/* add direct component */ |
581 |
for (i = ndirs; i-- > 0; ) { |
582 |
SRCINDEX si; |
583 |
initsrcindex(&si); |
584 |
while (srcray(&rr, NULL, &si)) { |
585 |
sf = sens_val(rr.rdir); |
586 |
if (sf <= FTINY) |
587 |
continue; |
588 |
sf *= si.dom/ndirs; |
589 |
scalescolor(rr.rcoef, sf); |
590 |
if (ray_pqueue(&rr) == 1) { |
591 |
smultscolor(rr.rcol, rr.rcoef); |
592 |
saddscolor(vsum, rr.rcol); |
593 |
} |
594 |
} |
595 |
} |
596 |
while (ray_presult(&rr, 0) > 0) { /* finish our calculation */ |
597 |
smultscolor(rr.rcol, rr.rcoef); |
598 |
saddscolor(vsum, rr.rcol); |
599 |
} |
600 |
for (i = 0; i < NCSAMP; i++) /* print our result */ |
601 |
printf(" %.4e", vsum[i]); |
602 |
fputc('\n', stdout); |
603 |
} |